Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
Add more filters

Publication year range
1.
Gene Ther ; 30(1-2): 107-114, 2023 02.
Article in English | MEDLINE | ID: mdl-35581402

ABSTRACT

Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder (LSD) caused by mutations in gene encoding for GALNS enzyme. Lack of GALNS activity leads to the accumulation of glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate. Although enzyme replacement therapy has been approved since 2014 for MPS IVA, still there is an unmet medical need to have improved therapies for this disorder. CRISPR/Cas9-based gene therapy has been tested for several LSDs with encouraging findings, but to date it has not been assayed on MPS IVA. In this work, we validated for the first time the use of CRISPR/Cas9, using a Cas9 nickase, for the knock-in of an expression cassette containing GALNS cDNA in an in vitro model of MPS IVA. The results showed the successful homologous recombination of the expression cassette into the AAVS1 locus, as well as a long-term increase in GALNS activity reaching up to 40% of wild-type levels. We also observed normalization of lysosomal mass, total GAGs, and oxidative stress, which are some of the major findings regarding the pathophysiological events in MPS IVA. These results represent a proof-of-concept of the use of CRISPR/Cas9 nickase strategy for the development of a novel therapeutic alternative for MPS IVA.


Subject(s)
Chondroitinsulfatases , Mucopolysaccharidosis IV , Humans , Mucopolysaccharidosis IV/genetics , Mucopolysaccharidosis IV/therapy , CRISPR-Cas Systems , Gene Editing , Chondroitinsulfatases/genetics , Chondroitinsulfatases/metabolism , Chondroitinsulfatases/therapeutic use , Keratan Sulfate/metabolism , Keratan Sulfate/therapeutic use , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism
2.
J Med Genet ; 59(10): 957-964, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34916232

ABSTRACT

BACKGROUND: Mucopolysaccharidoses (MPS) are monogenic metabolic disorders that significantly affect the skeleton. Eleven enzyme defects in the lysosomal degradation of glycosaminoglycans (GAGs) have been assigned to the known MPS subtypes (I-IX). Arylsulfatase K (ARSK) is a recently characterised lysosomal hydrolase involved in GAG degradation that removes the 2-O-sulfate group from 2-sulfoglucuronate. Knockout of Arsk in mice was consistent with mild storage pathology, but no human phenotype has yet been described. METHODS: In this study, we report four affected individuals of two unrelated consanguineous families with homozygous variants c.250C>T, p.(Arg84Cys) and c.560T>A, p.(Leu187Ter) in ARSK, respectively. Functional consequences of the two ARSK variants were assessed by mutation-specific ARSK constructs derived by site-directed mutagenesis, which were ectopically expressed in HT1080 cells. Urinary GAG excretion was analysed by dimethylene blue and electrophoresis, as well as liquid chromatography/mass spectrometry (LC-MS)/MS analysis. RESULTS: The phenotypes of the affected individuals include MPS features, such as short stature, coarse facial features and dysostosis multiplex. Reverse phenotyping in two of the four individuals revealed additional cardiac and ophthalmological abnormalities. Mild elevation of dermatan sulfate was detected in the two subjects investigated by LC-MS/MS. Human HT1080 cells expressing the ARSK-Leu187Ter construct exhibited absent protein levels by western blot, and cells with the ARSK-Arg84Cys construct showed markedly reduced enzyme activity in an ARSK-specific enzymatic assay against 2-O-sulfoglucuronate-containing disaccharides as analysed by C18-reversed-phase chromatography followed by MS. CONCLUSION: Our work provides a detailed clinical and molecular characterisation of a novel subtype of mucopolysaccharidosis, which we suggest to designate subtype X.


Subject(s)
Arylsulfatases , Mucopolysaccharidoses , Animals , Chromatography, Liquid/methods , Dermatan Sulfate , Disaccharides/analysis , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Humans , Mice , Mice, Knockout , Sulfates , Tandem Mass Spectrometry/methods
3.
Metab Brain Dis ; 38(6): 2133-2144, 2023 08.
Article in English | MEDLINE | ID: mdl-37195412

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSD) caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans (GAGs). Most types of these severe disorders are characterized by neuronopathic phenotypes. Although lysosomal accumulation of GAGs is the primary metabolic defect in MPS, secondary alterations in biochemical processes are considerable and influence the course of the disease. Early hypothesis suggested that these secondary changes might be due to lysosomal storage-mediated impairment of activities of other enzymes, and subsequent accumulation of various compounds in cells. However, recent studies indicated that expression of hundreds of genes is changed in MPS cells. Therefore, we asked whether metabolic effects observed in MPS are caused primarily by GAG-mediated inhibition of specific biochemical reactions or appear as results of dysregulation of expression of genes coding for proteins involved in metabolic processes. Transcriptomic analyses of 11 types of MPS (using RNA isolated from patient-derived fibroblasts), performed in this study, showed that a battery of the above mentioned genes is dysregulated in MPS cells. Some biochemical pathways might be especially affected by changes in expression of many genes, including GAG metabolism and sphingolipid metabolism which is especially interesting as secondary accumulation of various sphingolipids is one of the best known additional (while significantly enhancing neuropathological effects) metabolic defects in MPS. We conclude that severe metabolic disturbances, observed in MPS cells, can partially arise from changes in the expression of many genes coding for proteins involved in metabolic processes.


Subject(s)
Mucopolysaccharidoses , Transcriptome , Humans , Transcriptome/genetics , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/pathology , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Cell Line , Lysosomes/metabolism
4.
J Biol Chem ; 297(5): 101293, 2021 11.
Article in English | MEDLINE | ID: mdl-34634304

ABSTRACT

Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycosaminoglycans/metabolism , Lithium/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Animals , Catalysis , Cell Line , Glycosaminoglycans/genetics , Mice , Mice, Knockout , Phosphoric Monoester Hydrolases/genetics
5.
Hum Genet ; 141(7): 1287-1298, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34999954

ABSTRACT

SLC10A7, encoded by the so-called SLC10A7 gene, is the seventh member of a human sodium/bile acid cotransporter family, known as the SLC10 family. Despite similarities with the other members of the SLC10 family, SLC10A7 does not exhibit any transport activity for the typical SLC10 substrates and is then considered yet as an orphan carrier. Recently, SLC10A7 mutations have been identified as responsible for a new Congenital Disorder of Glycosylation (CDG). CDG are a family of rare and inherited metabolic disorders, where glycosylation abnormalities lead to multisystemic defects. SLC10A7-CDG patients presented skeletal dysplasia with multiple large joint dislocations, short stature and amelogenesis imperfecta likely mediated by glycosaminoglycan (GAG) defects. Although it has been demonstrated that the transporter and substrate specificities of SLC10A7, if any, differ from those of the main members of the protein family, SLC10A7 seems to play a role in Ca2+ regulation and is involved in proper glycosaminoglycan biosynthesis, especially heparan-sulfate, and N-glycosylation. This paper will review our current knowledge on the known and predicted structural and functional properties of this fascinating protein, and its link with the glycosylation process.


Subject(s)
Amelogenesis Imperfecta , Congenital Disorders of Glycosylation , Osteochondrodysplasias , Symporters , Congenital Disorders of Glycosylation/genetics , Glycosaminoglycans/genetics , Glycosylation , Humans , Organic Anion Transporters, Sodium-Dependent
6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077388

ABSTRACT

Mucopolysaccharidosis (MPS) is a lysosomal storage disease caused by genetic defects that result in deficiency of one specific enzyme activity, consequently impairing the stepwise degradation of glycosaminoglycans (GAGs). Except for MPS II, the other types of MPS have autosomal recessive inheritance in which two copies of an abnormal allele must be present in order for the disease to develop. In this study, we present the status of variant alleles and biochemistry results found in infants suspected of having MPS I, II, IVA, and VI. A total of 324 suspected infants, including 12 for MPS I, 223 for MPS II, 72 for MPS IVA, and 17 for MPS VI, who were referred for MPS confirmation from newborn screening centers in Taiwan, were enrolled. In all of these infants, one specific enzyme activity in dried blood spot filter paper was lower than the cut-off value in the first blood sample, as well asin a second follow-up sample. The confirmatory methods used in this study included Sanger sequencing, next-generation sequencing, leukocyte enzyme fluorometric assay, and GAG-derived disaccharides in urine using tandem mass spectrometry assays. The results showed that five, nine, and six infants had MPS I, II, and IVA, respectively, and all of them were asymptomatic. Thus, a laboratory diagnosis is extremely important to confirm the diagnosis of MPS. The other infants with identified nucleotide variations and reductions in leukocyte enzyme activities were categorized as being highly suspected cases requiring long-term and intensive follow-up examinations. In summary, the final confirmation of MPS depends on the most powerful biomarkers found in urine, i.e., the quantification of GAG-derived disaccharides including dermatan sulfate, heparan sulfate, and keratan sulfate, and analysis of genetic variants can help predict outcomes and guide treatment.


Subject(s)
Mucopolysaccharidoses , Mucopolysaccharidosis II , Mucopolysaccharidosis I , Disaccharides , Glycosaminoglycans/genetics , Humans , Infant , Infant, Newborn , Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/genetics , Tandem Mass Spectrometry/methods
7.
Mol Genet Metab ; 132(3): 180-188, 2021 03.
Article in English | MEDLINE | ID: mdl-33558080

ABSTRACT

Morquio B disease is an attenuated phenotype within the spectrum of beta galactosidase (GLB1) deficiencies. It is characterised by dysostosis multiplex, ligament laxity, mildly coarse facies and heart valve defects due to keratan sulphate accumulation, predominantly in the cartilage. Morquio B patients have normal neurological development, setting them apart from those with the more severe GM1 gangliosidosis. Morquio B disease, with an incidence of 1:250.000 to 1:1.000.000 live births, is very rare. Here we report the clinical-biochemical data of nine patients. High amounts of keratan sulfate were detected using LC-MS/MS in the patients' urinary samples, while electrophoresis, the standard procedure of qualitative glycosaminoglycans analysis, failed to identify this metabolite in any of the patients' samples. We performed molecular analyses at gene, gene expression and protein expression levels, for both isoforms of the GLB1 gene, lysosomal GLB1, and the cell-surface expressed Elastin Binding Protein. We characterised three novel GLB1 mutations [c.75 + 2 T > G, c.575A > G (p.Tyr192Cys) and c.2030 T > G (p.Val677Gly)] identified in three heterozygous patients. We also set up a copy number variation assay by quantitative PCR to evaluate the presence of deletions/ insertions in the GLB1 gene. We propose a diagnostic plan, setting out the specific clinical- biochemical and molecular features of Morquio B, in order to avoid misdiagnoses and improve patients' management.


Subject(s)
Gangliosidosis, GM1/diagnosis , Glycosaminoglycans/genetics , Mucopolysaccharidosis IV/diagnosis , beta-Galactosidase/genetics , Child , Child, Preschool , Female , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/physiopathology , Gene Expression Regulation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lysosomes/genetics , Male , Mucopolysaccharidosis IV/genetics , Mucopolysaccharidosis IV/physiopathology , Mutation, Missense/genetics , Receptors, Cell Surface/genetics
8.
Mol Biol Rep ; 48(1): 363-370, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33319323

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by a mutation in the IDUA gene, which codes α-L-iduronidase (IDUA), a lysosomal hydrolase that degrades two glycosaminoglycans (GAGs): heparan sulfate (HS) and dermatan sulfate (DS). GAGs are macromolecules found mainly in the extracellular matrix and have important signaling and structural roles which are essential to the maintenance of cell and tissue physiology. Nondegraded GAGs accumulate in various cell types, which characterizes MPS I as a multisystemic progressive disease. Many tissues and vital organs have been described in MPS I models, but there is a lack of studies focused on their effects on the reproductive tract. Our previous studies indicated lower sperm production and morphological damage in the epididymis and accessory glands in male MPS I mice, despite their ability to copulate and to impregnate females. Our aim was to improve the testicular characterization of the MPS I model, with a specific focus on ultrastructural observation of the different cell types that compose the seminiferous tubules and interstitium. We investigated the testicular morphology of 6-month-old male C57BL/6 wild-type (Idua+/+) and MPS I (Idua-/-) mice. We found vacuolated cells widely present in the interstitium and important signs of damage in myoid, Sertoli and Leydig cells. In the cytoplasmic region of Sertoli cells, we found an increased number of vesicles with substrates under digestion and a decreased number of electron-dense vesicles similar to lysosomes, suggesting an impaired flux of substrate degradation. Conclusions: Idua exerts an important role in the morphological maintenance of the seminiferous tubules and the testicular interstitium, which may influence the quality of spermatogenesis, having a greater effect with the progression of the disease.


Subject(s)
Glycosaminoglycans/genetics , Lysosomal Storage Diseases/genetics , Mucopolysaccharidosis I/genetics , Sertoli Cells/pathology , Animals , Disease Models, Animal , Disease Progression , Humans , Interstitial Cells of Cajal/metabolism , Interstitial Cells of Cajal/pathology , Leydig Cells/metabolism , Leydig Cells/pathology , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Male , Mice , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis I/pathology , Mutation/genetics , Sertoli Cells/metabolism , Spermatozoa/metabolism , Spermatozoa/pathology
9.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830113

ABSTRACT

Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum , Glycoproteins , Glycosaminoglycans , Mucopolysaccharidosis II , Mutation , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mucopolysaccharidosis II/enzymology , Mucopolysaccharidosis II/genetics
10.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804258

ABSTRACT

The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels' mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.


Subject(s)
Endothelium/chemistry , Fibrosis/genetics , Glycocalyx/chemistry , Mechanotransduction, Cellular/genetics , Blood Proteins/chemistry , Blood Proteins/genetics , Capillary Permeability/genetics , Endothelium/ultrastructure , Fibrosis/pathology , Glucuronidase/adverse effects , Glycocalyx/genetics , Glycocalyx/ultrastructure , Glycosaminoglycans/chemistry , Glycosaminoglycans/genetics , Humans , Matrix Metalloproteinases/adverse effects , Proteoglycans/chemistry , Proteoglycans/genetics , Reactive Oxygen Species/adverse effects
11.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830490

ABSTRACT

Myopia is the second leading cause of visual impairment globally. Myopia can induce sight-threatening retinal degeneration and the underlying mechanism remains poorly defined. We generated a model of myopia-induced early-stage retinal degeneration in guinea pigs and investigated the mechanism of action. Methods: The form-deprivation-induced myopia (FDM) was induced in the right eyes of 2~3-week-old guinea pigs using a translucent balloon for 15 weeks. The left eye remained untreated and served as a self-control. Another group of untreated age-matched animals was used as naïve controls. The refractive error and ocular biometrics were measured at 3, 7, 9, 12 and 15 weeks post-FDM induction. Visual function was evaluated by electroretinography. Retinal neurons and synaptic structures were examined by confocal microscopy of immunolabelled retinal sections. The total RNAs were extracted from the retinas and processed for RNA sequencing analysis. Results: The FDM eyes presented a progressive axial length elongation and refractive error development. After 15 weeks of intervention, the average refractive power was -3.40 ± 1.85 D in the FDM eyes, +2.94 ± 0.59 D and +2.69 ± 0.56 D in the self-control and naïve control eyes, respectively. The a-wave amplitude was significantly lower in FDM eyes and these eyes had a significantly lower number of rods, secretagogin+ bipolar cells, and GABAergic amacrine cells in selected retinal areas. RNA-seq analysis showed that 288 genes were upregulated and 119 genes were downregulated in FDM retinas compared to naïve control retinas. In addition, 152 genes were upregulated and 12 were downregulated in FDM retinas compared to self-control retinas. The KEGG enrichment analysis showed that tyrosine metabolism, ABC transporters and inflammatory pathways were upregulated, whereas tight junction, lipid and glycosaminoglycan biosynthesis were downregulated in FDM eyes. Conclusions: The long-term (15-week) FDM in the guinea pig models induced an early-stage retinal degeneration. The dysregulation of the tyrosine metabolism and inflammatory pathways may contribute to the pathogenesis of myopia-induced retinal degeneration.


Subject(s)
Inflammation/genetics , Myopia/genetics , Retinal Degeneration/genetics , Tyrosine/metabolism , Animals , Disease Models, Animal , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Guinea Pigs , Humans , Inflammation/pathology , Metabolic Networks and Pathways/genetics , Myopia/complications , Myopia/pathology , RNA-Seq , Retina/metabolism , Retina/pathology , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Tyrosine/genetics
12.
J Cell Physiol ; 235(4): 3497-3507, 2020 04.
Article in English | MEDLINE | ID: mdl-31552691

ABSTRACT

Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.


Subject(s)
Cartilage, Articular/growth & development , Chondrogenesis/genetics , Collagen/genetics , Mesenchymal Stem Cells/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cartilage, Articular/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen/metabolism , Extracellular Matrix/genetics , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Humans , Mesenchymal Stem Cells/cytology , Regeneration/genetics
13.
Hum Mol Genet ; 27(13): 2262-2275, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29648648

ABSTRACT

Skeletal abnormalities represent a major clinical burden in patients affected by the lysosomal storage disorder mucopolysaccharidosis type II (MPSII, OMIM #309900). While extensive research has emphasized the detrimental role of stored glycosaminoglycans (GAGs) in the bone marrow (BM), a limited understanding of primary cellular mechanisms underlying bone defects in MPSII has hampered the development of bone-targeted therapeutic strategies beyond enzyme replacement therapy (ERT). We here investigated the involvement of key signaling pathways related to the loss of iduronate-2-sulfatase activity in two different MPSII animal models, D. rerio and M. musculus. We found that FGF pathway activity is impaired during early stages of bone development in IDS knockout mice and in a newly generated Ids mutant fish. In both models the FGF signaling deregulation anticipated a slow but progressive defect in bone differentiation, regardless of any extensive GAGs storage. We also show that MPSII patient fibroblasts harboring different mutations spanning the IDS gene exhibit perturbed FGF signaling-related markers expression. Our work opens a new venue to discover possible druggable novel key targets in MPSII.


Subject(s)
Brain/metabolism , Fibroblast Growth Factors/genetics , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/genetics , Animals , Brain/pathology , Disease Models, Animal , Enzyme Replacement Therapy , Gene Expression Regulation , Glycosaminoglycans/genetics , Humans , Iduronate Sulfatase/therapeutic use , Mice , Mice, Knockout , Mucopolysaccharidosis II/pathology , Signal Transduction , Zebrafish/genetics
14.
Biochem Biophys Res Commun ; 532(2): 239-243, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32868072

ABSTRACT

Pleotropic growth factor, transforming growth factor (TGF)-ß drives the modification and elongation of glycosaminoglycan (GAG) chains on proteoglycans. Hyperelongated GAG chains bind and trap lipoproteins in the intima leading to the formation of atherosclerotic plaques. We have identified that phosphorylation of Smad2 linker region drives GAG chain modification. The identification of an inhibitor of Smad2 linker region phosphorylation and GAG chain modification signifies a potential therapeutic for cardiovascular diseases. Artemisinin renowned for its potent anti-malarial effects possesses a broad range of biological effects. Our aim was to characterise the anti-atherogenic role of artemisinin in vascular smooth muscle cells (VSMCs). We demonstrate that TGF-ß mediated Smad2 linker region phosphorylation and GAG chain elongation was attenuated by artemisinin; however, we observed no effect on VSMC proliferation. Our data demonstrates the potential for artemisinin to be developed as a therapy to inhibit the development of atherosclerosis by prevention of lipid deposition in the vessel wall without affecting the proliferation of VSMCs.


Subject(s)
Artemisinins/pharmacology , Glycosaminoglycans/genetics , Muscle, Smooth, Vascular/cytology , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/physiology , Gene Expression Regulation/drug effects , Glucuronosyltransferase/genetics , Glycosaminoglycans/biosynthesis , Humans , Multifunctional Enzymes/genetics , Muscle, Smooth, Vascular/drug effects , N-Acetylgalactosaminyltransferases/genetics , Phosphorylation/drug effects , Smad2 Protein/metabolism , Sulfotransferases/genetics , Transforming Growth Factor beta/pharmacology
15.
Mol Genet Metab ; 131(1-2): 206-210, 2020.
Article in English | MEDLINE | ID: mdl-32773276

ABSTRACT

BACKGROUND: In the last 10 years enzyme replacement therapy (ERT) has become an alternative for the treatment of patients with Hunter disease (HD). Nevertheless, the information regarding efficacy and safety is scarce and mainly based on the pivotal trials. This scarcity is especially evident for adults and severe forms of HD. METHODS: A systematic review of publications in the electronic databases PUBMED, EMBASE and Cochrane Central was undertaken. Clinical trials and observational studies were included. The data about efficacy and security were retrieved and analysed with Review Manager version 5.3. RESULTS: 677 records were found, 559 remaining after the removal of duplicates. By title and abstract review, 427 were excluded. Full reading of the rest was made (122 publications) and 42 were finally included. It was not possible to perform meta-analysis of all the endpoints due to high heterogeneity in the reporting and measuring of variables in each publication. Eight clinical trials were included, 6 with high risk of bias. The quality of the other studies was low in 12%, average in 68% and good in 21%. Main findings were: a reduction in the elimination of glycosaminoglycans (GAG) in urine in all the studies (26/26), decrease in liver and spleen size (18/18), increase of 52.59 m (95% CI, 36, 42-68.76, p < .001) in the 6-min walk test (TM6M), increase in forced vital capacity (FVC) of 9.59% (95% CI 4.77-14.51, p < .001), reduction of the left ventricular mass index of 3.57% (95% CI 1.2-5.93) and reduction in mortality (OR) of 0.44 (0.27-0.71). DISCUSSION: The data suggests a clear and consistent effect of ERT in HD reducing the accumulation of GAGs in the body, demonstrated by the reduction of its urinary excretion, as well as by the reduction of its deposits (spleen, liver and heart). Likewise, there is an improvement in physical and respiratory function. In addition, a reduction in mortality has been observed. Lack of studies, small size of the samples, and methodological deficiencies are the main limitations to establish definite conclusions. CONCLUSIONS: The data suggests that ERT is effective and safe in the treatment of HD. There is a need to evaluate patient-centred outcomes and the impact on quality of life.


Subject(s)
Enzyme Replacement Therapy , Glycosaminoglycans/genetics , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/therapy , Databases, Factual , Humans , Liver/drug effects , Liver/pathology , Mucopolysaccharidosis II/mortality , Mucopolysaccharidosis II/pathology , Quality of Life , Spleen/drug effects , Spleen/pathology
16.
Mol Genet Metab ; 131(1-2): 197-205, 2020.
Article in English | MEDLINE | ID: mdl-32739280

ABSTRACT

The cause of neurodegeneration in MPS mouse models is the focus of much debate and what the underlying cause of disease pathology in MPS mice is. The timing of development of pathology and when this can be reversed or impacted is the key to developing suitable therapies in MPS. This study is the first of its kind to correlate the biochemical changes with the functional outcome as assessed using non-invasive behaviour testing across multiple mucopolysaccharidosis (MPS) mouse models. In the MPS brain, the primary lysosomal enzyme dysfunction leads to accumulation of primary glycosaminoglycans (GAGs) with gangliosides (GM2 and GM3) being the major secondary storage products. With a focus on the neuropathology, a time course experiment was conducted in MPS I, MPS IIIA, MPS VII (severe and attenuated models) in order to understand the relative timing and level of GAG and ganglioside accumulation and how this correlates to behaviour deficits. Time course analysis from 1 to 6 months of age was conducted on brain samples to assess primary GAG (uronic acid), ß-hexosaminidase enzyme activity and levels of GM2 and GM3 gangliosides. This was compared to a battery of non-invasive behaviour tests including open field, inverted grid, rotarod and water cross maze were assessed to determine effects on motor function, activity and learning ability. The results show that the GAG and ganglioside accumulation begins prior to the onset of detectable changes in learning ability and behaviour. Interestingly, the highest levels of GAG and ganglioside accumulation was observed in the MPS IIIA mouse despite having 3% residual enzyme activity. Deficits in motor function were clearly observed in the severe Gusmps/mps, which were significantly delayed in the attenuated Gustm(L175F)Sly model despite their minimal increase in detectable enzyme activity. This suggests that genotype and residual enzyme activity are not indicative of severity of disease pathology in MPS disease and there exists a window when there are considerable storage products without detectable functional deficits which may allow an alteration to occur with therapy.


Subject(s)
Brain/metabolism , Glucuronidase/genetics , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis VII/metabolism , Animals , Brain/pathology , Disease Models, Animal , G(M2) Ganglioside/genetics , G(M2) Ganglioside/metabolism , G(M3) Ganglioside/genetics , G(M3) Ganglioside/metabolism , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Male , Maze Learning/physiology , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/pathology
17.
Glycoconj J ; 37(5): 577-588, 2020 10.
Article in English | MEDLINE | ID: mdl-32827291

ABSTRACT

ß1,4-galactosyltransferase 4 (B4GalT4) is one of seven B4GalTs that belong to CAZy glycosyltransferase family 7 and transfer galactose to growing sugar moieties of proteins, glycolipids, glycosaminoglycans as well as single sugar for lactose synthesis. Herein, we identify two asparagine-linked glycosylation sites in B4GalT4. We found that mutation of one site (Asn220) had greater impact on enzymatic activity while another (Asn335) on Golgi localization and presence of N-glycans at both sites is required for production of stable and enzymatically active protein and its secretion. Additionally, we confirm B4GalT4 involvement in synthesis of keratan sulfate (KS) by generating A375 B4GalT4 knock-out cell lines that show drastic decrease in the amount of KS proteoglycans and no significant structural changes in N- and O-glycans. We show that KS decrease in A375 cells deficient in B4GalT4 activity can be rescued by overproduction of either partially or fully glycosylated B4GalT4 but not with N-glycan-depleted B4GalT4 version.


Subject(s)
Galactosyltransferases/genetics , Glycosaminoglycans/genetics , Golgi Apparatus/genetics , Polysaccharides/genetics , Cell Line , Galactose/genetics , Galactosyltransferases/chemistry , Gene Knockout Techniques , Glycosaminoglycans/chemistry , Glycosylation , Humans , Keratan Sulfate/chemistry , Polysaccharides/metabolism
18.
J Biomed Sci ; 27(1): 2, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898491

ABSTRACT

BACKGROUND: Serglycin (SRGN), previously recognized as an intracellular proteoglycan involved in the storage processes of secretory granules, has recently been shown to be upregulated in several solid tumors. We have previously shown that SRGN in non-small cell lung cancer (NSCLC) promotes malignant phenotypes in a CD44-dependent manner and increased expression of SRGN predicts poor prognosis of primary lung adenocarcinomas. However, the underlying mechanism remains to be defined. METHODS: Overexpression, knockdown and knockout approaches were performed to assess the role of SRGN in cell motility using wound healing and Boyden chamber migration assays. SRGN devoid of glycosaminoglycan (GAG) modification was produced by site-directed mutagenesis or chondroitinase treatment. Liquid chromatography/tandem mass spectrometry was applied for quantitative analysis of the disaccharide compositions and sulfation extent of SRGN GAGs. Western blot and co-immunoprecipitation analyses were performed to determine the expression and interaction of proteins of interest. Actin cytoskeleton organization was monitored by immunofluorescence staining. RESULTS: SRGN expressed by NSCLC cells is readily secreted to the extracellular matrix in a heavily glycosylated form attached with mainly chondroitin sulfate (CS)-GAG chains, and to a lesser extent with heparin sulfate (HS). The CS-GAG moiety serves as the structural motif for SRGN binding to tumor cell surface CD44 and promotes cell migration. SRGN devoid of CS-GAG modification fails to interact with CD44 and has lost the ability to promote cell migration. SRGN/CD44 interaction promotes focal adhesion turnover via Src-mediated paxillin phosphorylation and disassembly of paxillin/FAK adhesion complex, facilitating cell migration. In support, depletion of Src activity or removal of CS-GAGs efficiently blocks SRGN-mediated Src activation and cell migration. SRGN also promotes cell migration via inducing cytoskeleton reorganization mediated through RAC1 and CDC42 activation accompanied with increased lamellipodia and filopodia formation. CONCLUSIONS: Proteoglycan SRGN promotes NSCLC cell migration via the binding of its GAG motif to CD44. SRGN/CD44 interaction induces Rho-family GTPase-mediated cytoskeleton reorganization and facilitates Src-mediated focal adhesion turnover, leading to increased cell migration. These findings suggest that targeting specific glycans in tumor microenvironment that serve as ligands for oncogenic pathways may be a potential strategy for cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Glycosaminoglycans/genetics , Hyaluronan Receptors/genetics , Proteoglycans/genetics , Vesicular Transport Proteins/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Glycosaminoglycans/metabolism , Humans , Hyaluronan Receptors/metabolism , Mutagenesis, Site-Directed , Protein Binding/genetics , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , rho GTP-Binding Proteins/genetics , src-Family Kinases/genetics
19.
Chem Rev ; 118(18): 9152-9232, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30204432

ABSTRACT

The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases. In recent years, the field of PGs has expanded rapidly. Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes. PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins. The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs. The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis. Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed. Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed.


Subject(s)
Glycosaminoglycans/chemistry , Glycosaminoglycans/physiology , Proteoglycans/chemistry , Proteoglycans/physiology , Animals , Cell Line, Tumor , Epigenesis, Genetic , Extracellular Matrix/metabolism , Glycosaminoglycans/genetics , Humans , Neoplasms/physiopathology , Neurodegenerative Diseases/physiopathology , Protein Domains , Proteoglycans/genetics , Signal Transduction/physiology
20.
Int J Med Sci ; 17(1): 103-111, 2020.
Article in English | MEDLINE | ID: mdl-31929744

ABSTRACT

Beyond their role in bone and lung homeostasis, mesenchymal stem cells (MSCs) are becoming popular in cell therapy. Various insults may disrupt the repair mechanisms involving MSCs. One such insult is smoking, which is a major risk factor for osteoporosis and respiratory diseases. Upon cigarette smoke-induced damage, a series of reparatory mechanisms ensue; one such mechanism involves Glycosaminoglycans (GAG). One of these GAGs, namely hyaluronic acid (HA), serves as a potential therapeutic target in lung injury. However, much of its mechanisms of action through its major receptor CD44 remains unexplored. Our previous studies have identified and functionally validated that both cortactin (CTTN: marker of motility) and Survivin (BIRC5: required for cell survival) act as novel HA/CD44-downstream transcriptional targets underpinning cell motility. Here, human MSCs were treated with "Water-pipe" smoke to investigate the effects of cigarette smoke condensate (CSC) on these HA-CD44 novel signaling pathways. Our results show that CSC decreased the expression of both CD44 and its downstream targets CTTN and BIRC5 in MSCs, and that HA reversed these effects. Interestingly, CSC inhibited migration and invasion of MSCs upon CD44-targeted RNAi treatment. This shows the importance of CD44-HA/CTTN and CD44-HA/BIRC5 signaling pathways in MSC motility, and further suggests that these signaling pathways may provide a novel mechanism implicated in migration of MSCs during repair of lung tissue injury. These findings suggest that one should use caution before utilizing MSC from donors with history of smoking, and further pave the way towards the development of targeted therapeutic approaches against CD44-associated diseases.


Subject(s)
Cigarette Smoking/adverse effects , Cortactin/genetics , Hyaluronan Receptors/genetics , Lung Injury/genetics , Survivin/genetics , Cell Line , Cell Movement/drug effects , Gene Expression Regulation/drug effects , Glycosaminoglycans/genetics , Humans , Hyaluronic Acid/genetics , Lung Injury/chemically induced , Lung Injury/pathology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/pathology , Signal Transduction/drug effects , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL