Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Ecotoxicol Environ Saf ; 273: 116129, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430580

ABSTRACT

The salinity environment is one of the biggest threats to Glycyrrhiza uralensis Fisch. (G. uralensis) growth, resulting from the oxidative stress caused by excess reactive oxygen species (ROS). Flavonoids are the main pharmacodynamic composition and help maintain ROS homeostasis and mitigate oxidative damage in G. uralensis in the salinity environment. To investigate whether endophytic Bacillus cereus G2 can improve the salt-tolerance of G. uralensis through controlling flavonoid biosynthesis, the transcriptomic and physiological analysis of G. uralensis treated by G2 in the saline environment was conducted, focused on flavonoid biosynthesis-related pathways. Results uncovered that salinity inhibited flavonoids synthesis by decreasing the activities of phenylalanine ammonialyase (PAL) and 4-coumarate-CoA ligase (4CL) (42% and 39%, respectively) due to down-regulated gene Glyur000910s00020578 at substrate level, and then decreasing the activities of chalcone isomerase (CHI) and chalcone synthase (CHS) activities (50% and 42%, respectively) due to down-regulated genes Glyur006062s00044203 and Glyur000051s00003431, further decreasing isoliquiritigenin content by 53%. However, salt stress increased liquiritin content by 43%, which might be a protective mechanism of salt-treated G. uralensis seedlings. Interestingly, G2 enhanced PAL activity by 27% whereas reduced trans-cinnamate 4-monooxygenase (C4H) activity by 43% which could inhibit lignin biosynthesis but promote flavonoid biosynthesis of salt-treated G. uralensis at the substrate level. G2 decreased shikimate O-hydroxycinnamoyltransferase (HCT) activity by 35%, increased CHS activity by 54% through up-regulating the gene Glyur000051s00003431 encoding CHS, and increased CHI activity by 72%, thereby decreasing lignin (34%) and liquiritin (24%) content, but increasing isoliquiritigenin content (35%), which could mitigate oxidative damage and changed salt-tolerance mechanism of G. uralensis.


Subject(s)
Chalcones , Glycyrrhiza uralensis , Glycyrrhiza uralensis/chemistry , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/metabolism , Bacillus cereus/metabolism , Reactive Oxygen Species/metabolism , Lignin/metabolism , Salt Stress , Flavonoids/pharmacology , Flavonoids/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2882-2888, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-39041147

ABSTRACT

This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of ß-glucuronidase staining(GUS). Efficient and stable transformants were selected for restaining G. uralensis and evaluating its influence on the growth of the G. uralensis seedlings. The results show that F. oxysporum has good salt tolerance and could still grow on potato glucose agar(PDA) medium containing 7% sodium chloride, but the growth rate slows down with the increase in sodium chloride content in PDA medium. F. oxysporum has the function of producing indoleacetic acid, and the concentration of IAA in its fermentation broth is about 3. 32 mg · m L~(-1). In this study, the genetic transformation system of F. oxysporum is successfully constructed, and the ATMT system is efficient and stable. One transformant with both high staining efficiency and genetic stability is selected, and the restaining rate of the transformant in G. uralensis is 76. 92%, which could significantly improve the main root length of one-month-old G. uralensis seedlings and promote the growth and development of G. uralensis seedlings. The results of this study can lay the foundation for the development of biological bacterial fertilizer and the growth regulation of high-quality G. uralensis.


Subject(s)
Fusarium , Glycyrrhiza uralensis , Transformation, Genetic , Fusarium/genetics , Fusarium/growth & development , Fusarium/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/growth & development , Indoleacetic Acids/metabolism , Agrobacterium tumefaciens/genetics , Salt Tolerance/genetics
3.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894521

ABSTRACT

Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (PAL, 4CL, CHS, CHI, CYP93C, HIDH, HI4OMT, and CYP81E1_7) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza uralensis/genetics , Droughts , Multiomics , Proteome/metabolism , Plant Breeding , Flavonoids/metabolism , Glycyrrhizic Acid/metabolism , Gene Expression Regulation, Plant , Transcriptome
4.
Mol Genet Genomics ; 297(2): 333-343, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35187583

ABSTRACT

The aerial parts of Glycyrrhiza uralensis supply substantial raw material for the extraction of active pharmaceutical ingredients comprehensively utilized in many industries. Our previous study indicated that salt stress increased the content of active ingredients. However, the regulatory mechanism remains unclear. In this study, RNA-sequencing (RNA-seq) of the aerial parts of G. uralensis treated with 150 mM NaCl for 0, 2, 6, and 12 h was performed to identify the key genes and metabolic pathways regulating pharmacological active component accumulation. The main active component detection showed that liquiritin was the major ingredient and exhibited more than a ten-fold significant increase in the 6 h NaCl treatment. Temporal expression analysis of the obtained 4245 differentially expressed genes (DEGs) obtained by RNA-seq revealed two screened profiles that included the significant up-regulated DEGs (UDEGs) at different treatment points. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these UDEGs identified phenylpropanoid metabolism and flavonoid biosynthesis as the most significantly enriched pathways in 2 h treated materials. Interestingly, the carotenoid biosynthesis pathway that is related to ABA synthesis was also discovered, and the ABA content was significantly promoted after 6 h NaCl treatment. Following ABA stimulation, the content of liquiritin demonstrated a significant and immediate increase after 2 h treatment, with the corresponding consistent expression of genes involved in the pathways of ABA signal transduction and flavonoid biosynthesis, but not in the pathway of glycyrrhizic acid biosynthesis. Our study concludes that salt stress might promote liquiritin accumulation through the ABA-mediated signaling pathway, and provides effective reference for genetic improvement and comprehensive utilization of G. uralensis.


Subject(s)
Glycyrrhiza uralensis , Flavanones , Glucosides , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/metabolism , Pharmaceutical Preparations/metabolism , Plant Components, Aerial , Salt Stress , Signal Transduction/genetics , Transcriptome/genetics
5.
Plant Biotechnol J ; 20(10): 1874-1887, 2022 10.
Article in English | MEDLINE | ID: mdl-35668676

ABSTRACT

Glycyrrhiza uralensis Fisch is a medicinal plant widely used to treat multiple diseases in Europe and Asia, and its efficacy largely depends on liquiritin and glycyrrhizic acid. The regulatory pattern responsible for the difference in efficacy between wild and cultivated G. uralensis remains largely undetermined. Here, we collected roots and rhizosphere soils from wild (WT) G. uralensis as well as those farmed for 1 year (C1) and 3 years (C3), generated metabolite and transcript data for roots, microbiota data for rhizospheres and conducted comprehensive multi-omics analyses. We updated gene structures for all 40 091 genes in G. uralensis, and based on 52 differentially expressed genes, we charted the route-map of both liquiritin and glycyrrhizic acid biosynthesis, with genes BAS, CYP72A154 and CYP88D6 critical for glycyrrhizic acid biosynthesis being significantly expressed higher in wild G. uralensis than in cultivated G. uralensis. Additionally, multi-omics network analysis identified that Lysobacter was strongly associated with CYP72A154, which was required for glycyrrhizic acid biosynthesis. Finally, we developed a holistic multi-omics regulation model that confirmed the importance of rhizosphere microbial community structure in liquiritin accumulation. This study thoroughly decoded the key regulatory mechanisms of liquiritin and glycyrrhizic acid, and provided new insights into the interactions of the plant's key metabolites with its transcriptome, rhizosphere microbes and environment, which would guide future cultivation of G. uralensis.


Subject(s)
Glycyrrhiza uralensis , Plants, Medicinal , Glycyrrhiza uralensis/chemistry , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/analysis , Glycyrrhizic Acid/metabolism , Plant Roots/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Soil
6.
Plant Cell Rep ; 40(7): 1285-1296, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34002270

ABSTRACT

KEY MESSAGE: ARPI, ß-AS, and UGE were cloned from G. uralensis and their regulatory effects on glycyrrhizin biosynthesis were investigated. ß-AS and UGE but not ARPI positively regulate the biosynthesis of glycyrrhizin. Glycyrrhiza uralensis Fisch. has been used to treat respiratory, gastric, and liver diseases since ancient China. The most important and widely studied active component in G. uralensis is glycyrrhizin (GC). Our pervious RNA-Seq study shows that GC biosynthesis is regulated by multiple biosynthetic pathways. In this study, three target genes, ARPI, ß-AS, and UGE from different pathways were selected and their regulatory effects on GC biosynthesis were investigated using G. uralensis hairy roots. Our data show that hairy roots knocking out ARPI or UGE died soon after induction, indicating that the genes are essential for the growth of G. uralensis hairy roots. Hairy roots with ß-AS knocked out grew healthily. However, they failed to produce GC, suggesting that ß-AS is required for triterpenoid skeleton formation. Conversely, overexpression of UGE or ß-AS significantly increased the GC content, whereas overexpression of ARPI had no obvious effects on GC accumulation in G. uralensis hairy roots. Our findings demonstrate that ß-AS and UGE positively regulate the biosynthesis of GC.


Subject(s)
Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Gene Editing , Gene Expression Regulation, Plant , Gene Knockout Techniques , Genetic Vectors , Glycyrrhiza uralensis/genetics , Glycyrrhizic Acid/analysis , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plants, Genetically Modified , Plants, Medicinal , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism
7.
Plant J ; 99(6): 1127-1143, 2019 09.
Article in English | MEDLINE | ID: mdl-31095780

ABSTRACT

Glycyrrhizin, a sweet triterpenoid saponin found in the roots and stolons of Glycyrrhiza species (licorice), is an important active ingredient in traditional herbal medicine. We previously identified two cytochrome P450 monooxygenases, CYP88D6 and CYP72A154, that produce an aglycone of glycyrrhizin, glycyrrhetinic acid, in Glycyrrhiza uralensis. The sugar moiety of glycyrrhizin, which is composed of two glucuronic acids, makes it sweet and reduces its side-effects. Here, we report that UDP-glycosyltransferase (UGT) 73P12 catalyzes the second glucuronosylation as the final step of glycyrrhizin biosynthesis in G. uralensis; the UGT73P12 produced glycyrrhizin by transferring a glucuronosyl moiety of UDP-glucuronic acid to glycyrrhetinic acid 3-O-monoglucuronide. We also obtained a natural variant of UGT73P12 from a glycyrrhizin-deficient (83-555) strain of G. uralensis. The natural variant showed loss of specificity for UDP-glucuronic acid and resulted in the production of an alternative saponin, glucoglycyrrhizin. These results are consistent with the chemical phenotype of the 83-555 strain, and suggest the contribution of UGT73P12 to glycyrrhizin biosynthesis in planta. Furthermore, we identified Arg32 as the essential residue of UGT73P12 that provides high specificity for UDP-glucuronic acid. These results strongly suggest the existence of an electrostatic interaction between the positively charged Arg32 and the negatively charged carboxy group of UDP-glucuronic acid. The functional arginine residue and resultant specificity for UDP-glucuronic acid are unique to UGT73P12 in the UGT73P subfamily. Our findings demonstrate the functional specialization of UGT73P12 for glycyrrhizin biosynthesis during divergent evolution, and provide mechanistic insights into UDP-sugar selectivity for the rational engineering of sweet triterpenoid saponins.


Subject(s)
Glycosyltransferases/metabolism , Glycyrrhiza uralensis/enzymology , Glycyrrhizic Acid/metabolism , Arginine/chemistry , Arginine/metabolism , Gene Expression Regulation, Plant/genetics , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/chemistry , Kinetics , Molecular Docking Simulation , Mutation , Phylogeny , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/metabolism , Plants, Medicinal/enzymology , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Saponins/analysis , Transcriptome , Triterpenes/chemistry , Triterpenes/metabolism , Uridine Diphosphate Glucuronic Acid/chemistry , Uridine Diphosphate Glucuronic Acid/metabolism
8.
Biotechnol Bioeng ; 117(12): 3651-3663, 2020 12.
Article in English | MEDLINE | ID: mdl-32716052

ABSTRACT

Pentacyclic triterpenoids have wide applications in the pharmaceutical industry. The precise glucosylation at C-3 OH of pentacyclic triterpenoids mediated by uridine 5'-diphospho-glucosyltransferase (UDP-glucosyltransferase [UGT]) is an important way to produce valuable derivatives with various improved functions. However, most reported UGTs suffer from low regiospecificity toward the OH and COOH groups of pentacyclic triterpenoids, which significantly decreases the reaction efficiency. Here, two new UGTs (UGT73C33 and UGT73F24) were discovered in Glycyrrhiza uralensis. UGT73C33 showed high activity but poor regioselectivity toward the C-3 OH and C-30 COOH of pentacyclic triterpenoid, producing three glucosides. UGT73F24 showed rigid regioselectivity toward C-3 OH of typical pentacyclic triterpenoids producing only C-3 O-glucosylated derivatives. In addition, UGT73C33 and UGT73F24 showed a broad substrate scope toward typical flavonoids with various sugar donors. Next, the substrate recognition mechanism of UGT73F24 toward glycyrrhetinic acid (GA) and UDP-glucose was investigated. Two key residues, I23 and L84, were identified to determine activity, and site-directed mutagenesis of UGT73F24-I23G/L84N increased the activity by 4.1-fold. Furthermore, three in vitro GA glycosylation systems with UDP-recycling were constructed, and high yields of GA-3-O-Glc (1.25 mM), GA-30-O-Glc (0.61 mM), and GA-di-Glc (0.26 mM) were obtained. The de novo biosynthesis of GA-3-O-glucose (26.31 mg/L) was also obtained in engineered yeast.


Subject(s)
Glycosyltransferases , Glycyrrhiza uralensis , Plant Proteins , Triterpenes/metabolism , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Glycyrrhiza uralensis/enzymology , Glycyrrhiza uralensis/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32353999

ABSTRACT

Licorice (Glycyrrhiza) is a staple Chinese herbal medicine in which the primary bioactive compound is glycyrrhizic acid (GA), which has important pharmacological functions. To date, the structural genes involved in GA biosynthesis have been identified. However, the regulation of these genes in G. uralensis has not been elucidated. In this study, we performed a comprehensive analysis based on the transcriptome and small RNAome by high-throughput sequencing. In total, we identified 18 structural GA genes and 3924 transporter genes. We identified genes encoding 2374 transporters, 1040 transcription factors (TFs), 262 transcriptional regulators (TRs) and 689 protein kinases (PKs), which were coexpressed with at least one structural gene. We also identified 50,970 alternative splicing (AS) events, in which 17 structural genes exhibited AS. Finally, we also determined that miRNAs potentially targeted 4 structural genes, and 318, 8, and 218 miRNAs potentially regulated 150 TFs, 34 TRs, and 88 PKs, respectively, related to GA. Overall, the results of this study helped to elucidate the gene expression and regulation of GA biosynthesis in G. uralensis, provided a theoretical basis for the synthesis of GA via synthetic biology, and laid a foundation for the cultivation of new varieties of licorice with high GA content.


Subject(s)
Gene Expression Profiling/methods , Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , Alternative Splicing , Biosynthetic Pathways , Gene Expression Regulation, Plant , Gene Regulatory Networks , Glycyrrhiza uralensis/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Plant Roots/genetics , Plant Roots/metabolism , RNA, Plant/genetics , Sequence Analysis, RNA
10.
Molecules ; 24(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086079

ABSTRACT

As calcium signal sensors, calcium-dependent protein kinases (CPKs) play vital roles in stimulating the production of secondary metabolites to participate in plant development and response to environmental stress. However, investigations of the Glycyrrhiza uralensis CPK family genes and their multiple functions are rarely reported. In this study, a total of 23 GuCPK genes in G. uralensis were identified, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, and promoter cis-acting elements were analyzed. Ten GuCPKs showed root-specific preferential expressions, and GuCPKs indicated different expression patterns under treatments of CaCl2 and NaCl. In addition, under 2.5 mM of CaCl2 and 30 mM of NaCl treatments, the diverse, induced expression of GuCPKs and significant accumulations of glycyrrhizic acid and flavonoids suggested the possible important function of GuCPKs in regulating the production of glycyrrhizic acid and flavonoids. Our results provide a genome-wide characterization of CPK family genes in G. uralensis, and serve as a foundation for understanding the potential function and regulatory mechanism of GuCPKs in promoting the biosynthesis of glycyrrhizic acid and flavonoids under salt stress.


Subject(s)
Flavonoids/metabolism , Glycyrrhiza uralensis/drug effects , Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/metabolism , Protein Kinases/metabolism , Calcium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Glycyrrhiza uralensis/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Protein Kinases/genetics , Salt Stress , Sodium Chloride/pharmacology
11.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1341-1349, 2019 Apr.
Article in Zh | MEDLINE | ID: mdl-31090290

ABSTRACT

In this study, the synthetic pathway of ß-amyrin was constructed in the pre-constructed Saccharomyces cerevisiae chassis strain Y0 by introducing ß-amyrin synthase from Glycyrrhiza uralensis, resulting strain Y1-C20-6, which successfully produced ß-amyrin up to 5.97 mg·L~(-1). Then, the mevalonate pyrophosphate decarboxylase gene(ERG19), mevalonate kinase gene(ERG12), 3-hydroxy-3-methylglutaryl-CoA synthase gene(ERG13), phosphomevalonate kinase gene(ERG8) and IPP isomerase gene(IDI1)were overexpressed to promoted the metabolic fluxto the direction of ß-amyrin synthesis for further improving ß-amyrin production, resulting the strain Y2-C2-4 which produced ß-amyrin of 10.3 mg·L~(-1)under the shake flask fermentation condition. This is 100% higher than that of strain Y1-C20-6, illustrating the positive effect of the metabolic engineering strategy applied in this study. The titer of ß-amyrin was further improved up to 157.4 mg·L~(-1) in the fed-batch fermentation, which was almost 26 fold of that produced by strain Y1-C20-6. This study not only laid the foundation for the biosynthesis of ß-amyrin but also provided a favorable chassis strain for elucidation of cytochrome oxidases and glycosyltransferases of ß-amyrin-based triterpenoids.


Subject(s)
Intramolecular Transferases/genetics , Metabolic Engineering , Oleanolic Acid/analogs & derivatives , Saccharomyces cerevisiae/metabolism , Fermentation , Glycyrrhiza uralensis/enzymology , Glycyrrhiza uralensis/genetics , Industrial Microbiology , Oleanolic Acid/biosynthesis
12.
Plant J ; 89(2): 181-194, 2017 01.
Article in English | MEDLINE | ID: mdl-27775193

ABSTRACT

Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole-genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379-Mb whole-genome sequence of strain 308-19 of G. uralensis; this assembly contains 34 445 predicted protein-coding genes. Comparative analyses suggested well-conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2-hydroxyisoflavanone synthase (CYP93C), 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase/isoflavone 4'-O-methyltransferase (HI4OMT) and isoflavone-7-O-methyltransferase (7-IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP-dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.


Subject(s)
Genome, Plant , Glycyrrhiza uralensis/genetics , Plant Proteins/genetics , Cicer/genetics , Cytochrome P-450 Enzyme System/genetics , Flavonoids/biosynthesis , Flavonoids/genetics , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Glycyrrhizic Acid/metabolism , Medicago truncatula/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Sequence Annotation , Plant Proteins/metabolism , Plants, Medicinal/genetics
13.
Plant Cell Physiol ; 59(4): 778-791, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29648666

ABSTRACT

Glycyrrhiza uralensis (licorice) is a widely used medicinal plant belonging to the Fabaceae. Its main active component, glycyrrhizin, is an oleanane-type triterpenoid saponin widely used as a medicine and as a natural sweetener. Licorice also produces other triterpenoids, including soyasaponins. Recent studies have revealed various oxidosqualene cyclases and cytochrome P450 monooxygenases (P450s) required for the biosynthesis of triterpenoids in licorice. Of these enzymes, ß-amyrin synthase (bAS) and ß-amyrin C-24 hydroxylase (CYP93E3) are involved in the biosynthesis of soyasapogenol B (an aglycone of soyasaponins) from 2,3-oxidosqualene. Although these biosynthetic enzyme genes are known to be temporally and spatially expressed in licorice, the regulatory mechanisms underlying their expression remain unknown. Here, we identified a basic helix-loop-helix (bHLH) transcription factor, GubHLH3, that positively regulates the expression of soyasaponin biosynthetic genes. GubHLH3 preferentially activates transcription from promoters of CYP93E3 and CYP72A566, the second P450 gene newly identified and shown to be responsible for C-22ß hydroxylation in soyasapogenol B biosynthesis, in transient co-transfection assays of promoter-reporter constructs and transcription factors. Overexpression of GubHLH3 in transgenic hairy roots of G. uralensis enhanced the expression levels of bAS, CYP93E3 and CYP72A566. Moreover, soyasapogenol B and sophoradiol (22ß-hydroxy-ß-amyrin), an intermediate between ß-amyrin and soyasapogenol B, were increased in transgenic hairy root lines overexpressing GubHLH3. We found that soyasaponin biosynthetic genes and GubHLH3 were co-ordinately up-regulated by methyl jasmonate (MeJA). These results suggest that GubHLH3 regulates MeJA-responsive expression of soyasaponin biosynthetic genes in G. uralensis. The regulatory mechanisms of triterpenoid biosynthesis in legumes are compared and discussed.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Biosynthetic Pathways/genetics , Genes, Plant , Glycyrrhiza uralensis/genetics , Plant Proteins/metabolism , Saponins/biosynthesis , Acetates/pharmacology , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding Sites , Biosynthetic Pathways/drug effects , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Glycyrrhiza uralensis/drug effects , Oxylipins/pharmacology , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Saponins/chemistry , Time Factors , Transfection
14.
Mycorrhiza ; 28(3): 285-300, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29455337

ABSTRACT

Liquorice (Glycyrrhiza uralensis) is an important medicinal plant for which there is a huge market demand. It has been reported that arbuscular mycorrhizal (AM) symbiosis and drought stress can stimulate the accumulation of the active ingredients, glycyrrhizin and liquiritin, in liquorice plants, but the potential interactions of AM symbiosis and drought stress remain largely unknown. In the present work, we investigated mycorrhizal effects on plant growth and accumulation of glycyrrhizin and liquiritin in liquorice plants under different water regimes. The results indicated that AM plants generally exhibited better growth and physiological status including stomatal conductance, photosynthesis rate, and water use efficiency compared with non-AM plants. AM inoculation up-regulated the expression of an aquaporin gene PIP and decreased root abscisic acid (ABA) concentrations under drought stress. In general, AM plants displayed lower root carbon (C) and nitrogen (N) concentrations, higher phosphorus (P) concentrations, and therefore, lower C:P and N:P ratios but higher C:N ratio than non-AM plants. On the other hand, AM inoculation increased root glycyrrhizin and liquiritin concentrations, and the mycorrhizal effects were more pronounced under moderate drought stress than under well-watered condition or severe drought stress for glycyrrhizin accumulation. The accumulation of glycyrrhizin and liquiritin in AM plants was consistent with the C:N ratio changes in support of the carbon-nutrient balance hypothesis. Moreover, the glycyrrhizin accumulation was positively correlated with the expression of glycyrrhizin biosynthesis genes SQS1, ß-AS, CYP88D6, and CYP72A154. By contrast, no significant interaction of AM inoculation with water treatment was observed for liquiritin accumulation, while we similarly observed a positive correlation between liquiritin accumulation and the expression of a liquiritin biosynthesis gene CHS. These results suggested that AM inoculation in combination with proper water management potentially could improve glycyrrhizin and liquiritin accumulation in liquorice roots and may be practiced to promote liquorice cultivation.


Subject(s)
Gene Expression Regulation, Plant , Glomeromycota/physiology , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/physiology , Mycorrhizae/physiology , Droughts , Flavanones/metabolism , Glucosides/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/growth & development , Glycyrrhizic Acid/metabolism , Minerals/metabolism , Photosynthesis , Stress, Physiological/physiology
15.
J Cell Physiol ; 232(12): 3510-3519, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28105652

ABSTRACT

This research explored the effects of protein and polysaccharide in Meyerozyma guilliermondii on active compounds in Glycyrrhiza uralensis Fisch adventitious roots. In this study, a responsive protein LSP1 was purified from the Meyerozyma guilliermondii since the excellent induction. The contents of total flavonoids (3.46 mg · g-1 ), glycyrrhizic acid (0.41 mg · g-1 ), glycyrrhetinic acid (0.41 mg · g-1 ), and polysaccharide (94.49 mg · g-1 ) in adventitious root peaked at LSP1 group, which were 1.6, 3.4, 2.4, 2.0-fold that of control, respectively. Besides, the responsive protein LSP1 significantly activated the defense signaling, mitogen-activated protein kinases and extremely up-regulated the expression of defense-related genes and functional genes involved in glycyrrhizic acid biosynthesis.


Subject(s)
Fungal Proteins/metabolism , Glycyrrhiza uralensis/metabolism , Glycyrrhiza uralensis/microbiology , Glycyrrhizic Acid/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Saccharomycetales/metabolism , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant/drug effects , Glycyrrhiza uralensis/genetics , Host-Pathogen Interactions , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Spectrometry, Mass, Electrospray Ionization , Time Factors , Up-Regulation
16.
Biotechnol Appl Biochem ; 64(5): 700-711, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27644996

ABSTRACT

This study reports the best culture conditions for roots growth and accumulation of active components by optimizing the parameters. Glycyrrhiza uralensis adventitious roots metabolites were significantly increased after adding Saccharomyces cerevisiae and Meyerozyma guilliermondii. The highest contents of polysaccharide, glycyrrhizic acid, glycyrrhetinic acid, and total flavonoids were obtained in M. guilliermondii group; the content of glycyrrhizic acid was 5.3-fold higher than the control. In control and treatment groups, 12 compounds were identified by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), among which some new compounds have been detected in elicitor groups including 5,7-dihydroxyflavanone, glycyrrhisoflavanone, licorice saponin J2, uralsaponin B, (3R)-vestitol, and uralenol. Meyerozyma guilliermondii significantly upregulated the expression of the genes such as 3-hydroxy-3-methylglutaryl coenzyme A reductase, farnesyl diphosphate synthase, geranyl diphosphate synthase, squalene synthase, squalene epoxidase, ß-amyrin synthase, and CYP88D6 and CYP72A154. Meanwhile, it increased the biosynthesis of signaling molecules (nitric oxide, salicylic acid, and jasmonic acid) in defense mechanism.


Subject(s)
Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/microbiology , Glycyrrhizic Acid/metabolism , Saccharomyces cerevisiae/physiology , Saccharomycetales/physiology , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant , Glycyrrhiza uralensis/chemistry , Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/analysis , Metabolic Networks and Pathways/physiology , Tandem Mass Spectrometry
17.
Biotechnol Appl Biochem ; 64(2): 211-217, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26872048

ABSTRACT

Glycyrrhiza uralensis has acquired significant importance due to its medicinal properties and health function. In this study, the quality of G. uralensis adventitious roots was evaluated in terms of genetic stability, active compounds, and anti-inflammatory activity. Monomorphic banding pattern obtained from the mother plant and tissue cultures of G. uralensis with randomly amplified polymorphic DNA markers confirmed the genetic stability of adventitious roots. Neoliquiritin (neoisoliquiritin), ononin, liquiritin, and glycyrrhizic acid were identified from G. uralensis adventitious roots on the basis of high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis. This study also revealed that adventitious roots possessed a better anti-inflammatory effect than native roots. To increase the contents of G. uralensis active components, elicitors were used in the adventitious roots culture. The combination of methyl jasmonate and phenylalanine synergistically stimulated the accumulation of glycyrrhetinic acid (0.22 mg/g) and total flavonoid (5.43 mg/g) compared with single treatment. In conclusion, G. uralensis adventitious roots can be an exploitable system for the production of licorice.


Subject(s)
Flavonoids/biosynthesis , Glycyrrhiza uralensis/genetics , Terpenes/metabolism , Cell Culture Techniques , Flavonoids/genetics , Glycyrrhiza uralensis/cytology , Glycyrrhiza uralensis/growth & development , Glycyrrhiza uralensis/metabolism , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development
18.
Plant Cell Rep ; 36(3): 437-445, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28008473

ABSTRACT

KEY MESSAGE: CYP716A179, a cytochrome P450 monooxygenase expressed predominantly in tissue-cultured stolons of licorice ( Glycyrrhiza uralensis ), functions as a triterpene C-28 oxidase in the biosynthesis of oleanolic acid and betulinic acid. Cytochrome P450 monooxygenases (P450s) play key roles in the structural diversification of plant triterpenoids. Among these, the CYP716A subfamily, which functions mainly as a triterpene C-28 oxidase, is common in plants. Licorice (Glycyrrhiza uralensis) produces bioactive triterpenoids, such as glycyrrhizin and soyasaponins, and relevant P450s (CYP88D6, CYP72A154, and CYP93E3) have been identified; however, no CYP716A subfamily P450 has been isolated. Here, we identify CYP716A179, which functions as a triterpene C-28 oxidase, by RNA sequencing analysis of tissue-cultured stolons of G. uralensis. Heterologous expression of CYP716A179 in engineered yeast strains confirmed the production of oleanolic acid, ursolic acid, and betulinic acid from ß-amyrin, α-amyrin, and lupeol, respectively. The transcript level of CYP716A179 was about 500 times higher in tissue-cultured stolons than in intact roots. Oleanolic acid and betulinic acid were consistently detected only in tissue-cultured stolons. The discovery of CYP716A179 helps increase our understanding of the mechanisms of tissue-type-dependent triterpenoid metabolism in licorice and provides an additional target gene for pathway engineering to increase the production of glycyrrhizin in licorice tissue cultures by disrupting competing pathways.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glycyrrhiza uralensis/anatomy & histology , Glycyrrhiza uralensis/enzymology , Plant Proteins/metabolism , Tissue Culture Techniques/methods , Triterpenes/metabolism , Biosynthetic Pathways/genetics , Cloning, Molecular , Cytochrome P-450 Enzyme System/genetics , Enzyme Assays , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Genetic Engineering , Glycyrrhiza uralensis/genetics , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Triterpenes/chemistry
19.
Zhongguo Zhong Yao Za Zhi ; 42(9): 1752-1756, 2017 May.
Article in Zh | MEDLINE | ID: mdl-29082701

ABSTRACT

MicroRNAs(miRNA) are small non-coding RNAs that regulate the expression of protein coding genes by repressing translation of protein coding mRNA or enhancing mRNA degradation. Its functions have attracted more and more attention from the public. In recent years, the cross-border regulation of miRNA has become a new research direction, and provides a new perspective for people to comprehensively understand the functions of miRNA. Plant miRNA is usually methylated and not easy to degrade. According to our previous researches, there were abundant small RNAs in the decoction of dried liquorice, which provides a new way to study the mechanism of action of licorice. In this study, small RNAs extracted from Glycyrrhiza uralensis decoction and synthesized miRNA mimics were used to treat peripheral blood mononuclear cells(PBMC) isolated from healthy volunteers. The gene expression of toll-like receptors(TLRs), some transcription factors, signal molecules and cytokines were analyzed by RT-PCR. The results showed that glycyrrhiza miRNA could significantly regulate PBMC by inhibiting the expression of genes involved in T cell differentiation, inflammation and apoptosis. The study brought new ideas to us in comprehensively studying the mechanism of licorice and developing the traditional Chinese medicine.


Subject(s)
Glycyrrhiza uralensis/genetics , Leukocytes, Mononuclear/drug effects , MicroRNAs/genetics , Plant Extracts/pharmacology , Cells, Cultured , Humans , Leukocytes, Mononuclear/cytology
20.
Environ Microbiol ; 18(8): 2392-404, 2016 09.
Article in English | MEDLINE | ID: mdl-26521863

ABSTRACT

In rhizobial species that nodulate inverted repeat-lacking clade (IRLC) legumes, such as the interaction between Sinorhizobium meliloti and Medicago, bacteroid differentiation is driven by an endoreduplication event that is induced by host nodule-specific cysteine rich (NCR) antimicrobial peptides and requires the participation of the bacterial protein BacA. We have studied bacteroid differentiation of Sinorhizobium fredii HH103 in three host plants: Glycine max, Cajanus cajan and the IRLC legume Glycyrrhiza uralensis. Flow cytometry, microscopy analyses and viability studies of bacteroids as well as confocal microscopy studies carried out in nodules showed that S. fredii HH103 bacteroids, regardless of the host plant, had deoxyribonucleic acid (DNA) contents, cellular sizes and survival rates similar to those of free-living bacteria. Contrary to S. meliloti, S. fredii HH103 showed little or no sensitivity to Medicago NCR247 and NCR335 peptides. Inactivation of S. fredii HH103 bacA neither affected symbiosis with Glycyrrhiza nor increased bacterial sensitivity to Medicago NCRs. Finally, HH103 bacteroids isolated from Glycyrrhiza, but not those isolated from Cajanus or Glycine, showed an altered lipopolysaccharide. Our studies indicate that, in contrast to the S. meliloti-Medicago model symbiosis, bacteroids in the S. fredii HH103-Glycyrrhiza symbiosis do not undergo NCR-induced and bacA-dependent terminal differentiation.


Subject(s)
Glycyrrhiza uralensis/microbiology , O Antigens/metabolism , Root Nodules, Plant/microbiology , Sinorhizobium fredii/growth & development , Bacterial Proteins/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/physiology , Inverted Repeat Sequences , Lipopolysaccharides/metabolism , O Antigens/genetics , Root Nodules, Plant/genetics , Root Nodules, Plant/physiology , Sinorhizobium fredii/genetics , Sinorhizobium fredii/physiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL