Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.549
Filter
Add more filters

Publication year range
1.
Cell ; 178(6): 1509-1525.e19, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31491389

ABSTRACT

Most tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated. Here, we identified Ms4a3 as a specific gene expressed by granulocyte-monocyte progenitors (GMPs) and subsequently generated Ms4a3TdT reporter, Ms4a3Cre, and Ms4a3CreERT2 fate-mapping models. These models traced efficiently monocytes and granulocytes, but no lymphocytes or tissue dendritic cells. Using these models, we precisely quantified the contribution of monocytes to the RTM pool during homeostasis and inflammation. The unambiguous identification of monocyte-derived cells will permit future studies of their function under any condition.


Subject(s)
Cell Cycle Proteins/genetics , Gene Expression , Granulocyte-Macrophage Progenitor Cells/metabolism , Granulocytes/metabolism , Macrophages/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Animals , Granulocyte-Macrophage Progenitor Cells/cytology , Granulocytes/cytology , Hematopoiesis/physiology , Homeostasis/physiology , Inflammation/metabolism , Macrophages/cytology , Mice , Monocytes/cytology
2.
Immunity ; 54(7): 1433-1446.e5, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34062116

ABSTRACT

The extra-embryonic yolk sac contains the first definitive multipotent hematopoietic cells, denominated erythromyeloid progenitors. They originate in situ prior to the emergence of hematopoietic stem cells and give rise to erythroid, monocytes, granulocytes, mast cells and macrophages, the latter in a Myb transcription factor-independent manner. We uncovered here the heterogeneity of yolk sac erythromyeloid progenitors, at the single cell level, and discriminated multipotent from committed progenitors, prior to fetal liver colonization. We identified two temporally distinct megakaryocyte differentiation pathways. The first occurs in the yolk sac, bypasses intermediate bipotent megakaryocyte-erythroid progenitors and, similar to the differentiation of macrophages, is Myb-independent. By contrast, the second originates later, from Myb-dependent bipotent progenitors expressing Csf2rb and colonize the fetal liver, where they give rise to megakaryocytes and to large numbers of erythrocytes. Understanding megakaryocyte development is crucial as they play key functions during vascular development, in particular in separating blood and lymphatic networks.


Subject(s)
Cell Differentiation/physiology , Erythrocytes/cytology , Megakaryocytes/cytology , Myeloid Cells/cytology , Stem Cells/cytology , Yolk Sac/cytology , Animals , Cell Lineage/physiology , Cells, Cultured , Embryo, Mammalian/cytology , Female , Granulocytes/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Monocytes/cytology , Multipotent Stem Cells/cytology , Pregnancy
3.
Cell ; 154(3): 583-95, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911323

ABSTRACT

Intron retention (IR) is widely recognized as a consequence of mis-splicing that leads to failed excision of intronic sequences from pre-messenger RNAs. Our bioinformatic analyses of transcriptomic and proteomic data of normal white blood cell differentiation reveal IR as a physiological mechanism of gene expression control. IR regulates the expression of 86 functionally related genes, including those that determine the nuclear shape that is unique to granulocytes. Retention of introns in specific genes is associated with downregulation of splicing factors and higher GC content. IR, conserved between human and mouse, led to reduced mRNA and protein levels by triggering the nonsense-mediated decay (NMD) pathway. In contrast to the prevalent view that NMD is limited to mRNAs encoding aberrant proteins, our data establish that IR coupled with NMD is a conserved mechanism in normal granulopoiesis. Physiological IR may provide an energetically favorable level of dynamic gene expression control prior to sustained gene translation.


Subject(s)
Granulocytes/metabolism , Hematopoiesis , RNA Splicing , Algorithms , Animals , Base Composition , Cell Nucleus/metabolism , Down-Regulation , Granulocytes/cytology , Humans , Introns , Lamin Type B/genetics , Mice , Mice, Inbred C57BL , Nonsense Mediated mRNA Decay
4.
Nature ; 598(7880): 327-331, 2021 10.
Article in English | MEDLINE | ID: mdl-34588693

ABSTRACT

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow , Down Syndrome/blood , Down Syndrome/immunology , Fetus/cytology , Hematopoiesis , Immune System/cytology , B-Lymphocytes/cytology , Dendritic Cells/cytology , Down Syndrome/metabolism , Down Syndrome/pathology , Endothelial Cells/pathology , Eosinophils/cytology , Erythroid Cells/cytology , Granulocytes/cytology , Humans , Immunity , Myeloid Cells/cytology , Stromal Cells/cytology
5.
Nature ; 590(7846): 457-462, 2021 02.
Article in English | MEDLINE | ID: mdl-33568812

ABSTRACT

In contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function. Here we develop approaches for imaging myelopoiesis in mice, and generate atlases showing the differentiation of granulocytes, monocytes and dendritic cells. The generation of granulocytes and dendritic cells-monocytes localizes to different blood-vessel structures known as sinusoids, and displays lineage-specific spatial and clonal architectures. Acute systemic infection with Listeria monocytogenes induces lineage-specific progenitor clusters to undergo increased self-renewal of progenitors, but the different lineages remain spatially separated. Monocyte-dendritic cell progenitors (MDPs) map with nonclassical monocytes and conventional dendritic cells; these localize to a subset of blood vessels expressing a major regulator of myelopoiesis, colony-stimulating factor 1 (CSF1, also known as M-CSF)1. Specific deletion of Csf1 in endothelium disrupts the architecture around MDPs and their localization to sinusoids. Subsequently, there are fewer MDPs and their ability to differentiate is reduced, leading to a loss of nonclassical monocytes and dendritic cells during both homeostasis and infection. These data indicate that local cues produced by distinct blood vessels are responsible for the spatial organization of definitive blood cell differentiation.


Subject(s)
Cell Tracking/methods , Myeloid Cells/cytology , Myelopoiesis , Staining and Labeling/methods , Animals , Atlases as Topic , Blood Vessels/cytology , Blood Vessels/metabolism , Cell Lineage , Cell Self Renewal , Dendritic Cells/cytology , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Female , Granulocytes/cytology , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Monocytes/cytology , Myeloid Cells/metabolism
6.
Nature ; 593(7859): 405-410, 2021 05.
Article in English | MEDLINE | ID: mdl-33911282

ABSTRACT

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Subject(s)
Blood Cells/metabolism , Cell Differentiation/genetics , DNA Mutational Analysis/methods , Muscle, Smooth/metabolism , Mutation , Neurons/metabolism , Single Molecule Imaging/methods , Stem Cells/metabolism , Alzheimer Disease/genetics , Blood Cells/cytology , Cell Division , Cohort Studies , Colon/cytology , Epithelium/metabolism , Granulocytes/cytology , Granulocytes/metabolism , Healthy Volunteers , Humans , Male , Middle Aged , Muscle, Smooth/cytology , Mutagenesis , Mutation Rate , Neurons/cytology , Stem Cells/cytology
7.
Biochem Cell Biol ; 102(3): 275-284, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38484367

ABSTRACT

Neutrophil myeloperoxidase/H2O2/chloride system is a key mechanism to control pathogen infection. This enzyme, myeloperoxidase, plays a pivotal role in the arsenal of azurophilic granules that are released through degranulation upon neutrophil activation, which trigger local hypochlorous acid production. Myeloperoxidase gene encodes a protein precursor named promyeloperoxidase that arbors a propeptide that gets cleaved later during secretory routing in post-endoplasmic reticulum compartments. Although evidence suggested that this processing event was performed by one or different enzymes from the proprotein convertases family, the identity of this enzyme was never investigated. In this work, the naturally producing myeloperoxidase promyelocytic cell line HL-60 was used to investigate promyeloperoxidase cleavage during granulocytic differentiation in response to proprotein convertase inhibitors decanoyl-RVKR-chloromethylketone and hexa-d-arginine. Stable PC knockdown of endogenously expressed proprotein convertases, furin and PC7, was achieved using lentiviral delivery of shRNAs. None of the knockdown cell line could reproduce the effect of the pan-proprotein convertases inhibitor decanoyl-RVKR-chloromethylketone that accumulated intracellular promyeloperoxidase stores in HL-60 cells, therefore illustrating that both furin and PC7 redundantly process this proprotein.


Subject(s)
Furin , Peroxidase , Humans , HL-60 Cells , Furin/metabolism , Furin/genetics , Peroxidase/metabolism , Granulocytes/metabolism , Granulocytes/cytology , Cell Differentiation , Subtilisins/metabolism , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Amino Acid Chloromethyl Ketones/pharmacology
8.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34935903

ABSTRACT

Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Communication/genetics , Cell Differentiation/genetics , Cell Lineage/genetics , Hematopoiesis/genetics , Animals , Erythrocytes/cytology , GATA1 Transcription Factor/genetics , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Granulocytes/cytology , Hematopoietic Stem Cells/cytology , Megakaryocytes/cytology , Models, Theoretical , Monocytes/cytology , Proto-Oncogene Proteins/genetics , Signal Transduction , Single-Cell Analysis , Trans-Activators/genetics
9.
Nature ; 561(7724): 473-478, 2018 09.
Article in English | MEDLINE | ID: mdl-30185910

ABSTRACT

Haematopoietic stem cells drive blood production, but their population size and lifetime dynamics have not been quantified directly in humans. Here we identified 129,582 spontaneous, genome-wide somatic mutations in 140 single-cell-derived haematopoietic stem and progenitor colonies from a healthy 59-year-old man and applied population-genetics approaches to reconstruct clonal dynamics. Cell divisions from early embryogenesis were evident in the phylogenetic tree; all blood cells were derived from a common ancestor that preceded gastrulation. The size of the stem cell population grew steadily in early life, reaching a stable plateau by adolescence. We estimate the numbers of haematopoietic stem cells that are actively making white blood cells at any one time to be in the range of 50,000-200,000. We observed adult haematopoietic stem cell clones that generate multilineage outputs, including granulocytes and B lymphocytes. Harnessing naturally occurring mutations to report the clonal architecture of an organ enables the high-resolution reconstruction of somatic cell dynamics in humans.


Subject(s)
Blood Cells/cytology , Blood Cells/metabolism , Cell Lineage/genetics , DNA Mutational Analysis , Mutation , Adult Stem Cells/cytology , Bayes Theorem , Cell Count , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Embryonic Development/genetics , Genome, Human/genetics , Granulocytes/cytology , Granulocytes/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Middle Aged , Time Factors
10.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34548411

ABSTRACT

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Subject(s)
COVID-19/immunology , Granulocytes/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , Granulocytes/cytology , Humans , Immunity, Innate , Immunophenotyping , Leukocyte Count , Lung/physiopathology , Models, Biological , Organ Dysfunction Scores , SARS-CoV-2 , Severity of Illness Index
11.
PLoS Pathog ; 17(7): e1009721, 2021 07.
Article in English | MEDLINE | ID: mdl-34228753

ABSTRACT

Severe COVID-19 is characterized by extensive pulmonary complications, to which host immune responses are believed to play a role. As the major arm of innate immunity, neutrophils are one of the first cells recruited to the site of infection where their excessive activation can contribute to lung pathology. Low-density granulocytes (LDGs) are circulating neutrophils, whose numbers increase in some autoimmune diseases and cancer, but are poorly characterized in acute viral infections. Using flow cytometry, we detected a significant increase of LDGs in the blood of acute COVID-19 patients, compared to healthy controls. Based on their surface marker expression, COVID-19-related LDGs exhibit four different populations, which display distinctive stages of granulocytic development and most likely reflect emergency myelopoiesis. Moreover, COVID-19 LDGs show a link with an elevated recruitment and activation of neutrophils. Functional assays demonstrated the immunosuppressive capacities of these cells, which might contribute to impaired lymphocyte responses during acute disease. Taken together, our data confirms a significant granulocyte activation during COVID-19 and suggests that granulocytes of lower density play a role in disease progression.


Subject(s)
COVID-19/immunology , Granulocytes/classification , Acute Disease , Adult , Aged , COVID-19/blood , Case-Control Studies , Cohort Studies , Convalescence , Disease Progression , Female , Follow-Up Studies , Granulocytes/cytology , Humans , Immune Tolerance/immunology , Male , Middle Aged , Scavenger Receptors, Class E/analysis , Severity of Illness Index
12.
Immunity ; 41(1): 104-15, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25035955

ABSTRACT

The relationship between dendritic cells (DCs) and macrophages is often debated. Here we ask whether steady-state, lymphoid-tissue-resident conventional DCs (cDCs), plasmacytoid DCs (pDCs), and macrophages share a common macrophage-DC-restricted precursor (MDP). Using new clonal culture assays combined with adoptive transfer, we found that MDP fractions isolated by previous strategies are dominated by precursors of macrophages and monocytes, include some multipotent precursors of other hematopoietic lineages, but contain few precursors of resident cDCs and pDCs and no detectable common precursors restricted to these DC types and macrophages. Overall we find no evidence for a common restricted MDP leading to both macrophages and FL-dependent, resident cDCs and pDCs.


Subject(s)
Cell Lineage/immunology , Dendritic Cells/cytology , Lymphoid Tissue/cytology , Macrophages/cytology , Monocyte-Macrophage Precursor Cells/cytology , Adoptive Transfer , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CX3C Chemokine Receptor 1 , Cell Differentiation/immunology , Cells, Cultured , Cytokines/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocytes/cytology , Granulocytes/immunology , Macrophage Colony-Stimulating Factor/immunology , Mice , Mice, Inbred C57BL , Monocyte-Macrophage Precursor Cells/immunology , Monocytes/cytology , Receptor, Macrophage Colony-Stimulating Factor/immunology , Receptors, Chemokine/immunology
13.
PLoS Biol ; 18(12): e3000919, 2020 12.
Article in English | MEDLINE | ID: mdl-33351791

ABSTRACT

Computational protein design is rapidly becoming more powerful, and improving the accuracy of computational methods would greatly streamline protein engineering by eliminating the need for empirical optimization in the laboratory. In this work, we set out to design novel granulopoietic agents using a rescaffolding strategy with the goal of achieving simpler and more stable proteins. All of the 4 experimentally tested designs were folded, monomeric, and stable, while the 2 determined structures agreed with the design models within less than 2.5 Å. Despite the lack of significant topological or sequence similarity to their natural granulopoietic counterpart, 2 designs bound to the granulocyte colony-stimulating factor (G-CSF) receptor and exhibited potent, but delayed, in vitro proliferative activity in a G-CSF-dependent cell line. Interestingly, the designs also induced proliferation and differentiation of primary human hematopoietic stem cells into mature granulocytes, highlighting the utility of our approach to develop highly active therapeutic leads purely based on computational design.


Subject(s)
Granulocytes/cytology , Protein Engineering/methods , Cell Differentiation , Cells, Cultured , Computational Biology/methods , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/drug effects , Hematopoiesis/drug effects , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Humans , Neutrophils , Structure-Activity Relationship
14.
Nature ; 544(7648): 53-58, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28355185

ABSTRACT

Although many aspects of blood production are well understood, the spatial organization of myeloid differentiation in the bone marrow remains unknown. Here we use imaging to track granulocyte/macrophage progenitor (GMP) behaviour in mice during emergency and leukaemic myelopoiesis. In the steady state, we find individual GMPs scattered throughout the bone marrow. During regeneration, we observe expanding GMP patches forming defined GMP clusters, which, in turn, locally differentiate into granulocytes. The timed release of important bone marrow niche signals (SCF, IL-1ß, G-CSF, TGFß and CXCL4) and activation of an inducible Irf8 and ß-catenin progenitor self-renewal network control the transient formation of regenerating GMP clusters. In leukaemia, we show that GMP clusters are constantly produced owing to persistent activation of the self-renewal network and a lack of termination cytokines that normally restore haematopoietic stem-cell quiescence. Our results uncover a previously unrecognized dynamic behaviour of GMPs in situ, which tunes emergency myelopoiesis and is hijacked in leukaemia.


Subject(s)
Cell Self Renewal , Granulocyte-Macrophage Progenitor Cells/cytology , Granulocyte-Macrophage Progenitor Cells/pathology , Leukemia/pathology , Myelopoiesis , Neoplastic Stem Cells/pathology , Animals , Cellular Reprogramming , Cytokines/metabolism , Granulocytes/cytology , Granulocytes/pathology , Interferon Regulatory Factors/metabolism , Macrophages/cytology , Macrophages/pathology , Mice , Molecular Imaging , Stem Cell Niche/physiology , beta Catenin/metabolism
15.
Nature ; 541(7635): 96-101, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28002407

ABSTRACT

Monocytes and macrophages comprise a variety of subsets with diverse functions. It is thought that these cells play a crucial role in homeostasis of peripheral organs, key immunological processes and development of various diseases. Among these diseases, fibrosis is a life-threatening disease of unknown aetiology. Its pathogenesis is poorly understood, and there are few effective therapies. The development of fibrosis is associated with activation of monocytes and macrophages. However, the specific subtypes of monocytes and macrophages that are involved in fibrosis have not yet been identified. Here we show that Ceacam1+Msr1+Ly6C-F4/80-Mac1+ monocytes, which we term segregated-nucleus-containing atypical monocytes (SatM), share granulocyte characteristics, are regulated by CCAAT/enhancer binding protein ß (C/EBPß), and are critical for fibrosis. Cebpb deficiency results in a complete lack of SatM. Furthermore, the development of bleomycin-induced fibrosis, but not inflammation, was prevented in chimaeric mice with Cebpb-/- haematopoietic cells. Adoptive transfer of SatM into Cebpb-/- mice resulted in fibrosis. Notably, SatM are derived from Ly6C-FcεRI+ granulocyte/macrophage progenitors, and a newly identified SatM progenitor downstream of Ly6C-FcεRI+ granulocyte/macrophage progenitors, but not from macrophage/dendritic-cell progenitors. Our results show that SatM are critical for fibrosis and that C/EBPß licenses differentiation of SatM from their committed progenitor.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Granulocyte-Macrophage Progenitor Cells/cytology , Monocytes/classification , Monocytes/metabolism , Pulmonary Fibrosis/pathology , Adoptive Transfer , Animals , Antigens, CD/metabolism , Antigens, Ly/metabolism , Biomarkers/metabolism , Bleomycin/toxicity , CCAAT-Enhancer-Binding Protein-beta/deficiency , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Adhesion Molecules/metabolism , Cell Differentiation , Dendritic Cells/cytology , Disease Models, Animal , Granulocyte-Macrophage Progenitor Cells/metabolism , Granulocytes/cytology , Granulocytes/metabolism , Inflammation , Male , Mice , Molecular Targeted Therapy/trends , Monocytes/pathology , Monocytes/transplantation , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/prevention & control , Receptors, IgE/metabolism , Scavenger Receptors, Class A/metabolism
16.
Nature ; 535(7611): 299-302, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27411635

ABSTRACT

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.


Subject(s)
Cell Differentiation , Cell Lineage , GATA1 Transcription Factor/metabolism , Myeloid Cells/cytology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Erythrocytes/cytology , Feedback, Physiological , Female , Genes, Reporter , Granulocytes/cytology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Male , Megakaryocytes/cytology , Mice , Models, Biological , Monocytes/cytology , Reproducibility of Results , Single-Cell Analysis , Stochastic Processes
17.
Cell Mol Life Sci ; 78(23): 7161-7183, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34635950

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.


Subject(s)
Bone Neoplasms/pathology , Bone Regeneration/physiology , Immune Tolerance/immunology , Myeloid-Derived Suppressor Cells/cytology , Arthritis, Rheumatoid/pathology , Bone Diseases/pathology , Bone Neoplasms/secondary , Cellular Microenvironment/physiology , Dendritic Cells/cytology , Granulocytes/cytology , Humans , Immunity, Innate/immunology , Macrophages/cytology , Myeloid-Derived Suppressor Cells/immunology , Osteoarthritis/pathology
18.
J Clin Immunol ; 41(1): 59-65, 2021 01.
Article in English | MEDLINE | ID: mdl-33025377

ABSTRACT

PURPOSE: Recently, a new form of congenital neutropenia that is caused by germline biallelic loss-of-function mutations in the SMARCD2 gene was described in four patients. Given the rarity of the condition, the clinical spectrum of the disease has remained elusive. We here report a new patient with a novel frameshift mutation and compare our patient with the previously reported SMARCD2-mutant patients, aiming to provide a more comprehensive understanding of the natural course of the disease. METHODS: Clinical and laboratory findings of all reported patients were reviewed. Next-generation sequencing was performed to identify the causative genetic defect. Data on the hematopoietic stem cell transplantation including stem cell sources, conditioning regimen, engraftment, graft-versus-host disease, and infections were also collected. RESULTS: An 11-year-old female patient had a variety of infections including sepsis, deep tissue abscesses, otitis, pneumonia, gingivitis, and diarrhea since infancy. A novel homozygous mutation in SMARCD2 (c.93delG, p.Ala32Argfs*80) was detected. Bone marrow examination showed hypocellularity and decreased neutrophils with diminished granules and myeloid dysplasia, but no blast excess as in previously reported patients. The neutropenia was non-responsive even to higher doses of granulocyte colony-stimulating factor (G-CSF); therefore, the patient was transplanted at 10 years of age from a HLA-A allele-mismatched unrelated donor using a reduced toxicity conditioning regimen and recovered successfully. Compared with the previous four cases, our patient showed longer survival before transplantation without blastic transformation. CONCLUSION: Distinctive myeloid features and long-term follow-up including therapy options are presented for the newly described case of SMARCD2 deficiency. This disorder is apparent at infancy and requires early transplantation due to the unrelenting disease course despite conventional therapy.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Frameshift Mutation , Genes, Recessive , Granulocytes/cytology , Granulocytes/metabolism , Myelopoiesis/genetics , Alleles , Biopsy , Bone Marrow/pathology , Child , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Homozygote , Humans , Immunophenotyping , Loss of Function Mutation , Phenotype
19.
Blood Cells Mol Dis ; 91: 102594, 2021 11.
Article in English | MEDLINE | ID: mdl-34520986

ABSTRACT

Cytokines/chemokines regulate hematopoiesis, most having multiple cell actions. Numerous but not all chemokine family members act as negative regulators of hematopoietic progenitor cell (HPC) proliferation, but very little is known about such effects of the chemokine, CXCL15/Lungkine. We found that CXCL15/Lungkine-/- mice have greatly increased cycling of multi cytokine-stimulated bone marrow and spleen hematopoietic progenitor cells (HPCs: CFU-GM, BFU-E, and CFU-GEMM) and CXCL15 is expressed in many bone marrow progenitor and other cell types. This suggests that CXCL15/Lungkine acts as a negative regulator of the cell cycling of these HPCs in vivo. Recombinant murine CXCL15/Lungkine, decreased numbers of functional HPCs during cytokine-enhanced ex-vivo culture of lineage negative mouse bone marrow cells. Moreover, CXCL15/Lungkine, through S-Phase specific actions, was able to suppress in vitro colony formation of normal wildtype mouse bone marrow CFU-GM, CFU-G, CFU-M, BFU-E, and CFU-GEMM. This clearly identifies the negative regulatory activity of CXCL15/Lungkine on proliferation of multiple types of mouse HPCs.


Subject(s)
Chemokines, CXC/metabolism , Erythroid Cells/cytology , Granulocytes/cytology , Macrophages/cytology , Stem Cells/cytology , Animals , Cell Proliferation , Cells, Cultured , Erythroid Cells/metabolism , Granulocytes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , S Phase Cell Cycle Checkpoints , Stem Cells/metabolism
20.
Blood Cells Mol Dis ; 87: 102528, 2021 03.
Article in English | MEDLINE | ID: mdl-33341510

ABSTRACT

While red blood cells (RBCs) and granulocytes have been more studied, platelets and reticulocytes are not commonly used in paroxysmal nocturnal hemoglobinuria (PNH) flow-cytometry and less is known about susceptibility to complement-mediated destruction and effects of anti-complement therapy on these populations. We performed flow-cytometry of RBCs and granulocytes in 90 PNH patients and of platelets and reticulocytes in a subgroup (N = 36), to unveil perturbations of these populations during PNH disease course before and after anti-complement treatment. We found that platelets and reticulocytes were less sensitive to complement-mediated lysis than RBCs but not as resistant as granulocytes, as shown by mean sensitive fraction (difference in a given PNH population vs. PNH granulocyte clone size). In treated patients, reticulocytes, platelets, RBCs (with differences between type II and III) and granulocytes significantly increased post-treatment, confirming the role of PNH hematopoiesis within the context of anti-complement therapy. Moreover, we found that PNH platelet clone size reflects PNH granulocyte clone size. Finally, we established correlations between sensitive fraction of PNH cell-types and thrombosis. In sum, we applied a flow-cytometry panel for investigation of PNH peripheral blood populations' perturbations before and after eculizumab treatment to explore complement-sensitivity and kinetics of these cells during the disease course.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Blood Cells/drug effects , Complement Inactivating Agents/therapeutic use , Hemoglobinuria, Paroxysmal/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/pharmacology , Blood Cells/cytology , Blood Platelets/cytology , Blood Platelets/drug effects , Complement Inactivating Agents/pharmacology , Erythrocytes/cytology , Erythrocytes/drug effects , Erythroid Cells/cytology , Erythroid Cells/drug effects , Female , Flow Cytometry , Granulocytes/cytology , Granulocytes/drug effects , Hemoglobinuria, Paroxysmal/blood , Humans , Male , Middle Aged , Reticulocytes/cytology , Reticulocytes/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL