Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.845
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 185(13): 2248-2264.e21, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35617958

ABSTRACT

Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Animals , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Humans , Mice
2.
Annu Rev Immunol ; 31: 285-316, 2013.
Article in English | MEDLINE | ID: mdl-23298209

ABSTRACT

Mesenchymal stem cells (MSCs) are self-renewing precursor cells that can differentiate into bone, fat, cartilage, and stromal cells of the bone marrow. Recent studies suggest that MSCs themselves are critical for forming a niche that maintains hematopoietic stem cells (HSCs). The ease by which human MSC-like and stromal progenitor cells can be isolated from the bone marrow and other tissues has led to the rapid development of clinical investigations exploring their anti-inflammatory properties, tissue preservation capabilities, and regenerative potential. However, the identity of genuine MSCs and their specific contributions to these various beneficial effects have remained enigmatic. In this article, we examine the definition of MSCs and discuss the importance of rigorously characterizing their stem cell activity. We review their role and that of other putative niche constituents in the regulation of bone marrow HSCs. Additionally, how MSCs and their stromal progeny alter immune function is discussed, as well as potential therapeutic implications.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/therapy , Stem Cells/immunology , Stromal Cells/immunology , Stromal Cells/pathology , Stromal Cells/transplantation
3.
Annu Rev Immunol ; 31: 635-674, 2013.
Article in English | MEDLINE | ID: mdl-23330956

ABSTRACT

To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies.


Subject(s)
Hematopoiesis/immunology , Lymphoid Tissue/immunology , Lymphoid Tissue/transplantation , Models, Animal , Animals , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/trends , Humans , Immunophenotyping , Lymphoid Tissue/pathology , Mice , Translational Research, Biomedical/methods , Translational Research, Biomedical/trends , Transplantation, Heterologous
4.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29224778

ABSTRACT

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Subject(s)
Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/immunology , Adult , Animals , Benzylamines , Chemokine CXCL2/pharmacology , Cyclams , Female , Hematopoietic Stem Cells/drug effects , Heterocyclic Compounds/pharmacology , Humans , Male , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred ICR , Polymorphism, Genetic
5.
Immunity ; 56(2): 369-385.e6, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36720219

ABSTRACT

In allogeneic hematopoietic stem cell transplantation, donor αß T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues. Here, we show, using multiple approaches including parabiosis of mice with GVHD, that GVHD is instead primarily maintained locally within diseased tissues. By tracking 1,203 alloreactive T cell clones, we fitted a mathematical model predicting that within each tissue a small number of progenitor T cells maintain a larger effector pool. Consistent with this, we identified a tissue-resident TCF-1+ subpopulation that preferentially engrafted, expanded, and differentiated into effectors upon adoptive transfer. These results suggest that therapies targeting affected tissues and progenitor T cells within them would be effective.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , T-Lymphocytes , Transplantation, Homologous/adverse effects , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods
6.
Immunity ; 56(8): 1876-1893.e8, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37480848

ABSTRACT

Acute graft-versus-host disease (aGVHD) remains a major limitation of allogeneic stem cell transplantation (SCT), and severe intestinal manifestation is the major cause of early mortality. Intestinal microbiota control MHC class II (MHC-II) expression by ileal intestinal epithelial cells (IECs) that promote GVHD. Here, we demonstrated that genetically identical mice of differing vendor origins had markedly different intestinal microbiota and ileal MHC-II expression, resulting in discordant GVHD severity. We utilized cohousing and antibiotic treatment to characterize the bacterial taxa positively and negatively associated with MHC-II expression. A large proportion of bacterial MHC-II inducers were vancomycin sensitive, and peri-transplant oral vancomycin administration attenuated CD4+ T cell-mediated GVHD. We identified a similar relationship between pre-transplant microbes, HLA class II expression, and both GVHD and mortality in a large clinical SCT cohort. These data highlight therapeutically tractable mechanisms by which pre-transplant microbial taxa contribute to GVHD independently of genetic disparity.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , Vancomycin , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Homologous/adverse effects
7.
Nat Immunol ; 19(1): 85-97, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29167569

ABSTRACT

The hierarchy of human hemopoietic progenitor cells that produce lymphoid and granulocytic-monocytic (myeloid) lineages is unclear. Multiple progenitor populations produce lymphoid and myeloid cells, but they remain incompletely characterized. Here we demonstrated that lympho-myeloid progenitor populations in cord blood - lymphoid-primed multi-potential progenitors (LMPPs), granulocyte-macrophage progenitors (GMPs) and multi-lymphoid progenitors (MLPs) - were functionally and transcriptionally distinct and heterogeneous at the clonal level, with progenitors of many different functional potentials present. Although most progenitors had the potential to develop into only one mature cell type ('uni-lineage potential'), bi- and rarer multi-lineage progenitors were present among LMPPs, GMPs and MLPs. Those findings, coupled with single-cell expression analyses, suggest that a continuum of progenitors execute lymphoid and myeloid differentiation, rather than only uni-lineage progenitors' being present downstream of stem cells.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling/methods , Lymphoid Progenitor Cells/metabolism , Myeloid Progenitor Cells/metabolism , Single-Cell Analysis/methods , Animals , Cell Lineage/genetics , Cell Separation/methods , Cells, Cultured , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation/methods , Humans , Mice , Transplantation, Heterologous
8.
Immunol Rev ; 322(1): 138-147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287514

ABSTRACT

Severe combined immunodeficiency (SCID) is a rare and life-threatening genetic disorder that severely impairs the immune system's ability to defend the body against infections. Often referred to as the "bubble boy" disease, SCID gained widespread recognition due to the case of David Vetter, a young boy who lived in a sterile plastic bubble to protect him from germs. SCID is typically present at birth, and it results from genetic mutations that affect the development and function of immune cells, particularly T cells and B cells. These immune cells are essential for identifying and fighting off infections caused by viruses, bacteria, and fungi. In SCID patients, the immune system is virtually non-existent, leaving them highly susceptible to recurrent, severe infections. There are several forms of SCID, with varying degrees of severity, but all share common features. Newborns with SCID often exhibit symptoms such as chronic diarrhea, thrush, skin rashes, and persistent infections that do not respond to standard treatments. Without prompt diagnosis and intervention, SCID can lead to life-threatening complications and a high risk of mortality. There are over 20 possible affected genes. Treatment options for SCID primarily involve immune reconstitution, with the most well-known approach being hematopoietic stem cell transplantation (HSCT). Alternatively, gene therapy is also available for some forms of SCID. Once treated successfully, SCID patients can lead relatively normal lives, but they may still require vigilant infection control measures and lifelong medical follow-up to manage potential complications. In conclusion, severe combined immunodeficiency is a rare but life-threatening genetic disorder that severely compromises the immune system's function, rendering affected individuals highly vulnerable to infections. Early diagnosis and appropriate treatment are fundamental. With this respect, newborn screening is progressively and dramatically improving the prognosis of SCID.


Subject(s)
Agammaglobulinemia , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Male , Infant, Newborn , Humans , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , T-Lymphocytes , Early Diagnosis , Mutation , Hematopoietic Stem Cell Transplantation/methods
9.
N Engl J Med ; 390(18): 1663-1676, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38657265

ABSTRACT

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS: We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent ß-thalassemia and a ß0/ß0, ß0/ß0-like, or non-ß0/ß0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS: A total of 52 patients with transfusion-dependent ß-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS: Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent ß-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).


Subject(s)
Fetal Hemoglobin , Gene Editing , Hematopoietic Stem Cell Transplantation , beta-Thalassemia , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Antigens, CD34 , beta-Thalassemia/therapy , beta-Thalassemia/genetics , Blood Transfusion , Busulfan/therapeutic use , CRISPR-Cas Systems , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Gene Editing/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Repressor Proteins/genetics , Transplantation Conditioning , Transplantation, Autologous , Myeloablative Agonists/therapeutic use , North America , Europe
10.
N Engl J Med ; 390(16): 1467-1480, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38657244

ABSTRACT

BACKGROUND: Patients with relapsed or refractory hematologic cancers have a poor prognosis. Chimeric antigen receptor (CAR) T-cell therapy as a bridge to allogeneic hematopoietic stem-cell transplantation (HSCT) has the potential for long-term tumor elimination. However, pre-HSCT myeloablation and graft-versus-host disease (GVHD) prophylaxis agents have toxic effects and could eradicate residual CAR T cells and compromise antitumor effects. Whether the integration of CAR T-cell therapy and allogeneic HSCT can preserve CAR T-cell function and improve tumor control is unclear. METHODS: We tested a novel "all-in-one" strategy consisting of sequential CD7 CAR T-cell therapy and haploidentical HSCT in 10 patients with relapsed or refractory CD7-positive leukemia or lymphoma. After CAR T-cell therapy led to complete remission with incomplete hematologic recovery, patients received haploidentical HSCT without pharmacologic myeloablation or GVHD prophylaxis drugs. Toxic effects and efficacy were closely monitored. RESULTS: After CAR T-cell therapy, all 10 patients had complete remission with incomplete hematologic recovery and grade 4 pancytopenia. After haploidentical HSCT, 1 patient died on day 13 of septic shock and encephalitis, 8 patients had full donor chimerism, and 1 patient had autologous hematopoiesis. Three patients had grade 2 HSCT-associated acute GVHD. The median follow-up was 15.1 months (range, 3.1 to 24.0) after CAR T-cell therapy. Six patients remained in minimal residual disease-negative complete remission, 2 had a relapse of CD7-negative leukemia, and 1 died of septic shock at 3.7 months. The estimated 1-year overall survival was 68% (95% confidence interval [CI], 43 to 100), and the estimated 1-year disease-free survival was 54% (95% CI, 29 to 100). CONCLUSIONS: Our findings suggest that sequential CD7 CAR T-cell therapy and haploidentical HSCT is safe and effective, with remission and serious but reversible adverse events. This strategy offers a feasible approach for patients with CD7-positive tumors who are ineligible for conventional allogeneic HSCT. (Funded by the National Natural Science Foundation of China and the Key Project of Science and Technology Department of Zhejiang Province; ClinicalTrials.gov numbers, NCT04599556 and NCT04538599.).


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Leukemia , Lymphoma , Receptors, Chimeric Antigen , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antigens, CD7 , Combined Modality Therapy , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Leukemia/therapy , Leukemia/mortality , Lymphoma/mortality , Lymphoma/therapy , Receptors, Chimeric Antigen/therapeutic use , Remission Induction , Transplantation, Homologous , Recurrence , Aged
11.
N Engl J Med ; 390(7): 623-629, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38354141

ABSTRACT

Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.


Subject(s)
Dietary Fats , Enzyme Replacement Therapy , Hematopoietic Stem Cell Transplantation , Immunologic Factors , Rituximab , Wolman Disease , Humans , Infant , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Chimerism , Dietary Fats/adverse effects , Enzyme Replacement Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Immunologic Factors/therapeutic use , Rituximab/therapeutic use , Transplantation, Homologous , Wolman Disease/diet therapy , Wolman Disease/drug therapy , Wolman Disease/immunology , Wolman Disease/therapy
12.
Nat Rev Genet ; 22(4): 216-234, 2021 04.
Article in English | MEDLINE | ID: mdl-33303992

ABSTRACT

Haematopoietic stem and progenitor cell (HSPC) gene therapy has emerged as an effective treatment modality for monogenic disorders of the blood system such as primary immunodeficiencies and ß-thalassaemia. Medicinal products based on autologous HSPCs corrected using lentiviral and gammaretroviral vectors have now been approved for clinical use, and the site-specific genome modification of HSPCs using gene editing techniques such as CRISPR-Cas9 has shown great clinical promise. Preclinical studies have shown engineered HSPCs could also be used to cross-correct non-haematopoietic cells in neurodegenerative metabolic diseases. Here, we review the most recent advances in HSPC gene therapy and discuss emerging strategies for using HSPC gene therapy for a range of diseases.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation/methods , Primary Immunodeficiency Diseases/therapy , beta-Thalassemia/therapy , CRISPR-Cas Systems/genetics , Gene Editing/methods , Hematopoietic Stem Cells/cytology , Humans , Primary Immunodeficiency Diseases/genetics , beta-Thalassemia/genetics
13.
N Engl J Med ; 388(25): 2338-2348, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37342922

ABSTRACT

BACKGROUND: In patients undergoing allogeneic hematopoietic stem-cell transplantation (HSCT), a calcineurin inhibitor plus methotrexate has been a standard prophylaxis against graft-versus-host disease (GVHD). A phase 2 study indicated the potential superiority of a post-transplantation regimen of cyclophosphamide, tacrolimus, and mycophenolate mofetil. METHODS: In a phase 3 trial, we randomly assigned adults with hematologic cancers in a 1:1 ratio to receive cyclophosphamide-tacrolimus-mycophenolate mofetil (experimental prophylaxis) or tacrolimus-methotrexate (standard prophylaxis). The patients underwent HSCT from an HLA-matched related donor or a matched or 7/8 mismatched (i.e., mismatched at only one of the HLA-A, HLA-B, HLA-C, and HLA-DRB1 loci) unrelated donor, after reduced-intensity conditioning. The primary end point was GVHD-free, relapse-free survival at 1 year, assessed in a time-to-event analysis, with events defined as grade III or IV acute GVHD, chronic GVHD warranting systemic immunosuppression, disease relapse or progression, and death from any cause. RESULTS: In a multivariate Cox regression analysis, GVHD-free, relapse-free survival was significantly more common among the 214 patients in the experimental-prophylaxis group than among the 217 patients in the standard-prophylaxis group (hazard ratio for grade III or IV acute GVHD, chronic GVHD, disease relapse or progression, or death, 0.64; 95% confidence interval [CI], 0.49 to 0.83; P = 0.001). At 1 year, the adjusted GVHD-free, relapse-free survival was 52.7% (95% CI, 45.8 to 59.2) with experimental prophylaxis and 34.9% (95% CI, 28.6 to 41.3) with standard prophylaxis. Patients in the experimental-prophylaxis group appeared to have less severe acute or chronic GVHD and a higher incidence of immunosuppression-free survival at 1 year. Overall and disease-free survival, relapse, transplantation-related death, and engraftment did not differ substantially between the groups. CONCLUSIONS: Among patients undergoing allogeneic HLA-matched HSCT with reduced-intensity conditioning, GVHD-free, relapse-free survival at 1 year was significantly more common among those who received cyclophosphamide-tacrolimus-mycophenolate mofetil than among those who received tacrolimus-methotrexate. (Funded by the National Heart, Lung, and Blood Institute and others; BMT CTN 1703 ClinicalTrials.gov number, NCT03959241.).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bronchiolitis Obliterans Syndrome , Cyclophosphamide , Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Adult , Humans , Bronchiolitis Obliterans Syndrome/etiology , Bronchiolitis Obliterans Syndrome/prevention & control , Cyclophosphamide/administration & dosage , Graft vs Host Disease/prevention & control , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Methotrexate/administration & dosage , Mycophenolic Acid/administration & dosage , Neoplasm Recurrence, Local/drug therapy , Tacrolimus/administration & dosage , Unrelated Donors , Hematologic Neoplasms/surgery , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
14.
Blood ; 143(10): 882-894, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38207291

ABSTRACT

ABSTRACT: Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Hematopoietic Stem Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation/methods , Cell Cycle , Cell Differentiation
15.
Blood ; 143(22): 2227-2244, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38493484

ABSTRACT

ABSTRACT: Chronic myelomonocytic leukemia (CMML) is a heterogeneous disease presenting with either myeloproliferative or myelodysplastic features. Allogeneic hematopoietic cell transplantation (allo-HCT) remains the only potentially curative option, but the inherent toxicity of this procedure makes the decision to proceed to allo-HCT challenging, particularly because patients with CMML are mostly older and comorbid. Therefore, the decision between a nonintensive treatment approach and allo-HCT represents a delicate balance, especially because prospective randomized studies are lacking and retrospective data in the literature are conflicting. International consensus on the selection of patients and the ideal timing of allo-HCT, specifically in CMML, could not be reached in international recommendations published 6 years ago. Since then, new, CMML-specific data have been published. The European Society for Blood and Marrow Transplantation (EBMT) Practice Harmonization and Guidelines (PH&G) Committee assembled a panel of experts in the field to provide the first best practice recommendations on the role of allo-HCT specifically in CMML. Recommendations were based on the results of an international survey, a comprehensive review of the literature, and expert opinions on the subject, after structured discussion and circulation of recommendations. Algorithms for patient selection, timing of allo-HCT during the course of the disease, pretransplant strategies, allo-HCT modality, as well as posttransplant management for patients with CMML were outlined. The keynote message is, that once a patient has been identified as a transplant candidate, upfront transplantation without prior disease-modifying treatment is preferred to maximize chances of reaching allo-HCT whenever possible, irrespective of bone marrow blast counts.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myelomonocytic, Chronic , Transplantation, Homologous , Adult , Humans , Disease Management , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myelomonocytic, Chronic/therapy , Societies, Medical/standards
16.
Blood ; 143(26): 2710-2721, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38728431

ABSTRACT

ABSTRACT: Over the last decades, significant improvements in reducing the toxicities of allogeneic hematopoietic cell transplantation (allo-HCT) have widened its use as consolidation or salvage therapy for high-risk hematological malignancies. Nevertheless, relapse of the original malignant disease remains an open issue with unsatisfactory salvage options and limited rationales to select among them. In the last years, several studies have highlighted that relapse is often associated with specific genomic and nongenomic mechanisms of immune escape. In this review we summarize the current knowledge about these modalities of immune evasion, focusing on the mechanisms that leverage antigen presentation and pathologic rewiring of the bone marrow microenvironment. We present examples of how this biologic information can be translated into specific approaches to treat relapse, discuss the status of the clinical trials for patients who relapsed after a transplant, and show how dissecting the complex immunobiology of allo-HCT represents a crucial step toward developing new personalized approaches to improve clinical outcomes.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia , Precision Medicine , Tumor Escape , Humans , Precision Medicine/methods , Hematopoietic Stem Cell Transplantation/methods , Leukemia/therapy , Leukemia/immunology , Tumor Microenvironment/immunology , Transplantation, Homologous
17.
Blood ; 143(16): 1656-1669, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38295333

ABSTRACT

ABSTRACT: Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/pathology , T-Lymphocytes, Regulatory , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Mobilization/methods , Transplantation, Autologous , Stem Cell Transplantation
18.
Blood ; 143(3): 279-289, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37738655

ABSTRACT

ABSTRACT: TCRαß/CD19 cell depletion is a promising graft manipulation technique frequently used in the context of human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (HSCT). We previously reported the results of a phase I-II clinical trial (NCT01810120) to assess the safety and the efficacy of this type of exvivo T-cell depletion in 80 children with acute leukemia, showing promising survival outcomes. We now report an updated analysis on a cohort of 213 children with a longer follow-up (median, 47.6 months for surviving patients). With a 5-year cumulative incidence of nonrelapse mortality of 5.2% (95% confidence interval [CI], 2.8%-8.8%) and a cumulative incidence of relapse of 22.7% (95% CI, 16.9%-29.2%), projected 10-year overall and disease-free survival (DFS) were 75.4% (95% CI, 68.6%-80.9%) and 71.6% (95% CI, 64.4%-77.6%), respectively. Cumulative incidence of both grade II-IV acute and chronic graft-versus-host disease were low (14.7% and 8.1%, respectively). In a multivariable analysis for DFS including type of disease, use of total body irradiation in the conditioning regimen (hazard ratio [HR], 0.5; 95% CI, 0.26-0.98; P = .04), disease status at HSCT (complete remission [CR] ≥3 vs CR 1/2; HR, 2.23; 95% CI, 1.20-4.16; P = .01), and high levels of pre-HSCT minimal residual disease (HR, 2.09; 95% CI, 1.01-4.33; P = .04) were independently associated with outcome. In summary, besides confirming the good outcome results already reported (which are almost superimposable on those of transplant from HLA-matched donors), this clinical update allows the identification of patients at higher risk of treatment failure for whom personalized approaches, aimed at reducing the risk of relapse, are warranted.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Child , Humans , Receptors, Antigen, T-Cell, alpha-beta , Transplantation, Haploidentical/adverse effects , HLA Antigens , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Antigens Class II , Recurrence , Transplantation Conditioning/methods , Retrospective Studies
19.
Blood ; 143(12): 1112-1123, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37946262

ABSTRACT

ABSTRACT: High-risk, complement mediated, untreated transplant-associated thrombotic microangiopathy (hrTMA) has dismal outcomes due to multi-organ dysfunction syndrome (MODS). The complement C5 blocker eculizumab shows promising results in hrTMA, but has not been prospectively studied in hematopoietic stem cell transplant (HCT) recipients. We performed the first multi-institutional prospective study in children and young adults to evaluate eculizumab as an early targeted intervention for hrTMA/MODS. We hypothesized that eculizumab would more than double survival in HCT recipients with hrTMA, compared to our prior study of prospectively screened, untreated hrTMAs serving as historical controls. HrTMA features (elevated terminal complement (sC5b-9) and proteinuria measured by random urine protein/creatinine ratio (≥1mg/mg)) were required for inclusion. The primary endpoint was survival at 6 six-months from hrTMA diagnosis. Secondary endpoints were cumulative incidence of MODS 6 months after hrTMA diagnosis and 1-year posttransplant survival. Eculizumab dosing included intensive loading, induction, and maintenance phases for up to 24 weeks of therapy. All 21 evaluated study subjects had MODS. Primary and secondary study endpoints were met by demonstrating survival of 71% (P < .0001) 6 months after hrTMA diagnosis and 62% 1 year after transplant. Of fifteen survivors, 11 (73%) fully recovered organ function and are well. Our study demonstrates significant improvement in survival and recovery of organ function in hrTMA using an intensified eculizumab dosing and real time biomarker monitoring. This study serves as a benchmark for planning future studies that should focus on preventative measures or targeted therapy to be initiated prior to organ injury. This trial was registered at www.clinicaltrials.gov as #NCT03518203.


Subject(s)
Hematopoietic Stem Cell Transplantation , Thrombotic Microangiopathies , Child , Humans , Young Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Complement System Proteins , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Prospective Studies , Stem Cell Transplantation/adverse effects , Thrombotic Microangiopathies/drug therapy , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/diagnosis
20.
Blood ; 144(4): 445-456, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38728380

ABSTRACT

ABSTRACT: In patients with myelodysplastic syndrome (MDS), higher revised International Prognostic Scoring System (IPSS-R) scores at transplant are associated with worse transplant outcome and, thus, lowering IPSS-R scores by therapeutic intervention before transplantation may seem beneficial. However, there is no evidence, to date, to support this approach. In a retrospective analysis, a total of 1482 patients with MDS with sufficient data to calculate IPSS-R score at diagnosis and at time of transplantation were selected from the European Society for Blood and Marrow Transplantation transplant registry and analyzed for transplant outcome in a multivariable Cox model including IPSS-R score at diagnosis, treatment intervention, change in IPSS-R score before transplant, and several patient and transplant variables. Transplant outcome was unaffected by IPSS-R score change in untreated patients and moderately superior in patients treated with chemotherapy with improved IPSS-R score at transplant. Improved IPSS-R score after hypomethylating agents (HMAs) or other therapies showed no beneficial effect. However, when IPSS-R score progressed after chemotherapy, HMAs, or other therapies, transplant outcome was worse than without any prior treatment. Similar results were found when reduction or increase in bone marrow (BM) blasts between diagnosis and transplantation was considered. The results show a limited benefit of IPSS-R score downstaging or reduction of BM blasts after chemotherapy and no benefit for HMAs or other treatments and thus question the role of prior therapy in patients with MDS scheduled for transplantation. The model-based survival estimates should help inform decision-making for both doctors and patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/pathology , Male , Female , Middle Aged , Aged , Retrospective Studies , Prognosis , Adult , Hematopoietic Stem Cell Transplantation/methods , Neoplasm Staging , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL