Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 581
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 97(10): e0124123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772824

ABSTRACT

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Subject(s)
Antigens, CD34 , Cytomegalovirus , Dishevelled Proteins , Hematopoietic Stem Cells , Viral Proteins , Virus Activation , beta Catenin , Humans , Antigens, CD34/metabolism , beta Catenin/chemistry , beta Catenin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Dishevelled Proteins/chemistry , Dishevelled Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/virology , PDZ Domains , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Latency/genetics
2.
PLoS Pathog ; 17(1): e1009255, 2021 01.
Article in English | MEDLINE | ID: mdl-33508041

ABSTRACT

Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells.


Subject(s)
Herpesviridae Infections/immunology , Immune Evasion , Immunity, Cellular , Muromegalovirus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/virology , Herpesviridae Infections/virology , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus/genetics , Muromegalovirus/physiology , Virus Replication
3.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33177198

ABSTRACT

In human cytomegalovirus (HCMV)-seropositive patients, CD34+ hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34+ HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34+ HPCs from different donors, availability of cells, and low frequency of reactivation. In addition, multiple progenitor cell types express surface CD34, and the frequencies of these populations differ depending on the tissue source of the cells and culture conditions in vitro In this study, we generated CD34+ progenitor cells from two different embryonic stem cell (ESC) lines, WA01 and WA09, to circumvent limitations associated with primary CD34+ HPCs. HCMV infection of CD34+ HPCs derived from either WA01 or WA09 ESCs supported HCMV latency and induced myelosuppression similar to infection of primary CD34+ HPCs. Analysis of HCMV-infected primary or ESC-derived CD34+ HPC subpopulations indicated that HCMV was able to establish latency and reactivate in CD38+ CD90+ and CD38+/low CD90- HPCs but persistently infected CD38- CD90+ cells to produce infectious virus. These results indicate that ESC-derived CD34+ HPCs can be used as a model for HCMV latency and that the virus either latently or persistently infects specific subpopulations of CD34+ cells.IMPORTANCE Human cytomegalovirus infection is associated with severe disease in transplant patients and understanding how latency and reactivation occur in stem cell populations is essential to understand disease. CD34+ hematopoietic progenitor cells (HPCs) are a critical viral reservoir; however, these cells are a heterogeneous pool with donor-to-donor variation in functional, genetic, and phenotypic characteristics. We generated a novel system using embryonic stem cell lines to model HCMV latency and reactivation in HPCs with a consistent cellular background. Our study defined three key stem cell subsets with differentially regulated latent and replicative states, which provide cellular candidates for isolation and treatment of transplant-mediated disease. This work provides a direction toward developing strategies to control the switch between latency and reactivation.


Subject(s)
Antigens, CD34/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/isolation & purification , Hematopoietic Stem Cells/virology , Host-Pathogen Interactions , Human Embryonic Stem Cells/virology , Virus Activation , Virus Latency , Cells, Cultured , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/pathology , Hematopoietic Stem Cells/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Signal Transduction
4.
PLoS Pathog ; 15(11): e1007854, 2019 11.
Article in English | MEDLINE | ID: mdl-31725809

ABSTRACT

Reactivation of latent Human Cytomegalovirus (HCMV) in CD34+ hematopoietic progenitor cells (HPCs) is closely linked to hematopoiesis. Viral latency requires maintenance of the progenitor cell quiescence, while reactivation initiates following mobilization of HPCs to the periphery and differentiation into CD14+ macrophages. Early growth response gene 1 (EGR-1) is a transcription factor activated by Epidermal growth factor receptor (EGFR) signaling that is essential for the maintenance of CD34+ HPC self-renewal in the bone marrow niche. Down-regulation of EGR-1 results in mobilization and differentiation of CD34+ HPC from the bone marrow to the periphery. In the current study we demonstrate that the transcription factor EGR-1 is directly targeted for down-regulation by HCMV miR-US22 that results in decreased proliferation of CD34+ HPCs and a decrease in total hematopoietic colony formation. We also show that an HCMV miR-US22 mutant fails to reactivate in CD34+ HPCs, indicating that expression of EGR-1 inhibits viral reactivation. Since EGR-1 promotes CD34+ HPC self-renewal in the bone marrow niche, HCMV miR-US22 down-regulation of EGR-1 is a necessary step to block HPC self-renewal and proliferation to induce a cellular differentiation pathway necessary to promote reactivation of virus.


Subject(s)
Cell Proliferation , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Early Growth Response Protein 1/metabolism , Hematopoietic Stem Cells/cytology , MicroRNAs/genetics , Virus Activation , Cell Differentiation , Cells, Cultured , Early Growth Response Protein 1/genetics , Hematopoiesis , Hematopoietic Stem Cells/virology , Host-Pathogen Interactions , Humans , Signal Transduction
5.
PLoS Pathog ; 15(11): e1008037, 2019 11.
Article in English | MEDLINE | ID: mdl-31725811

ABSTRACT

Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Early Growth Response Protein 1/metabolism , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Viral Proteins/metabolism , Virus Replication , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Early Growth Response Protein 1/genetics , Genome, Viral , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/virology , Humans , Viral Proteins/genetics , Virus Latency
6.
Blood ; 134(16): 1298-1311, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31416800

ABSTRACT

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Subject(s)
Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/virology , Membrane Proteins/drug effects , Resveratrol/pharmacology , Transduction, Genetic/methods , Animals , Endosomes/drug effects , Endosomes/metabolism , Genetic Vectors , Heterografts , Humans , Lentivirus , Membrane Proteins/metabolism , Mice , Protein Transport/drug effects
7.
Immunity ; 37(3): 377-88, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22999944

ABSTRACT

This Perspective proposes definitions for key terms in the field of HIV-1 latency and eradication. In the context of eradication, a reservoir is a cell type that allows persistence of replication-competent HIV-1 on a timescale of years in patients on optimal antiretroviral therapy. Reservoirs act as a barrier to eradication in the patient population in which cure attempts will likely be made. Halting viral replication is essential to eradication, and definitions and criteria for assessing whether this goal has been achieved are proposed. The cell types that may serve as reservoirs for HIV-1 are discussed. Currently, only latently infected resting CD4(+) T cells fit the proposed definition of a reservoir, and more evidence is necessary to demonstrate that other cell types, including hematopoietic stem cells and macrophages, fit this definition. Further research is urgently required on potential reservoirs in the gut-associated lymphoid tissue and the central nervous system.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Virus Latency , Antiretroviral Therapy, Highly Active , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , HIV Infections/prevention & control , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/virology , Host-Pathogen Interactions , Humans , Macrophages/drug effects , Macrophages/virology
8.
Immunity ; 37(6): 1009-23, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23219391

ABSTRACT

Cytopenias are key prognostic indicators of life-threatening infection, contributing to immunosuppression and mortality. Here we define a role for Caspase-1-dependent death, known as pyroptosis, in infection-induced cytopenias by studying inflammasome activation in hematopoietic progenitor cells. The NLRP1a inflammasome is expressed in hematopoietic progenitor cells and its activation triggers their pyroptotic death. Active NLRP1a induced a lethal systemic inflammatory disease that was driven by Caspase-1 and IL-1ß but was independent of apoptosis-associated speck-like protein containing a CARD (ASC) and ameliorated by IL-18. Surprisingly, in the absence of IL-1ß-driven inflammation, active NLRP1a triggered pyroptosis of hematopoietic progenitor cells resulting in leukopenia at steady state. During periods of hematopoietic stress induced by chemotherapy or lymphocytic choriomeningitis virus (LCMV) infection, active NLRP1a caused prolonged cytopenia, bone marrow hypoplasia, and immunosuppression. Conversely, NLRP1-deficient mice showed enhanced recovery from chemotherapy and LCMV infection, demonstrating that NLRP1 acts as a cellular sentinel to alert Caspase-1 to hematopoietic and infectious stress.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis , Hematopoietic Stem Cells/metabolism , Inflammasomes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/genetics , CARD Signaling Adaptor Proteins , Caspase 1/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Dermatitis/immunology , Dermatitis/metabolism , Fluorouracil/pharmacology , Hematopoiesis/drug effects , Hematopoiesis/immunology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/virology , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Knockout , Mutation , Pancytopenia/immunology , Pancytopenia/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
9.
Gac Med Mex ; 157(1): 29-34, 2021.
Article in English | MEDLINE | ID: mdl-34125810

ABSTRACT

INTRODUCTION: Analysis of several parameters is required for adequate quality control in umbilical cord blood units (UCBU) when used for therapeutic purposes. OBJECTIVE: To optimize colony-forming units (CFU) from clonogenic cultures and to detect the human papillomavirus (HPV) genome in UCBU. METHODS: One hundred and forty-one umbilical cord blood (UCB), segment or CFU samples from UCBU clonogenic cultures were included. DNA extraction, quantification and endogenous GAPDH gene PCR amplification were carried out. Subsequently, HPV L1 gene was detected using the MY09/MY11 and GP5/GP6+ oligonucleotides. PCR products were analyzed with electrophoresis in agarose gel. CFU-extracted purified DNA was analyzed by electrophoresis in agarose gel, as well as some DNAs, using the sequence-specific priming technique. RESULTS: CFU-extracted DNA concentration was higher in comparison with that of UCB (p = 0.0041) and that of the segment (p < 0.0001), as well as that of UCB in comparison with that of the segment (p < 0.0001). All samples were positive for GAPDH amplification and negative for MY09/MY/11 and GP5/GP6+. CONCLUSIONS: Cryopreserved UCBUs were HPV-negative. Obtaining CFU DNA from clonogenic cultures with high concentrations and purity is feasible.


INTRODUCCIÓN: Se requiere analizar diversos parámetros para el control de calidad adecuado de las unidades de sangre de cordón umbilical (USCU) cuando se utilizan con fines terapéuticos. OBJETIVO: Optimizar las unidades formadoras de colonias (UFC) de cultivos clonogénicos y detectar el genoma del virus del papiloma humano (VPH) en USCU. MÉTODOS: Se incluyeron 141 muestras de sangre de cordón umbilical (SCU), de segmento y de UFC de cultivos clonogénicos de USCU. Se realizó extracción de ADN, cuantificación y amplificación por PCR del gen endógeno GAPDH. Se detectó el gen L1 del VPH con los oligonucleótidos MY09/MY11 y GP5/GP6+; los productos de PCR se migraron en electroforesis de agarosa. El ADN purificado de las UFC se analizó mediante electroforesis de agarosa y algunos ADN, con la técnica sequence specific priming. RESULTADOS: La concentración de ADN extraído de UFC fue superior comparada con la de SCU (p = 0.0041) y la de segmento (p < 0.0001); así como la de SCU comparada con la de segmento (p < 0.0001). Todas las muestras fueron positivas para la amplificación de GAPDH y negativas para MY09/MY11 y GP5/GP6+. CONCLUSIONES: Las USCU criopreservadas fueron VPH netativas; además, es factible obtener ADN en altas concentraciones y con alta pureza a partir de UFC de los cultivos clonogénicos.


Subject(s)
DNA, Viral/isolation & purification , Fetal Blood/virology , Genome, Viral , Hematopoietic Stem Cells/virology , Papillomaviridae/isolation & purification , Adult , Cell Line , Cryopreservation , Electrophoresis, Agar Gel , Female , Fetal Blood/cytology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , HeLa Cells , Histocompatibility Testing , Humans , Papillomaviridae/genetics , Polymerase Chain Reaction/methods , Young Adult
10.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31118259

ABSTRACT

Viral entry is targeted by immunological and pharmacological measures to inhibit viral infection. Human cytomegalovirus (HCMV) entry into cells where it initiates productive infection has been well studied, but its entry into cell types where it establishes latency has not. Therefore, we examined the entry of HCMV into CD34+ hematopoietic progenitor cells where the virus establishes latency. We determined that HCMV enters into the primary CD34+ hematopoietic progenitor cells in which it establishes latency by macropinocytosis. The capsid-associated tegument protein pp150 is released from maturing endosomes and migrates to the nucleus, whereas other tegument proteins, including pp71, remain endosome associated in the cytoplasm. The inhibition of macropinocytosis impairs entry, thereby diminishing latency-associated transcription and reducing viral reactivation. We conclude that HCMV virions enter CD34+ cells by macropinocytosis but fail to fully uncoat or disassemble their tegument layers, leading to the establishment of latency.IMPORTANCE Virion entry is targeted by antivirals and natural immunity to prevent infection. Natural preexisting immunity is ineffective at clearing an HCMV infection, and an incomplete understanding of the viral glycoproteins and cellular receptors that mediate entry has hampered inhibitor development. Nevertheless, HCMV entry remains a viable drug target. Our characterization here of HCMV entry into primary CD34+ hematopoietic progenitor cells through macropinocytosis and our comparison to viral entry into fibroblast cells highlight virion uncoating and tegument disassembly as a divergence point between productive and latent infections. Further definition of tegument disassembly may permit the development of interventions to inhibit this process to block productive infection or to trigger it in incompletely differentiated cells to prevent the seeding of the latent reservoirs that make HCMV infections incurable.


Subject(s)
Antigens, CD34/analysis , Cytomegalovirus/physiology , Hematopoietic Stem Cells/physiology , Hematopoietic Stem Cells/virology , Pinocytosis , Virus Internalization , Virus Latency , Cell Nucleus/virology , Endosomes/virology , Hematopoietic Stem Cells/chemistry , Humans , Protein Transport , Viral Structural Proteins/metabolism
11.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31391271

ABSTRACT

Human cytomegalovirus (HCMV) enters primary CD34+ hematopoietic progenitor cells by macropinocytosis, where it establishes latency in part because its tegument-transactivating protein, pp71, remains associated with endosomes and is therefore unable to initiate productive, lytic replication. Here we show that multiple HCMV strains also enter cell line models used to study latency by macropinocytosis and endocytosis. In all latency models tested, tegument-delivered pp71 was found to be colocalized with endosomal markers and was not associated with the seven other cytoplasmic localization markers tested. Like the capsid-associated pp150 tegument protein, we initially detected capsid proteins in association with endosomes but later detected them in the nucleus. Inhibitors of macropinocytosis and endocytosis reduced latent viral gene expression and precluded reactivation. Importantly, we utilized electron microscopy to observe entry by macropinocytosis and endocytosis, providing additional visual corroboration of the findings of our functional studies. Our demonstration that HCMV enters cell line models for latency in a manner indistinguishable from that of its entry into primary cells illustrates the utility of these cell lines for probing the mechanisms, host genetics, and small-molecule-mediated inhibition of HCMV entry into the cell types where it establishes latency.IMPORTANCE Primary cells cultured in vitro currently provide the highest available relevance for examining molecular and genetic requirements for the establishment, maintenance, and reactivation of HCMV latency. However, their expense, heterogeneity, and intransigence to both long-term culture and molecular or genetic modification create rigor and reproducibility challenges for HCMV latency studies. There are several cell line models for latency not obstructed by deficiencies inherent in primary cells. However, many researchers view cell line studies of latency to be physiologically irrelevant because of the perception that these models display numerous and significant differences from primary cells. Here, we show that the very first step in a latent HCMV infection, entry of the virus into cells, occurs in cell line models in a manner indistinguishable from that in which it occurs in primary CD34+ hematopoietic progenitor cells. Our data argue that experimental HCMV latency is much more similar than it is different in cell lines and primary cells.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Endocytosis , Hematopoietic Stem Cells/virology , Pinocytosis , Virus Internalization , Virus Latency , Biomimetics , Cell Nucleus/metabolism , Cytomegalovirus Infections/metabolism , Cytoplasm/metabolism , Hematopoietic Stem Cells/metabolism , Host-Pathogen Interactions , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
12.
Virol J ; 17(1): 22, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32039735

ABSTRACT

Transfection, the process of introducing purified nucleic acids into cells, and viral transduction, viral-mediated nucleic acid transfer, are two commonly utilized techniques for gene delivery in the research setting. Transfection allows purified nucleic acid to be introduced into target cells through chemical-based techniques, nonchemical methods or particle-based methods, while viral transduction employs genomes or vectors based on adenoviruses, retroviruses (e.g. lentiviruses), adeno-associated viruses, or hybrid viruses. Transfected DNAs are often tested for potential effects on subsequent transduction, but it is not clear whether transfection itself rather than the particular nucleic acid being introduced might impact subsequent viral transfection. We observed a significant association between successfully transfected mobilized peripheral blood CD34+ human stem and progenitor cells (HSPCs) and permissiveness to subsequent lentiviral transduction, which was not evident in other cells such as 293 T cells and Jurkat cells. This association, apparently specific to CD34+ human stem and progenitor cells (HSPCs), is critical to both research and clinical applications as these cells are a frequent target of transfection and viral transduction owing to the durable nature of these cells in living systems. This finding may also present a significant opportunity to enhance the success of viral transduction for clinical applications.


Subject(s)
Hematopoietic Stem Cells/virology , Lentivirus/genetics , Lentivirus/physiology , Transduction, Genetic , Transfection , Antigens, CD34 , Genetic Vectors , HEK293 Cells , Humans , Jurkat Cells
13.
Mol Ther ; 27(6): 1074-1086, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31023523

ABSTRACT

Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/therapeutic use , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/virology , Lentivirus/genetics , Transduction, Genetic , Animals , Antigens, CD34/metabolism , Clone Cells , Genetic Therapy/adverse effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Agents/metabolism , Macaca mulatta , Mutagenesis, Insertional/genetics , Promoter Regions, Genetic , Protein Splicing/genetics , Terminal Repeat Sequences/genetics , Transplantation, Autologous
14.
Proc Natl Acad Sci U S A ; 114(49): E10586-E10595, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29158406

ABSTRACT

The transcriptional program associated with herpesvirus latency and the viral genes regulating entry into and exit from latency are poorly understood and controversial. Here, we developed and validated a targeted enrichment platform and conducted large-scale transcriptome analyses of human cytomegalovirus (HCMV) infection. We used both an experimental hematopoietic cell model of latency and cells from naturally infected, healthy human subjects (clinical) to define the breadth of viral genes expressed. The viral transcriptome derived from experimental infection was highly correlated with that from clinical infection, validating our experimental latency model. These transcriptomes revealed a broader profile of gene expression during infection in hematopoietic cells than previously appreciated. Further, using recombinant viruses that establish a nonreactivating, latent-like or a replicative infection in CD34+ hematopoietic progenitor cells, we defined classes of low to moderately expressed genes that are differentially regulated in latent vs. replicative states of infection. Most of these genes have yet to be studied in depth. By contrast, genes that were highly expressed, were expressed similarly in both latent and replicative infection. From these findings, a model emerges whereby low or moderately expressed genes may have the greatest impact on regulating the switch between viral latency and replication. The core set of viral genes expressed in natural infection and differentially regulated depending on the pattern of infection provides insight into the HCMV transcriptome associated with latency in the host and a resource for investigating virus-host interactions underlying persistence.


Subject(s)
Cytomegalovirus/genetics , Gene Expression Regulation, Viral , Genome, Viral , Host-Pathogen Interactions , Transcriptome , Virus Latency , Cell Line , Cytomegalovirus/growth & development , Cytomegalovirus/metabolism , Fibroblasts/virology , Gene Expression Profiling , Hematopoietic Stem Cells/virology , Humans , Primary Cell Culture , Signal Transduction , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
15.
BMC Immunol ; 20(1): 2, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30616506

ABSTRACT

BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins' chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. RESULTS: We mutated mouse CMAH in the NOD/scid-IL2Rγc-/- (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8. CONCLUSION: NSG-cmah-/- mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins.


Subject(s)
Glycoproteins/metabolism , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/virology , HIV-1 , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/virology , Animals , CRISPR-Cas Systems , Disease Models, Animal , Genetic Loci , HIV Infections/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/virology , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Knockout , Phenotype
16.
J Gen Virol ; 100(12): 1680-1694, 2019 12.
Article in English | MEDLINE | ID: mdl-31647403

ABSTRACT

CD34+ myeloid lineage progenitor cells are an important reservoir of latent human cytomegalovirus (HCMV), and differentiation to macrophages or dendritic cells (DCs) is known to cause reactivation of latent virus. Due to its species-specificity, murine models have been used to study mouse CMV (MCMV) latency and reactivation in vivo. While previous studies have shown that MCMV genomic DNA can be detected in the bone marrow (BM) of latently infected mice, the identity of these cells has not been defined. Therefore, we sought to identify and enrich for cellular sites of MCMV latency in the BM haematopoietic system, and to explore the potential for establishing an in vitro model for reactivation of latent MCMV. We studied the kinetics and cellular characteristics of acute infection and establishment of latency in the BM of mice. We found that while MCMV can infect a broad range of haematopoietic BM cells (BMCs), latent virus is only detectable in haematopoietic stem cells (HSCs), myeloid progenitor cells, monocytes and DC-enriched cell subsets. Using three separate approaches, MCMV reactivation was detected in association with differentiation into DC-enriched BMCs cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) followed by lipopolysaccharide (LPS) treatment. In summary, we have defined the kinetics and cellular profile of MCMV infection followed by the natural establishment of latency in vivo in the mouse BM haematopoietic system, including the haematopoietic phenotypes of cells that are permissive to acute infection, establish and harbour detectable latent virus, and can be stimulated to reactivate following DC enrichment and differentiation, followed by treatment with LPS.


Subject(s)
Bone Marrow Cells/virology , Cell Differentiation , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Virus Activation , Virus Latency , Animals , Biomarkers , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/virology , Host-Pathogen Interactions , Interleukin-4/pharmacology , Kinetics , Mice , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Myeloid Cells/virology , Viral Tropism , Virus Replication
17.
J Virol ; 92(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29046446

ABSTRACT

Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in "enhancerless" self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.


Subject(s)
Genetic Vectors , Insulator Elements , Spumavirus/genetics , Terminal Repeat Sequences , Adaptor Proteins, Signal Transducing/genetics , Animals , CRISPR-Cas Systems/genetics , Cells, Cultured , Genetic Therapy/methods , Hematopoietic Stem Cells/virology , LIM Domain Proteins/genetics , Mice , Mutagenesis, Insertional , Mutagenicity Tests , Proto-Oncogene Mas , Transduction, Genetic , Transgenes
18.
PLoS Pathog ; 13(11): e1006722, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29186194

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo.


Subject(s)
HTLV-I Infections/virology , Hematopoietic Stem Cells/virology , Human T-lymphotropic virus 1/physiology , Animals , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Gene Products, tax/genetics , Gene Products, tax/metabolism , HTLV-I Infections/immunology , Human T-lymphotropic virus 1/genetics , Humans , Macaca mulatta , Neutrophils/virology
19.
PLoS Pathog ; 13(7): e1006505, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28759657

ABSTRACT

Chronic human immunodeficiency virus-1 (HIV-1) infection in patients leads to multi-lineage hematopoietic abnormalities or pancytopenia. The deficiency in hematopoietic progenitor cells (HPCs) induced by HIV-1 infection has been proposed, but the relevant mechanisms are poorly understood. We report here that both human CD34+CD38- early and CD34+CD38+ intermediate HPCs were maintained in the bone marrow (BM) of humanized mice. Chronic HIV-1 infection preferentially depleted CD34+CD38- early HPCs in the BM and reduced their proliferation potential in vivo in both HIV-1-infected patients and humanized mice, while CD34+CD38+ intermediate HSCs were relatively unaffected. Strikingly, depletion of plasmacytoid dendritic cells (pDCs) prevented human CD34+CD38- early HPCs from HIV-1 infection-induced depletion and functional impairment and restored the gene expression profile of purified CD34+ HPCs in humanized mice. These findings suggest that pDCs contribute to the early hematopoietic suppression induced by chronic HIV-1 infection and provide a novel therapeutic target for the hematopoiesis suppression in HIV-1 patients.


Subject(s)
Dendritic Cells/immunology , HIV Infections/immunology , Hematopoietic Stem Cells/cytology , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Animals , Antigens, CD34/immunology , Dendritic Cells/cytology , Dendritic Cells/virology , HIV Infections/virology , HIV-1/physiology , Hematopoiesis , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/virology , Humans , Mice , Mice, Inbred BALB C
20.
PLoS Pathog ; 13(7): e1006509, 2017 07.
Article in English | MEDLINE | ID: mdl-28732051

ABSTRACT

Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.


Subject(s)
CD4 Antigens/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Hematopoietic Stem Cells/virology , Proviruses/physiology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Receptors, HIV/metabolism , Adult , CD4 Antigens/genetics , Cells, Cultured , Female , Genome, Viral , HIV Infections/genetics , HIV-1/genetics , Hematopoietic Stem Cells/metabolism , Humans , Male , Proviruses/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Receptors, HIV/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL