Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 321
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35210360

ABSTRACT

Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Heme-Binding Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Binding Sites , HEK293 Cells , Humans , Mitochondrial Proteins/chemistry , Structure-Activity Relationship
2.
J Bacteriol ; 206(6): e0044423, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38506530

ABSTRACT

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Subject(s)
Bacterial Proteins , Heme , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Heme/metabolism , Heme-Binding Proteins/metabolism , Hemeproteins/metabolism , Hemeproteins/genetics , Hemeproteins/chemistry , Protein Binding , Proteobacteria/metabolism , Proteobacteria/genetics
3.
Appl Microbiol Biotechnol ; 108(1): 37, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38183476

ABSTRACT

A comprehensive analysis to survey heme-binding proteins produced by the white-rot fungus Phanerochaete chrysosporium was achieved using a biotinylated heme-streptavidin beads system. Mitochondrial citrate synthase (PcCS), glyceraldehyde 3-phosphate dehydrogenase (PcGAPDH), and 2-Cys thioredoxin peroxidase (mammalian HBP23 homolog) were identified as putative heme-binding proteins. Among these, PcCS and PcGAPDH were further characterized using heterologously expressed recombinant proteins. Difference spectra of PcCS titrated with hemin exhibited an increase in the Soret absorbance at 414 nm, suggesting that the axial ligand of the heme is a His residue. The activity of PcCS was strongly inhibited by hemin with Ki oxaloacetate of 8.7 µM and Ki acetyl-CoA of 5.8 µM. Since the final step of heme biosynthesis occurred at the mitochondrial inner membrane, the inhibition of PcCS by heme is thought to be a physiological event. The inhibitory mode of the heme was similar to that of CoA analogues, suggesting that heme binds to PcCS at His347 at the AcCoA-CoA binding site, which was supported by the homology model of PcCS. PcGAPDH was also inhibited by heme, with a lower concentration than that for PcCS. This might be caused by the different location of these enzymes. From the integration of these phenomena, it was concluded that metabolic regulations by heme in the central metabolic and heme synthetic pathways occurred in the mitochondria and cytosol. This novel pathway crosstalk between the central metabolic and heme biosynthetic pathways, via a heme molecule, is important in regulating the metabolic balance (heme synthesis, ATP synthesis, flux balance of the tricarboxylic acid (TCA) cycle and cellular redox balance (NADPH production) during fungal aromatic degradation. KEY POINTS: • A comprehensive survey of heme-binding proteins in P. chrysosporium was achieved. • Several heme-binding proteins including CS and GAPDH were identified. • A novel metabolic regulation by heme in the central metabolic pathways was found.


Subject(s)
Biosynthetic Pathways , Phanerochaete , Animals , Heme , Phanerochaete/genetics , Hemin , Heme-Binding Proteins , Mammals
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33875586

ABSTRACT

Coordinated beating is crucial for the function of multiple cilia. However, the molecular mechanism is poorly understood. Here, we characterize a conserved ciliary protein CYB5D1 with a heme-binding domain and a cordon-bleu ubiquitin-like domain. Mutation or knockdown of Cyb5d1 in zebrafish impaired coordinated ciliary beating in the otic vesicle and olfactory epithelium. Similarly, the two flagella of an insertional mutant of the CYB5D1 ortholog in Chlamydomonas (Crcyb5d1) showed an uncoordinated pattern due to a defect in the cis-flagellum. Biochemical analyses revealed that CrCYB5D1 is a radial spoke stalk protein that binds heme only under oxidizing conditions. Lack of CrCYB5D1 resulted in a reductive shift in flagellar redox state and slowing down of the phototactic response. Treatment of Crcyb5d1 with oxidants restored coordinated flagellar beating. Taken together, these data suggest that CrCYB5D1 may integrate environmental and intraciliary signals and regulate the redox state of cilia, which is crucial for the coordinated beating of multiple cilia.


Subject(s)
Cilia/metabolism , Cilia/physiology , Cytochromes b5/metabolism , Animals , Axoneme/metabolism , Chlamydomonas/metabolism , Chlamydomonas/physiology , Cytochromes b5/physiology , Dyneins/metabolism , Flagella/metabolism , Flagella/physiology , Heme-Binding Proteins/metabolism , Heme-Binding Proteins/physiology , Microtubules/metabolism , Mutation , Zebrafish/metabolism
5.
Mol Psychiatry ; 27(3): 1647-1657, 2022 03.
Article in English | MEDLINE | ID: mdl-34880450

ABSTRACT

Antidepressants are an effective treatment for major depressive disorder (MDD), although individual response is unpredictable and highly variable. Whilst the mode of action of antidepressants is incompletely understood, many medications are associated with changes in DNA methylation in genes that are plausibly linked to their mechanisms. Studies of DNA methylation may therefore reveal the biological processes underpinning the efficacy and side effects of antidepressants. We performed a methylome-wide association study (MWAS) of self-reported antidepressant use accounting for lifestyle factors and MDD in Generation Scotland (GS:SFHS, N = 6428, EPIC array) and the Netherlands Twin Register (NTR, N = 2449, 450 K array) and ran a meta-analysis of antidepressant use across these two cohorts. We found ten CpG sites significantly associated with self-reported antidepressant use in GS:SFHS, with the top CpG located within a gene previously associated with mental health disorders, ATP6V1B2 (ß = -0.055, pcorrected = 0.005). Other top loci were annotated to genes including CASP10, TMBIM1, MAPKAPK3, and HEBP2, which have previously been implicated in the innate immune response. Next, using penalised regression, we trained a methylation-based score of self-reported antidepressant use in a subset of 3799 GS:SFHS individuals that predicted antidepressant use in a second subset of GS:SFHS (N = 3360, ß = 0.377, p = 3.12 × 10-11, R2 = 2.12%). In an MWAS analysis of prescribed selective serotonin reuptake inhibitors, we showed convergent findings with those based on self-report. In NTR, we did not find any CpGs significantly associated with antidepressant use. The meta-analysis identified the two CpGs of the ten above that were common to the two arrays used as being significantly associated with antidepressant use, although the effect was in the opposite direction for one of them. Antidepressants were associated with epigenetic alterations in loci previously associated with mental health disorders and the innate immune system. These changes predicted self-reported antidepressant use in a subset of GS:SFHS and identified processes that may be relevant to our mechanistic understanding of clinically relevant antidepressant drug actions and side effects.


Subject(s)
Depressive Disorder, Major , Pregnancy Proteins , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Epigenome , Heme-Binding Proteins , Humans , Immune System , Netherlands , Pregnancy Proteins/genetics , Scotland
6.
Angew Chem Int Ed Engl ; 62(9): e202212111, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36495310

ABSTRACT

Heme is a cofactor with myriad roles and essential to almost all living organisms. Beyond classical gas transport and catalytic functions, heme is increasingly appreciated as a tightly controlled signalling molecule regulating protein expression. However, heme acquisition, biosynthesis and regulation is poorly understood beyond a few model organisms, and the heme-binding proteome has not been fully characterised in bacteria. Yet as heme homeostasis is critical for bacterial survival, heme-binding proteins are promising drug targets. Herein we report a chemical proteomics method for global profiling of heme-binding proteins in live cells for the first time. Employing a panel of heme-based clickable and photoaffinity probes enabled the profiling of 32-54 % of the known heme-binding proteomes in Gram-positive and Gram-negative bacteria. This simple-to-implement profiling strategy could be interchangeably applied to different cell types and systems and fuel future research into heme biology.


Subject(s)
Proteome , Proteomics , Proteome/metabolism , Bacterial Proteins/metabolism , Heme-Binding Proteins/metabolism , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/metabolism , Gram-Positive Bacteria , Bacteria/metabolism , Heme/chemistry
7.
J Biol Chem ; 296: 100275, 2021.
Article in English | MEDLINE | ID: mdl-33428928

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen requiring iron for its survival and virulence. P. aeruginosa can acquire iron from heme via the nonredundant heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme transported by either the heme assimilation system or Phu system is sequestered by the cytoplasmic protein PhuS. Furthermore, PhuS has been shown to specifically transfer heme to the iron-regulated heme oxygenase HemO. As the PhuS homolog ShuS from Shigella dysenteriae was observed to bind DNA as a function of its heme status, we sought to further determine if PhuS, in addition to its role in regulating heme flux through HemO, functions as a DNA-binding protein. Herein, through a combination of chromatin immunoprecipitation-PCR, EMSA, and fluorescence anisotropy, we show that apo-PhuS but not holo-PhuS binds upstream of the tandem iron-responsive sRNAs prrF1,F2. Previous studies have shown the PrrF sRNAs are required for sparing iron for essential proteins during iron starvation. Furthermore, under certain conditions, a heme-dependent read through of the prrF1 terminator yields the longer PrrH transcript. Quantitative PCR analysis of P. aeruginosa WT and ΔphuS strains shows that loss of PhuS abrogates the heme-dependent regulation of PrrF and PrrH levels. Taken together, our data show that PhuS, in addition to its role in extracellular heme metabolism, also functions as a transcriptional regulator by modulating PrrF and PrrH levels in response to heme. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network that is critical for P. aeruginosa adaptation and virulence within the host.


Subject(s)
Heme Oxygenase (Decyclizing)/genetics , Heme-Binding Proteins/genetics , Hemeproteins/genetics , Pseudomonas aeruginosa/genetics , Gene Expression Regulation, Bacterial , Heme/genetics , Homeostasis/genetics , Humans , Iron/metabolism , Pseudomonas aeruginosa/pathogenicity , Shigella dysenteriae/genetics , Shigella dysenteriae/pathogenicity , Virulence/genetics
8.
J Cell Physiol ; 237(2): 1315-1340, 2022 02.
Article in English | MEDLINE | ID: mdl-34617268

ABSTRACT

Heme (iron protoporphyrin IX) is an essential regulator conserved in all known organisms. We investigated the kinetics of intracellular accumulation of hemin (oxidized form) in human transformed proerythroid K562 cells using [14 C]-hemin and observed that it is time and temperature-dependent, affected by the presence of serum proteins, as well as the amphipathic/hydrophobic properties of hemin. Hemin-uptake exhibited saturation kinetics as a function of the concentration added, suggesting the involvement of a carrier-cell surface receptor-mediated process. The majority of intracellular hemin accumulated in the cytoplasm, while a substantial portion entered the nucleus. Cytosolic proteins isolated by hemin-agarose affinity column chromatography (HACC) were found to form stable complexes with [59 Fe]-hemin. The HACC fractionation and Liquid chromatography-mass spectrometry analysis of cytosolic, mitochondrial, and nuclear protein isolates from K562 cell extracts revealed the presence of a large number of hemin-binding proteins (HeBPs) of diverse ontologies, including heat shock proteins, cytoskeletal proteins, enzymes, and signaling proteins such as actinin a4, mitogen-activated protein kinase 1 as well as several others. The subsequent computational analysis of the identified HeBPs using HemoQuest confirmed the presence of various hemin/heme-binding motifs [C(X)nC, H, Y] in their primary structures and conformations. The possibility that these HeBPs contribute to a heme intracellular trafficking protein network involved in the homeostatic regulation of the pool and overall functions of heme is discussed.


Subject(s)
Hemin , Proteomics , Carrier Proteins , Heme/metabolism , Heme-Binding Proteins , Humans , K562 Cells
9.
Mol Genet Genomics ; 297(5): 1229-1242, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35767190

ABSTRACT

We sought to identify novel biomarkers and related mechanisms that might shape the immune infiltration in IDD, thereby providing novel perspective for IDD diagnosis and therapies. Gene expression data sets GSE124272 (for initial analysis) and GSE56081 (for validation analysis) involving samples from IDD patients and healthy controls were retrieved from the Gene Expression Omnibus (GEO) database. Immune genes associated with IDD were identified by GSEA; module genes that exhibited coordinated expression patterns and the strongest positive or negative correlation with IDD were identified by WGCNA. The intersection between immune genes and module genes was used for LASSO variable selection, whereby we obtained pivotal genes that were highly representative of IDD. We then correlated (Pearson correlation) the expression of pivotal genes with immune cell proportion inferred by CIBERSORT algorithm, and revealed the potential immune-regulatory roles of pivotal genes on the pathogenesis of IDD. We discovered several immune-associated pathways in which IDD-associated immune genes were highly clustered, and identified two gene modules that might promote or inhibit the pathogenesis of IDD. These candidate genes were further narrowed down to 8 pivotal genes, namely, MSH2, LY96, ADAM8, HEBP2, ANXA3, RAB24, ZBTB16 and PIK3CD, among which ANXA3, MSH2, ZBTB16, LY96, PIK3CD, ZBTB16, and ADAM8 were revealed to be correlated with the proportion of CD8 T cells and resting memory CD4 T cells. This work identified 8 pivotal genes that might be involved in the pathogenesis of IDD through triggering various immune-associated pathways and altering the composition of immune and myeloid cells in IDD patients, which provides novel perspectives on IDD diagnosis and treatment.


Subject(s)
Intervertebral Disc Degeneration , Pregnancy Proteins , ADAM Proteins , Biomarkers , Computational Biology , Gene Regulatory Networks , Heme-Binding Proteins , Humans , Membrane Proteins , MutS Homolog 2 Protein
10.
Appl Environ Microbiol ; 88(16): e0102322, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35916514

ABSTRACT

Linear nitramines are potentially carcinogenic environmental contaminants. The NnlA enzyme from Variovorax sp. strain JS1663 degrades the nitramine N-nitroglycine (NNG)-a natural product produced by some bacteria-to glyoxylate and nitrite (NO2-). Ammonium (NH4+) was predicted as the third product of this reaction. A source of nonheme FeII was shown to be required for initiation of NnlA activity. However, the role of this FeII for NnlA activity was unclear. This study reveals that NnlA contains a b-type heme cofactor. Reduction of this heme-either by a nonheme iron source or dithionite-is required to initiate NnlA activity. Therefore, FeII is not an essential substrate for holoenzyme activity. Our data show that reduced NnlA (FeII-NnlA) catalyzes at least 100 turnovers and does not require O2. Finally, NH4+ was verified as the third product, accounting for the complete nitrogen mass balance. Size exclusion chromatography showed that NnlA is a dimer in solution. Additionally, FeII-NnlA is oxidized by O2 and NO2- and stably binds carbon monoxide (CO) and nitric oxide (NO). These are characteristics shared with heme-binding PAS domains. Furthermore, a structural homology model of NnlA was generated using the PAS domain from Pseudomonas aeruginosa Aer2 as a template. The structural homology model suggested His73 is the axial ligand of the NnlA heme. Site-directed mutagenesis of His73 to alanine decreased the heme occupancy of NnlA and eliminated NNG activity, validating the homology model. We conclude that NnlA forms a homodimeric heme-binding PAS domain protein that requires reduction for initiation of the activity. IMPORTANCE Linear nitramines are potential carcinogens. These compounds result from environmental degradation of high-energy cyclic nitramines and as by-products of carbon capture technologies. Mechanistic understanding of the biodegradation of these compounds is critical to inform strategies for their remediation. Biodegradation of NNG by NnlA from Variovorax sp. strain JS 1663 requires nonheme iron, but its role is unclear. This study shows that nonheme iron is unnecessary. Instead, our study reveals that NnlA contains a heme cofactor, the reduction of which is critical for activating NNG degradation activity. These studies constrain the proposals for NnlA reaction mechanisms, thereby informing mechanistic studies of degradation of anthropogenic nitramine contaminants. In addition, these results will inform future work to design biocatalysts to degrade these nitramine contaminants.


Subject(s)
Heme , Nitrogen Dioxide , Ferrous Compounds/metabolism , Heme/metabolism , Heme-Binding Proteins , Iron/metabolism , Nitric Oxide/metabolism , Nitrogen Dioxide/metabolism
11.
J Fish Dis ; 45(8): 1189-1199, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35671346

ABSTRACT

According to the whole-genome bioinformatics analysis, a heme-binding protein from Nocardia seriolae (HBP) was found. HBP was predicted to be a bacterial secretory protein, located at mitochondrial membrane in eukaryotic cells and have a similar protein structure with the heme-binding protein of Mycobacterium tuberculosis, Rv0203. In this study, HBP was found to be a secretory protein and co-localized with mitochondria in FHM cells. Quantitative analysis of mitochondrial membrane potential value, caspase-3 activity, and transcription level of apoptosis-related genes suggested that overexpression of HBP protein can induce cell apoptosis. In conclusion, HBP was a secretory protein which may target to mitochondria and involve in cell apoptosis in host cells. This research will promote the function study of HBP and deepen the comprehension of the virulence factors and pathogenic mechanisms of N. seriolae.


Subject(s)
Fish Diseases , Nocardia Infections , Nocardia , Animals , Apoptosis , Bacterial Proteins/metabolism , Fish Diseases/microbiology , Heme-Binding Proteins , Nocardia/genetics , Nocardia/metabolism , Nocardia Infections/microbiology , Nocardia Infections/veterinary
12.
Biophys J ; 120(23): 5141-5157, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34767787

ABSTRACT

The cytoplasmic heme binding protein from Pseudomonas aeruginosa, PhuS, plays two essential roles in regulating heme uptake and iron homeostasis. First, PhuS shuttles exogenous heme to heme oxygenase (HemO) for degradation and iron release. Second, PhuS binds DNA and modulates the transcription of the prrF/H small RNAs (sRNAs) involved in the iron-sparing response. Heme binding to PhuS regulates this dual function, as the unliganded form binds DNA, whereas the heme-bound form binds HemO. Crystallographic studies revealed nearly identical structures for apo- and holo-PhuS, and yet numerous solution-based measurements indicate that heme binding is accompanied by large conformational rearrangements. In particular, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of apo- versus holo-PhuS revealed large differences in deuterium uptake, notably in α-helices 6, 7, and 8 (α6,7,8), which contribute to the heme binding pocket. These helices were mostly labile in apo-PhuS but largely protected in holo-PhuS. In contrast, in silico-predicted deuterium uptake levels of α6,7,8 from molecular dynamics (MD) simulations of the apo- and holo-PhuS structures are highly similar, consistent only with the holo-PhuS HDX-MS data. To rationalize this discrepancy between crystal structures, simulations, and observed HDX-MS, we exploit a recently developed computational approach (HDXer) that fits the relative weights of conformational populations within an ensemble of structures to conform to a target set of HDX-MS data. Here, a combination of enhanced sampling MD, HDXer, and dimensionality reduction analysis reveals an apo-PhuS conformational landscape in which α6, 7, and 8 are significantly rearranged compared to the crystal structure, including a loss of secondary structure in α6 and the displacement of α7 toward the HemO binding interface. Circular dichroism analysis confirms the loss of secondary structure, and the extracted ensembles of apo-PhuS and of heme-transfer-impaired H212R mutant, are consistent with known heme binding and transfer properties. The proposed conformational landscape provides structural insights into the modulation by heme of the dual function of PhuS.


Subject(s)
Bacterial Proteins , Heme , Bacterial Proteins/metabolism , Heme/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Heme-Binding Proteins , Protein Conformation , Pseudomonas aeruginosa/metabolism
13.
Biochemistry ; 60(34): 2610-2622, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34383467

ABSTRACT

The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli Proteins/chemistry , Heme-Binding Proteins/chemistry , Heme/metabolism , Oxygen/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Type III Secretion Systems/chemistry , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Heme-Binding Proteins/metabolism , Models, Molecular , Protein Domains , Protein Structure, Tertiary , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/isolation & purification , Signal Transduction , Structure-Activity Relationship , Type III Secretion Systems/metabolism
14.
Mol Microbiol ; 113(2): 381-398, 2020 02.
Article in English | MEDLINE | ID: mdl-31742788

ABSTRACT

Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.


Subject(s)
Haemophilus influenzae/drug effects , Haemophilus/metabolism , Heme-Binding Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacology , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus influenzae/growth & development , Heme/metabolism , Heme-Binding Proteins/chemistry , Heme-Binding Proteins/isolation & purification , Heme-Binding Proteins/pharmacology , Humans
15.
Genome Res ; 28(11): 1621-1635, 2018 11.
Article in English | MEDLINE | ID: mdl-30333196

ABSTRACT

Most expression quantitative trait locus (eQTL) studies to date have been performed in heterogeneous tissues as opposed to specific cell types. To better understand the cell-type-specific regulatory landscape of human melanocytes, which give rise to melanoma but account for <5% of typical human skin biopsies, we performed an eQTL analysis in primary melanocyte cultures from 106 newborn males. We identified 597,335 cis-eQTL SNPs prior to linkage disequilibrium (LD) pruning and 4997 eGenes (FDR < 0.05). Melanocyte eQTLs differed considerably from those identified in the 44 GTEx tissue types, including skin. Over a third of melanocyte eGenes, including key genes in melanin synthesis pathways, were unique to melanocytes compared to those of GTEx skin tissues or TCGA melanomas. The melanocyte data set also identified trans-eQTLs, including those connecting a pigmentation-associated functional SNP with four genes, likely through cis-regulation of IRF4 Melanocyte eQTLs are enriched in cis-regulatory signatures found in melanocytes as well as in melanoma-associated variants identified through genome-wide association studies. Melanocyte eQTLs also colocalized with melanoma GWAS variants in five known loci. Finally, a transcriptome-wide association study using melanocyte eQTLs uncovered four novel susceptibility loci, where imputed expression levels of five genes (ZFP90, HEBP1, MSC, CBWD1, and RP11-383H13.1) were associated with melanoma at genome-wide significant P-values. Our data highlight the utility of lineage-specific eQTL resources for annotating GWAS findings, and present a robust database for genomic research of melanoma risk and melanocyte biology.


Subject(s)
Genetic Predisposition to Disease , Melanocytes/metabolism , Melanoma/genetics , Quantitative Trait Loci , Basic Helix-Loop-Helix Transcription Factors/genetics , Carrier Proteins/genetics , Cells, Cultured , Heme-Binding Proteins , Hemeproteins/genetics , Humans , Interferon Regulatory Factors/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Repressor Proteins
16.
Article in English | MEDLINE | ID: mdl-31767723

ABSTRACT

Isoniazid (INH) is a cornerstone of antitubercular therapy. Mycobacterium tuberculosis complex bacteria are the only mycobacteria sensitive to clinically relevant concentrations of INH. All other mycobacteria, including M. marinum and M. avium subsp. paratuberculosis are resistant. INH requires activation by bacterial KatG to inhibit mycobacterial growth. We tested the role of the differences between M. tuberculosis KatG and that of other mycobacteria in INH sensitivity. We cloned the M. boviskatG gene into M. marinum and M. avium subsp. paratuberculosis and measured the MIC of INH. We recombinantly expressed KatG of these mycobacteria and tested in vitro binding to, and activation of, INH. Introduction of katG from M. bovis into M. marinum and M. avium subsp. paratuberculosis rendered them 20 to 30 times more sensitive to INH. Analysis of different katG sequences across the genus found KatG evolution diverged from RNA polymerase-defined mycobacterial evolution. Biophysical and biochemical tests of M. bovis and nontuberculous mycobacteria (NTM) KatG proteins showed lower affinity to INH and substantially lower enzymatic capacity for the conversion of INH into the active form in NTM. The KatG proteins of M. marinum and M. avium subsp. paratuberculosis are substantially less effective in INH activation than that of M. tuberculosis, explaining the relative INH insensitivity of these microbes. These data indicate that the M. tuberculosis complex KatG is divergent from the KatG of NTM, with a reciprocal relationship between resistance to host defenses and INH resistance. Studies of bacteria where KatG is functionally active but does not activate INH may aid in understanding M. tuberculosis INH-resistance mechanisms, and suggest paths to overcome them.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Catalase/metabolism , Isoniazid/pharmacology , Mycobacterium/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Amino Acid Sequence , Bacterial Proteins/genetics , Catalase/genetics , Enzyme Activation , Heme-Binding Proteins/genetics , Heme-Binding Proteins/metabolism , Mycobacterium/enzymology , Mycobacterium/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/enzymology , Nontuberculous Mycobacteria/genetics , Phylogeny , Protein Multimerization , Sequence Alignment , Tuberculosis, Multidrug-Resistant/microbiology
17.
Funct Integr Genomics ; 20(4): 609-619, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32285226

ABSTRACT

The myofibrillar fragmentation index (MFI) is an indicative trait for meat tenderness. Longissimus thoracis muscle samples from the 20 most extreme bulls (out of 80 bulls set) for MFI (high (n = 10) and low (n = 10) groups) trait were used to perform transcriptomic analysis, using RNA Sequencing (RNA-Seq). An average of 24.616 genes was expressed in the Nellore muscle transcriptome analysis. A total of 96 genes were differentially expressed (p value ≤ 0.001) between the two groups of divergent bulls for MFI. The HEBP2 and BDH1 genes were overexpressed in animals with high MFI. The MYBPH and MYL6, myosin encoders, were identified. The differentially expressed genes were related to increase mitochondria efficiency, especially in cells under oxidative stress conditions, and these also were related to zinc and calcium binding, membrane transport, and muscle constituent proteins, such as actin and myosin. Most of those genes were involved in metabolic pathways of oxidation-reduction, transport of lactate in the plasma membrane, and muscle contraction. This is the first study applying MFI phenotypes in transcriptomic studies to identify and understand differentially expressed genes for beef tenderness. These results suggest that differences detected in gene expression between high and low MFI animals are related to reactive mechanisms and structural components of oxidative fibers under the condition of cellular stress. Some genes may be selected as positional candidate genes to beef tenderness, MYL6, MYBPH, TRIM63, TRIM55, TRIOBP, and CHRNG genes. The use of MFI phenotypes could enhance results of meat tenderness studies.


Subject(s)
Cattle/genetics , Muscle, Skeletal/metabolism , Quantitative Trait, Heritable , Red Meat/standards , Transcriptome , Animals , Cattle/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Gene Expression Profiling , Heme-Binding Proteins/genetics , Heme-Binding Proteins/metabolism , Male , Myosins/genetics , Myosins/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
18.
Am J Physiol Heart Circ Physiol ; 318(3): H671-H681, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32004074

ABSTRACT

In the murine venous thrombosis model induced by ligation of the inferior vena cava (IVCL), genetic deficiency of heme oxygenase-1 (HO-1) increases clot size. This study examined whether induction of HO-1 or administration of its products reduces thrombosis. Venous HO-1 upregulation by gene delivery reduced clot size, as did products of HO activity, biliverdin, and carbon monoxide. Induction of HO-1 by hemin reduced clot formation, clot size, and upregulation of plasminogen activator inhibitor-1 (PAI-1) that occurs in the IVCL model, while leaving urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) expression unaltered. The reductive effect of hemin on clot size required HO activity. The IVCL model exhibited relatively high concentrations of heme that peaked just before maximum clot size, then declined as clot size decreased. Administration of hemin decreased heme concentration in the IVCL model. HO-2 mRNA was induced twofold in the IVCL model (vs. 40-fold HO-1 induction), but clot size was not increased in HO-2-/- mice compared with HO-2+/+ mice. Hemopexin, the major heme-binding protein, was induced in the IVCL model, and clot size was increased in hemopexin-/- mice compared with hemopexin+/+ mice. We conclude that in the IVCL model, the heme-degrading protein HO-1 and HO products inhibit thrombus formation, as does the heme-binding protein, hemopexin. The reductive effects of hemin administration require HO activity and are mediated, in part, by reducing PAI-1 upregulation in the IVCL model. We speculate that HO-1, HO, and hemopexin reduce clot size by restraining the increase in clot concentration of heme (now recognized as a procoagulant) that otherwise occurs.NEW & NOTEWORTHY This study provides conclusive evidence that two proteins, one heme-degrading and the other heme-binding, inhibit clot formation. This may serve as a new therapeutic strategy in preventing and treating venous thromboembolic disease.


Subject(s)
Heme Oxygenase-1/metabolism , Heme-Binding Proteins/metabolism , Up-Regulation , Venous Thrombosis/metabolism , Animals , Disease Models, Animal , Heme Oxygenase-1/genetics , Heme-Binding Proteins/genetics , Hemin/pharmacology , Mice , Mice, Knockout , Venous Thrombosis/genetics
19.
Nanotechnology ; 31(31): 314002, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32259806

ABSTRACT

Biological electron transfer (ET) is one of the most studied biochemical processes due to its immense importance in biology. For many years, biological ET was explained using the classical incoherent transport mechanism, i.e. sequential hopping. One of the relatively recent major observations in this field is long-range extracellular ET (EET), where some bacteria were shown to mediate electrons for extremely long distances on the micrometer length scales across individual nanowires. This fascinating finding has resulted in several suggested mechanisms that might explain this intriguing EET. More recently, the structure of a conductive G. sulfurreducens nanowire has been solved, which showed a highly ordered quasi-1D wire of a hexaheme cytochrome protein, named OmcS. Based on this new structure, we suggest here several electron diffusion models for EET, involving either purely hopping or several degrees of mixed hopping and coherent transport, in which the coherent part is due to a local rigidification of the protein structure, associated with a decrease in the local reorganization energy. The effect is demonstrated for two closely packed heme sites as well as for longer chains containing up to several dozens porphyrins. We show that the pure hopping model probably cannot explain the reported conductivity values of the G. sulfurreducens nanowire using conventional values of reorganization energy and electronic coupling. On the other hand, we show that for a wide range of the latter energy values, the mixed hopping-coherent model results in superior electron diffusion compared to the pure hopping model, and especially for long-range coherent transport, involving multiple porphyrin sites.


Subject(s)
Bacterial Proteins/chemistry , Geobacter/metabolism , Heme-Binding Proteins/chemistry , Porphyrins/metabolism , Electric Conductivity , Electron Transport , Geobacter/chemistry , Models, Molecular , Nanowires
20.
Proc Natl Acad Sci U S A ; 114(13): 3421-3426, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289188

ABSTRACT

A heme-dependent conformational rearrangement of the C-terminal domain of heme binding protein (PhuS) is required for interaction with the iron-regulated heme oxygenase (HemO). Herein, we further investigate the underlying mechanism of this conformational rearrangement and its implications for heme transfer via site-directed mutagenesis, resonance Raman (RR), hydrogen-deuterium exchange MS (HDX-MS) methods, and molecular dynamics (MD). HDX-MS revealed that the apo-PhuS C-terminal α6/α7/α8-helices are largely unstructured, whereas the apo-PhuS H212R variant showed an increase in structure within these regions. The increased rate of heme association with apo-PhuS H212R compared with the WT and lack of a detectable five-coordinate high-spin (5cHS) heme intermediate are consistent with a more folded and less dynamic C-terminal domain. HDX-MS and MD of holo-PhuS indicate an overall reduction in molecular flexibility throughout the protein, with significant structural rearrangement and protection of the heme binding pocket. We observed slow cooperative unfolding/folding events within the C-terminal helices of holo-PhuS and the N-terminal α1/α2-helices that are dampened or eliminated in the holo-PhuS H212R variant. Chemical cross-linking and MALDI-TOF MS mapped these same regions to the PhuS:HemO protein-protein interface. We previously proposed that the protein-protein interaction induces conformational rearrangement, promoting a ligand switch from His-209 to His-212 and triggering heme release to HemO. The reduced conformational freedom of holo-PhuS H212R combined with the increase in entropy and decrease in heme transfer on interaction with HemO further support this model. This study provides significant insight into the role of protein dynamics in heme binding and release in bacterial heme transport proteins.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hemeproteins/chemistry , Hemeproteins/metabolism , Pseudomonas aeruginosa/metabolism , Allosteric Regulation , Bacterial Proteins/genetics , Carrier Proteins/genetics , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/genetics , Heme-Binding Proteins , Hemeproteins/genetics , Ligands , Protein Binding , Protein Structure, Secondary , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL