Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Plant Physiol ; 195(1): 378-394, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38298139

ABSTRACT

Automated guard cell detection and measurement are vital for understanding plant physiological performance and ecological functioning in global water and carbon cycles. Most current methods for measuring guard cells and stomata are laborious, time-consuming, prone to bias, and limited in scale. We developed StoManager1, a high-throughput tool utilizing geometrical, mathematical algorithms, and convolutional neural networks to automatically detect, count, and measure over 30 guard cell and stomatal metrics, including guard cell and stomatal area, length, width, stomatal aperture area/guard cell area, orientation, stomatal evenness, divergence, and aggregation index. Combined with leaf functional traits, some of these StoManager1-measured guard cell and stomatal metrics explained 90% and 82% of tree biomass and intrinsic water use efficiency (iWUE) variances in hardwoods, making them substantial factors in leaf physiology and tree growth. StoManager1 demonstrated exceptional precision and recall (mAP@0.5 over 0.96), effectively capturing diverse stomatal properties across over 100 species. StoManager1 facilitates the automation of measuring leaf stomatal and guard cells, enabling broader exploration of stomatal control in plant growth and adaptation to environmental stress and climate change. This has implications for global gross primary productivity (GPP) modeling and estimation, as integrating stomatal metrics can enhance predictions of plant growth and resource usage worldwide. Easily accessible open-source code and standalone Windows executable applications are available on a GitHub repository (https://github.com/JiaxinWang123/StoManager1) and Zenodo (https://doi.org/10.5281/zenodo.7686022).


Subject(s)
Botany , Cell Biology , Plant Cells , Plant Stomata , Software , Plant Stomata/cytology , Plant Stomata/growth & development , Plant Cells/physiology , Botany/instrumentation , Botany/methods , Cell Biology/instrumentation , Image Processing, Computer-Assisted/standards , Algorithms , Plant Leaves/cytology , Neural Networks, Computer , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Software/standards
2.
Lab Chip ; 24(9): 2440-2453, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38600866

ABSTRACT

Extensive research has demonstrated the potential of cell viscoelastic properties as intrinsic indicators of cell state, functionality, and disease. For this, several microfluidic techniques have been developed to measure cell viscoelasticity with high-throughput. However, current microchannel designs introduce complex stress distributions on cells, leading to inaccuracies in determining the stress-strain relationship and, consequently, the viscoelastic properties. Here, we introduce a novel approach using hyperbolic microchannels that enable precise measurements under a constant extensional stress and offer a straightforward stress-strain relationship, while operating at a measurement rate of up to 100 cells per second. We quantified the stresses acting in the channels using mechanical calibration particles made from polyacrylamide (PAAm) and found that the measurement buffer, a solution of methyl cellulose and phosphate buffered saline, shows strain-thickening following a power law up to 200 s-1. By measuring oil droplets with varying viscosities, we successfully detected changes in the relaxation times of the droplets and our approach could be used to get the interfacial tension and viscosity of liquid-liquid droplet systems from the same measurement. We further applied this methodology to PAAm microgel beads, demonstrating the accurate recovery of Young's moduli and the near-ideal elastic behavior of the beads. To explore the influence of altered cell viscoelasticity, we treated HL60 human leukemia cells with latrunculin B and nocodazole, resulting in clear changes in cell stiffness while relaxation times were only minimally affected. In conclusion, our approach offers a streamlined and time-efficient solution for assessing the viscoelastic properties of large cell populations and other microscale soft particles.


Subject(s)
Elasticity , Microfluidic Analytical Techniques , Viscosity , Humans , Microfluidic Analytical Techniques/instrumentation , Acrylic Resins/chemistry , Lab-On-A-Chip Devices , High-Throughput Screening Assays/instrumentation
3.
Lab Chip ; 24(11): 2958-2967, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722067

ABSTRACT

Droplet-based microfluidic technologies for encapsulating single cells have rapidly evolved into powerful tools for single-cell analysis. In conventional passive single-cell encapsulation techniques, because cells arrive randomly at the droplet generation section, to encapsulate only a single cell with high precision, the average number of cells per droplet has to be decreased by reducing the average frequency at which cells arrive relative to the droplet generation rate. Therefore, the encapsulation efficiency for a given droplet generation rate is very low. Additionally, cell sorting operations are required prior to the encapsulation of target cells for specific cell type analysis. To address these challenges, we developed a cell encapsulation technology with a cell sorting function using a microfluidic chip. The microfluidic chip is equipped with an optical detection section to detect the optical information of cells and a sorting section to encapsulate cells into droplets by controlling a piezo element, enabling active encapsulation of only the single target cells. For a particle population including both targeted and non-targeted particles arriving at an average frequency of up to 6000 particles per s, with an average number of particles per droplet of 0.45, our device maintained a high purity above 97.9% for the single-target-particle droplets and achieved an outstanding throughput, encapsulating up to 2900 single target particles per s. The proposed encapsulation technology surpasses the encapsulation efficiency of conventional techniques, provides high efficiency and flexibility for single-cell research, and shows excellent potential for various applications in single-cell analysis.


Subject(s)
Lab-On-A-Chip Devices , Single-Cell Analysis , Single-Cell Analysis/instrumentation , Humans , Microfluidic Analytical Techniques/instrumentation , Equipment Design , High-Throughput Screening Assays/instrumentation , Animals , Cell Encapsulation/methods , Cell Encapsulation/instrumentation
4.
Curr Protoc ; 4(6): e1071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896109

ABSTRACT

Techno-functional properties of protein isolates such as emulsification, foaming, and gelling serve as key indicators to determine their food applications. Conventional macro-volume techniques used to measure these techno-functional properties are usually time consuming, require large amounts of protein samples, and are impractical when diverse protein samples are handled at the early screening stage. To overcome these issues, we have developed scaled-down (miniaturized) assays to test techno-functional properties of protein samples. These assays are simple, efficient, and require <400 µl of protein solution. Specifically, the miniaturized emulsification and gelling assays require 25-fold less protein than conventional macro-volume techniques and the miniaturized foaming assay requires 100-fold less sample. The performance of these assays has been thoroughly validated using conventional techno-functional tests for each parameter. The protocols described herein offer high-throughput screening capabilities, accelerating the testing process for protein techno-functional properties and allowing for quick identification of samples of interest from diverse samples. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Miniaturized emulsification assay Alternate Protocol 1: Conventional macro-volume emulsification assay Basic Protocol 2: Miniaturized foaming assay Alternate Protocol 2: Conventional macro-volume foaming assay Basic Protocol 3: Miniaturized gelling assay Alternate Protocol 3: Conventional macro-volume gelling assay.


Subject(s)
Emulsions , Proteins , Proteins/analysis , Proteins/chemistry , Emulsions/chemistry , Miniaturization , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation
5.
J Pharm Biomed Anal ; 248: 116317, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38936170

ABSTRACT

An instrumental-free, high-throughput assay has been developed for the quantification of thiocyanate in human saliva. The proposed green method is based on the rapid reaction of the analyte with Fe(III) under acidic pH in a microplates format to form a colored complex that is captured as an image by an overhead book scanner. Optimization included the effects of the amount concentration of Fe(III), acidity and reaction time / complex stability using a total volume of 300 µL per well. Validation towards the matrix effect was focused on the specific application and was performed using both artificial and human saliva. The linearity of the developed assay was up to 500 µM thiocyanate offering a lower limit of quantification (LLOQ) of 30 µM. The green potentials were evaluated by both the Green Analytical Procedure (GAPI) and Blue Applicability Grade (BAGI) indexes. The thiocyanate content in the saliva of non-smoking volunteers ranged between 750 and 1350 µΜ, while elevated concentrations were verified in smoking individuals (1860-3080 µΜ). Statistical agreement with a corroborative method was assessed using the Bland-Altman plot.


Subject(s)
High-Throughput Screening Assays , Saliva , Thiocyanates , Thiocyanates/analysis , Saliva/chemistry , Humans , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , Limit of Detection , Green Chemistry Technology/methods , Hydrogen-Ion Concentration , Smoking
6.
Small Methods ; 8(7): e2301195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38213022

ABSTRACT

The existence of many background blood cells hinders the accurate identification of circulating tumor cells (CTCs) in the blood of cancer patients. To unlock this limitation, a hydrodynamic sorting-mechanotyping cytometry (HSMC) integrated with a sorting-concentration chip and a detection chip is proposed for simultaneously achieving the high-throughput cell sorting and the multi-parameter mechanotyping of the sorted tumor cells. The HSMC adopts the spiral inertial microfluidics for label-free sorting of cells in a high-throughput manner, allowing the efficient enrichment of tumor cells from the large background blood cells. Then, the sorted cells are concentrated by the concentration unit and finally passed through the detection unit for hydrodynamic deformation. The HSMC has a high throughput for sorting and detection and can successfully reveal the differences in the cellular mechanical properties. After characterizing and optimizing the single chips, the identification of white blood cells (WBCs) and three types of tumor cells (A549, MCF-7, and MDA-MB-231 cells) is successfully achieved. The identification accuracies for WBCs and different tumor cells are all larger than 94%, while the highest identification accuracy is up to 99.2%. This study envisions that the HSMC will offer an avenue for the analysis of single cell intrinsic mechanics in clinical medicine.


Subject(s)
Cell Separation , Flow Cytometry , Hydrodynamics , Neoplastic Cells, Circulating , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Neoplastic Cells, Circulating/pathology , Flow Cytometry/methods , Cell Separation/methods , Cell Separation/instrumentation , Cell Line, Tumor , Leukocytes/cytology , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , MCF-7 Cells
7.
Adv Biol (Weinh) ; 8(7): e2400066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38741244

ABSTRACT

The recent push toward understanding an individual cell's behavior and identifying cellular heterogeneity has created an unmet need for technologies that can probe live cells at the single-cell level. Cells within a population are known to exhibit heterogeneous responses to environmental cues. These differences can lead to varied cellular states, behavior, and responses to therapeutics. Techniques are needed that are not only capable of processing and analyzing cellular populations at the single cell level, but also have the ability to isolate specific cell populations from a complex sample at high throughputs. The new CellMag-Coalesce-Attract-Resegment Wash (CellMag-CARWash) system combines positive magnetic selection with droplet microfluidic devices to isolate cells of interest from a mixture with >93% purity and incorporate treatments within individual droplets to observe single cell biological responses. This workflow is shown to be capable of probing the single cell extracellular vesicle (EV) secretion of MCF7 GFP cells. This article reports the first measurement of ß-Estradiol's effect on EV secretion from MCF7 cells at the single cell level. Single cell processing revealed that MCF7 GFP cells possess a heterogeneous response to ß-Estradiol stimulation with a 1.8-fold increase relative to the control.


Subject(s)
Cell Separation , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Single-Cell Analysis/instrumentation , MCF-7 Cells , Cell Separation/methods , Cell Separation/instrumentation , Lab-On-A-Chip Devices , Extracellular Vesicles/physiology , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Estradiol/pharmacology
8.
ACS Biomater Sci Eng ; 10(6): 4085-4092, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38780535

ABSTRACT

With the utilization of advanced microfluidic techniques, the microfluidic particle counter demonstrates significant potential due to its high efficiency, precise manipulation, and portability. This work focuses on a photodetection counter based on optical absorption. To achieve precise particle detection, a Christmas tree-like structure was implemented to separate a single particle from a cluster, which was then detected in independent multiple parallel channels. The system exhibits a high degree of reliability, as evidenced by a linear correlation coefficient over 0.99 obtained during testing with gradient-concentrated beads. Furthermore, when the calculated density of NIH 3T3 cells is compared with that of a traditional flow cytometer, the system achieves a substantial agreement percentage ranging from 87.5 to 99.9%. The system's ability to perform high-throughput analysis with a high acquisition rate positions it as a promising tool for real-time point-of-care testing.


Subject(s)
Microfluidic Analytical Techniques , Mice , Animals , NIH 3T3 Cells , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , Flow Cytometry/methods , Flow Cytometry/instrumentation , Microfluidics/methods , Reproducibility of Results
9.
ACS Appl Mater Interfaces ; 16(32): 41892-41906, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39078878

ABSTRACT

Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.


Subject(s)
Premature Birth , Printing, Three-Dimensional , Female , Humans , Pregnancy , Lipopolysaccharides/pharmacology , Lab-On-A-Chip Devices , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Survival/drug effects , Inflammation/drug therapy
10.
ACS Biomater Sci Eng ; 10(8): 5399-5408, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39031055

ABSTRACT

Live cell assays provide real-time data of cellular responses. In combination with microfluidics, applications such as automated and high-throughput drug screening on live cells can be accomplished in small devices. However, their application in point-of-care testing (POCT) is limited by the requirement for bulky equipment to maintain optimal cell culture conditions. In this study, we propose a POCT device that allows on-site cell culture and high-throughput drug screening on live cells. We first observe that cell viabilities are substantially affected by liquid evaporation within the microfluidic device, which is intrinsic to the polydimethylsiloxane (PDMS) material due to its hydrophobic nature and nanopatterned surface. The unwanted PDMS-liquid-air interface in the cell culture environment can be eliminated by maintaining a persistent humidity of 95-100% or submerging the whole microfluidic device under water. Our results demonstrate that in the POCT device equipped with a water tank, both primary cells and cell lines can be maintained for up to 1 week without the need for external cell culture equipment. Moreover, this device is powered by a standard alkali battery and can automatically screen over 5000 combinatorial drug conditions for regulating neural stem cell differentiation. By monitoring dynamic variations in fluorescent markers, we determine the optimal doses of platelet-derived growth factor and epidermal growth factor to suppress proinflammatory S100A9-induced neuronal toxicities. Overall, this study presents an opportunity to transform lab-on-a-chip technology from a laboratory-based approach to actual point-of-care devices capable of performing complex experimental procedures on-site and offers significant advancements in the fields of personalized medicine and rapid clinical diagnostics.


Subject(s)
Drug Evaluation, Preclinical , High-Throughput Screening Assays , Lab-On-A-Chip Devices , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , Humans , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/instrumentation , Point-of-Care Systems , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Animals , Dimethylpolysiloxanes/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
11.
ACS Biomater Sci Eng ; 10(8): 5265-5273, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39087916

ABSTRACT

Single-cell-derived tumor organoids (STOs) possess a distinct genetic background, making them valuable tools for demonstrating tumor heterogeneity. In order to fulfill the high throughput demands of STO assays, we have developed a microfluidic chip containing 30 000 microwells, which is dedicated to a single cell culture approach for selective expansion and differential induction of cancer stem cells. The microwells are coated with a hydrophilic copolymer to eliminate cell adhesion, and the cell culture is supported by poly(ethylene glycol) (PEG) to establish a nonadhesive culture environment. By utilizing an input cell density of 7 × 103·mL-1, it is possible to construct a 4000 single cell culture system through stochastic cell occupation. We demonstrate that the addition of 15% PEG10000 in the cell culture medium effectively prevents cell loss while facilitating tumor stem cell expansion. As were demonstrated by HCT116, HT29, and SW480 colon cancer cells, the microfluidic approach achieved a STO formation rate of ∼20%, resulting in over 800 STOs generated from a single culture. Comprehensive analysis through histomorphology, immunohistochemistry, drug response evaluation, assessment of cell invasion, and biomarker detection reveals the heterogeneity among individual STOs. Specifically, the smaller STOs exhibited higher invasion and drug resistance capabilities compared with the larger ones. The developed microfluidic approach effectively facilitates STO formation and offers promising prospects for investigating tumor heterogeneity, as well as conducting personalized therapy-focused drug screening.


Subject(s)
Colonic Neoplasms , Neoplastic Stem Cells , Organoids , Single-Cell Analysis , Humans , Colonic Neoplasms/pathology , Organoids/pathology , Organoids/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Single-Cell Analysis/methods , Lab-On-A-Chip Devices , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , Cell Line, Tumor , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , HCT116 Cells , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
12.
Toxicol In Vitro ; 98: 105843, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735502

ABSTRACT

Traditional experimental methodologies suffer from a few limitations in the toxicological evaluation of the preservatives added to eye drops. In this study, we overcame these limitations by using a microfluidic device. We developed a microfluidic system featuring a gradient concentration generator for preservative dosage control with microvalves and micropumps, automatically regulated by a programmable Arduino board. This system facilitated the simultaneous toxicological evaluation of human corneal epithelial cells against eight different concentrations of preservatives, allowing for quadruplicate experiments in a single run. In our study, the IC50 values for healthy eyes and those affected with dry eyes syndrome showed an approximately twofold difference. This variation is likely attributable to the duration for which the preservative remained in contact with corneal cells before being washed off by the medium, suggesting the significance of exposure time in the cytotoxic effect of preservatives. Our microfluidic system, automated by Arduino, simulated healthy and dry eye environments to study benzalkonium chloride toxicity and revealed significant differences in cell viability, with IC50 values of 0.0033% for healthy eyes and 0.0017% for dry eyes. In summary, we implemented the pinch-to-zoom feature of an electronic tablet in our microfluidic system, offering innovative alternatives for eye research.


Subject(s)
Benzalkonium Compounds , Cell Survival , High-Throughput Screening Assays , Preservatives, Pharmaceutical , Humans , Preservatives, Pharmaceutical/toxicity , Benzalkonium Compounds/toxicity , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Cell Survival/drug effects , Dry Eye Syndromes/chemically induced , Microfluidic Analytical Techniques/instrumentation , Epithelial Cells/drug effects , Toxicity Tests/methods , Toxicity Tests/instrumentation , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/instrumentation , Ophthalmic Solutions/toxicity , Cell Line , Lab-On-A-Chip Devices , Epithelium, Corneal/drug effects , Cornea/drug effects
13.
ACS Sens ; 9(8): 4089-4097, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-38997236

ABSTRACT

High-throughput sensors are valuable tools for enabling massive, fast, and accurate diagnostics. To yield this type of electrochemical device in a simple and low-cost way, high-density arrays of vertical gold thin-film microelectrode-based sensors are demonstrated, leading to the rapid and serial interrogation of dozens of samples (10 µL droplets). Based on 16 working ultramicroelectrodes (UMEs) and 3 quasi-reference electrodes (QREs), a total of 48 sensors were engineered in a 3D crossbar arrangement that devised a low number of conductive lines. By exploiting this design, a compact chip (75 × 35 mm) can enable performing 16 sequential analyses without intersensor interferences by dropping one sample per UME finger. In practice, the electrical connection to the sensors was achieved by simply switching the contact among WE adjacent fingers. Importantly, a short analysis time was ensured by interrogating the UMEs with chronoamperometry or square wave voltammetry using a low-cost and hand-held one-channel potentiostat. As a proof of concept, the detection of Staphylococcus aureus in 15 samples was performed within 14 min (20 min incubation and 225 s reading). Additionally, the implementation of peptide-tethered immunosensors in these chips allowed the screening of COVID-19 from patient serum samples with 100% accuracy. Our experiments also revealed that dispensing additional droplets on the array (in certain patterns) results in the overestimation of the faradaic current signals, a phenomenon referred to as crosstalk. To address this interference, a set of analyses was conducted to design a corrective strategy that boosted the testing capacity by allowing using all on-chip sensors to address subsequent analyses (i.e., 48 samples simultaneously dispensed on the chip). This strategy only required grounding the unused rows of QRE and can be broadly adopted to develop high-throughput UME-based sensors. In practice, we could analyze 48 droplets (with [Fe(CN)6]4-) within ∼8 min using amperometry.


Subject(s)
COVID-19 , Electrochemical Techniques , Lab-On-A-Chip Devices , SARS-CoV-2 , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , COVID-19/diagnosis , COVID-19/blood , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Microelectrodes , Staphylococcus aureus/isolation & purification , Gold/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods
14.
São Paulo; s.n; s.n; 2022. 113 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-1415035

ABSTRACT

As doenças negligenciadas são causadas por agentes infecciosos e parasitários, como vírus, bactérias, protozoários e helmintos. Essas doenças são prevalentes em populações de baixa renda que vivem em países em desenvolvimento e são responsáveis por incapacitar e levar milhares de pessoas à morte. Este nome se dá pois, apesar de sua grande relevância médica, recebem pouca atenção dos governos e indústrias farmacêuticas. Dentre essas doenças podemos destacar a Doença de Chagas, doença infecciosa causada pelo parasita hemoflagelado Trypanosoma cruzi. Endêmica em 21 países, com 6 a 7 milhões de pessoas infectadas resultando em 7500 mortes por ano. A quimioterapia disponível contra essa parasitose é baseada em apenas dois medicamentos, o benznidazol e o nifurtimox, ativos principalmente na fase aguda da doença e com efeitos adversos graves que comprometem a adesão ao tratamento e, além disso, apesar dos enormes esforços na pesquisa de novos agentes antichagásicos em nível nacional e internacional, na maioria realizada academicamente, ainda não foram encontradas alternativas terapêuticas para a doença, persistindo, assim, a necessidade de descoberta e desenvolvimento de novos fármacos. O início de um planejamento de um novo fármaco se dá pela definição de um alvo bioquímico a ser utilizado na busca de moléculas que possam exercer a função de inibidores ou moduladores, conforme a atividade biológica desejada. Neste sentido, as sirtuínas 2 (Sir2) são enzimas que se mostraram essenciais para o crescimento in vitro do T. cruzi em suas formas amastigota e epimastigota. No caso de tripanossomatídeos, em geral, a superexpressão de Sir2 está relacionada à sobrevivência de formas amastigotas. Assim, essas evidências indicam que a Sir2 de tripanosomatídeos tem grande potencial como alvo biológico na busca e desenvolvimento de novos fármacos antichagásicos. O objetivo principal deste projeto foi identificar moléculas que apresentaram atividade inibitória para a sirtuína 2 de T. cruzi por meio da utilização da estratégia de Planejamento de Fármacos Baseada no Ligante - Ligand Based Drug Design (LBDD) e o desenvolvimento de análogos dos inibidores da Sir2. A modificação molecular está entre algumas das técnicas tradicionais usadas no desenvolvimento racional de um fármaco, e é usada principalmente no desenvolvimento de análogos, e busca melhorar as propriedades farmacocinéticas e/ou farmacodinâmicas de um protótipo, obter propriedades de interação semelhantes ao alvo e, em alguns casos, revelar uma atividade biológica. Com este intuito, análogos do sirtinol e da salermida foram sintetizados e uma nova rota sintética utilizando o microrreator em fluxo contínuo foi desenvolvida e apresentou rendimento superior quando comparado à síntese em bancada. A partir desta metodologia foram obtidos 20 compostos. Os ensaios in vitro contra formas amastigotas do T. cruzi indicaram que 8 compostos inibiram a atividade parasitária em mais de 50%, na dose de 10 µM, sendo que alguns destes apresentaram maior inibição parasitária quando comparados ao benznidazol, o fármaco de referência e único disponível no Brasil. Com estes resultados preliminares, novos ensaios estão sendo realizados para identificar potência e mecanismo de ação destes candidatos a agentes tripanomicidas


Neglected diseases are caused by infectious and parasitic agents such as viruses, bacteria, protozoa and helminths. These diseases are prevalent in low-income populations living in developing countries and are responsible for disabling and killing thousands of people. They get this name because, despite their great medical relevance, they end up receiving little attention from governments and pharmaceutical industries. Among these diseases, we can highlight Chagas disease, an infectious endemic disease caused by the hemoflagellate parasite Trypanosoma cruzi. This disease is endemic in 21 countries, with 6 to 7 million people infected resulting in 7,500 deaths per year. Chemotherapy is based on just two drugs, benznidazole and nifurtimox, which are mainly active in the acute phase of the disease. These drugs have adverse effects that compromise adherence, even more, considering that they are not effective from the point of view of the chronic phase of the disease. Despite the enormous efforts in researching new anti-chagasic agents at the national and international level, and mostly carried out academically, therapeutic alternatives for the disease have not yet been found, thus, the need for the discovery and development of new drugs persists. Sirtuins 2 (Sir2) are enzymes that have been shown to be essential for the in vitro growth of T. cruzi in its amastigote and epimastigote forms. In the case of trypanosomatids in general, Sir2 overexpression is related to the survival of amastigote forms. Sir2 inhibitors, such as sirtinol, have shown efficacy in leishmanicides. Thus, these evidences indicate that Sir2 from trypanosomatids can be considered as a biological target in the search and development of new anti-chagasic drugs. The beginning of a new drug planning study is the definition of a biochemical target to be used in the search for molecules that can play the role of inhibitors or modulators, according to the desired biological activity. The main objective of this project was to identify molecules that presented inhibitory activity to sirtuin 2 of T. cruzi using the Ligand Based Drug Design (LBDD) strategy of planning and the development of analogues of Sir2 inhibitors. Molecular modification is a traditional technique used in the rational development of a drug, as well as the use of natural products, combinatorial chemistry, high-throughput screening (HTS), among others. Mainly used in the development of analogues, molecular modification is applied for different purposes, among them, it seeks to improve the pharmacokinetic and/or pharmacodynamic properties of a prototype, obtain target-like interaction properties and, in some cases, reveal an activity biological. For this purpose, analogues of sirtinol and salermide were synthesized and a new synthetic route using the microreactor in continuous flow was developed and presented superior yield when compared to benchtop synthesis. From this methodology, 20 compounds were obtained. in vitro assays against amastigote forms of T. cruzi indicated that 8 compounds inhibited parasitic activity by more than 50% at a dose of 10 µM, and some of these showed greater parasitic inhibition when compared to benznidazole, the reference drug, and only available in Brazil. With these preliminary results, new assays are being carried out to identify the potency and mechanism of action of these candidate trypanocidal agents


Subject(s)
Pharmaceutical Preparations/analysis , Chemistry , Health Strategies , Drug Therapy/classification , Sirtuin 2/antagonists & inhibitors , In Vitro Techniques/methods , Drug Design , Continuous Flow , Communicable Diseases/complications , Chagas Disease/pathology , Endemic Diseases/prevention & control , Drug-Related Side Effects and Adverse Reactions , Methodology as a Subject , High-Throughput Screening Assays/instrumentation , Neglected Diseases/complications , Epigenomics/classification , Treatment Adherence and Compliance
SELECTION OF CITATIONS
SEARCH DETAIL