Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Publication year range
1.
Biochemistry ; 63(13): 1647-1662, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38869079

ABSTRACT

In growing E. coli cells, the transcription-translation complexes (TTCs) form characteristic foci; however, the exact molecular composition of these superstructures is not known with certainty. Herein, we report that, during our recently developed "fast" procedures for purification of E. coli RNA polymerase (RP), a fraction of the RP's α/RpoA subunits is displaced from the core RP complexes and copurifies with multiprotein superstructures carrying the nucleic acid-binding protein Hfq and the ribosomal protein S6. We show that the main components of these large multiprotein assemblies are fixed protein copy-number (Hfq6)n≥8 complexes; these complexes have a high level of structural uniformity and are distinctly unlike the previously described (Hfq6)n "head-to-tail" polymers. We describe purification of these novel, structurally uniform (Hfq6)n≥8 complexes to near homogeneity and show that they also contain small nonprotein molecules and accessory S6. We demonstrate that Hfq, S6, and RP have similar solubility profiles and present evidence pointing to a role of the Hfq C-termini in superstructure formation. Taken together, our data offer new insights into the composition of the macromolecular assemblies likely acting as scaffolds for transcription complexes and ribosomes during bacterial cells' active growth.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , Transcription, Genetic , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/genetics , Protein Biosynthesis , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/isolation & purification , Multiprotein Complexes/metabolism
2.
J Biol Chem ; 296: 100656, 2021.
Article in English | MEDLINE | ID: mdl-33857481

ABSTRACT

The conserved protein Hfq is a key factor in the RNA-mediated control of gene expression in most known bacteria. The transient intermediates Hfq forms with RNA support intricate and robust regulatory networks. In Pseudomonas, Hfq recognizes repeats of adenine-purine-any nucleotide (ARN) in target mRNAs via its distal binding side, and together with the catabolite repression control (Crc) protein, assembles into a translation-repression complex. Earlier experiments yielded static, ensemble-averaged structures of the complex, but details of its interface dynamics and assembly pathway remained elusive. Using explicit solvent atomistic molecular dynamics simulations, we modeled the extensive dynamics of the Hfq-RNA interface and found implications for the assembly of the complex. We predict that syn/anti flips of the adenine nucleotides in each ARN repeat contribute to a dynamic recognition mechanism between the Hfq distal side and mRNA targets. We identify a previously unknown binding pocket that can accept any nucleotide and propose that it may serve as a 'status quo' staging point, providing nonspecific binding affinity, until Crc engages the Hfq-RNA binary complex. The dynamical components of the Hfq-RNA recognition can speed up screening of the pool of the surrounding RNAs, participate in rapid accommodation of the RNA on the protein surface, and facilitate competition among different RNAs. The register of Crc in the ternary assembly could be defined by the recognition of a guanine-specific base-phosphate interaction between the first and last ARN repeats of the bound RNA. This dynamic substrate recognition provides structural rationale for the stepwise assembly of multicomponent ribonucleoprotein complexes nucleated by Hfq-RNA binding.


Subject(s)
Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Nucleotide Motifs , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/metabolism , Binding Sites , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/genetics , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Pseudomonas aeruginosa/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics
3.
Nucleic Acids Res ; 48(7): 3987-3997, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32133526

ABSTRACT

Hfq regulates bacterial gene expression post-transcriptionally by binding small RNAs and their target mRNAs, facilitating sRNA-mRNA annealing, typically resulting in translation inhibition and RNA turnover. Hfq is also found in the nucleoid and binds double-stranded (ds) DNA with a slight preference for A-tracts. Here, we present the crystal structure of the Escherichia coli Hfq Core bound to a 30 bp DNA, containing three 6 bp A-tracts. Although previously postulated to bind to the 'distal' face, three statistically disordered double stranded DNA molecules bind across the proximal face of the Hfq hexamer as parallel, straight rods with B-DNA like conformational properties. One DNA duplex spans the diameter of the hexamer and passes over the uridine-binding proximal-face pore, whereas the remaining DNA duplexes interact with the rims and serve as bridges between adjacent hexamers. Binding is sequence-independent with residues N13, R16, R17 and Q41 interacting exclusively with the DNA backbone. Atomic force microscopy data support the sequence-independent nature of the Hfq-DNA interaction and a role for Hfq in DNA compaction and nucleoid architecture. Our structure and nucleic acid-binding studies also provide insight into the mechanism of sequence-independent binding of Hfq to dsRNA stems, a function that is critical for proper riboregulation.


Subject(s)
DNA/chemistry , Escherichia coli Proteins/chemistry , Host Factor 1 Protein/chemistry , Binding Sites , Crystallography, X-Ray , DNA/metabolism , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/metabolism , Models, Molecular , Protein Binding , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Messenger/chemistry
4.
Nucleic Acids Res ; 48(13): 7502-7519, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32542384

ABSTRACT

The regulation of gene expression by small RNAs in Escherichia coli depends on RNA binding proteins Hfq and ProQ, which bind mostly distinct RNA pools. To understand how ProQ discriminates between RNA substrates, we compared its binding to six different RNA molecules. Full-length ProQ bound all six RNAs similarly, while the isolated N-terminal FinO domain (NTD) of ProQ specifically recognized RNAs with Rho-independent terminators. Analysis of malM 3'-UTR mutants showed that tight RNA binding by the ProQ NTD required a terminator hairpin of at least 2 bp preceding an 3' oligoU tail of at least four uridine residues. Substitution of an A-rich sequence on the 5' side of the terminator to uridines strengthened the binding of several ProQ-specific RNAs to the Hfq protein, but not to the ProQ NTD. Substitution of the motif in the malM-3' and cspE-3' RNAs also conferred the ability to bind Hfq in E. coli cells, as measured using a three-hybrid assay. In summary, these data suggest that the ProQ NTD specifically recognizes 3' intrinsic terminators of RNA substrates, and that the discrimination between RNA ligands by E. coli ProQ and Hfq depends both on positive determinants for binding to ProQ and negative determinants against binding to Hfq.


Subject(s)
Escherichia coli Proteins/chemistry , RNA-Binding Proteins/chemistry , Binding Sites , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Mutation , Nucleotide Motifs , Protein Binding , RNA/chemistry , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 116(22): 10978-10987, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31076551

ABSTRACT

We have solved the X-ray crystal structure of the RNA chaperone protein Hfq from the alpha-proteobacterium Caulobacter crescentus to 2.15-Å resolution, resolving the conserved core of the protein and the entire C-terminal domain (CTD). The structure reveals that the CTD of neighboring hexamers pack in crystal contacts, and that the acidic residues at the C-terminal tip of the protein interact with positive residues on the rim of Hfq, as has been recently proposed for a mechanism of modulating RNA binding. De novo computational models predict a similar docking of the acidic tip residues against the core of Hfq. We also show that C. crescentus Hfq has sRNA binding and RNA annealing activities and is capable of facilitating the annealing of certain Escherichia coli sRNA:mRNA pairs in vivo. Finally, we describe how the Hfq CTD and its acidic tip residues provide a mechanism to modulate annealing activity and substrate specificity in various bacteria.


Subject(s)
Bacterial Proteins , Caulobacter crescentus , Host Factor 1 Protein , RNA, Bacterial , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Caulobacter crescentus/chemistry , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Crystallography, X-Ray , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Models, Molecular , Molecular Chaperones , Protein Binding , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism
6.
Biochemistry (Mosc) ; 86(7): 833-842, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34284708

ABSTRACT

The structure and the RNA-binding properties of the Lsm protein from Halobacterium salinarum have been determined. A distinctive feature of this protein is the presence of a short L4 loop connecting the ß3 and ß4 strands. Since bacterial Lsm proteins (also called Hfq proteins) have a short L4 loop and form hexamers, whereas archaeal Lsm proteins (SmAP) have a long L4 loop and form heptamers, it has been suggested that the length of the L4 loop may affect the quaternary structure of Lsm proteins. Moreover, the L4 loop covers the region of SmAP corresponding to one of the RNA-binding sites in Hfq, and thus can affect the RNA-binding properties of the protein. Our results show that the SmAP from H. salinarum forms heptamers and possesses the same RNA-binding properties as homologous proteins with the long L4 loop. Therefore, the length of the L4 does not govern the number of monomers in the protein particles and does not affect the RNA-binding properties of Lsm proteins.


Subject(s)
Halobacterium salinarum/metabolism , Host Factor 1 Protein/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Host Factor 1 Protein/chemistry , Protein Conformation , Sequence Alignment
7.
J Biol Chem ; 294(44): 16465-16478, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31540970

ABSTRACT

RNase E is a component of the RNA degradosome complex and plays a key role in RNA degradation and maturation in Escherichia coli RNase E-mediated target RNA degradation typically involves the RNA chaperone Hfq and requires small guide RNAs (sRNAs) acting as a seed by binding to short (7-12-bp) complementary regions in target RNA sequences. Here, using recombinantly expressed and purified proteins, site-directed mutagenesis, and RNA cleavage and protein cross-linking assays, we investigated Hfq-independent RNA decay by RNase E. Exploring its RNA substrate preferences in the absence of Hfq, we observed that RNase E preferentially cleaves AU-rich sites of single-stranded regions of RNA substrates that are annealed to an sRNA that contains a monophosphate at its 5'-end. We further found that the quaternary structure of RNase E is also important for complete, Hfq-independent cleavage at sites both proximal and distal to the sRNA-binding site within target RNAs containing monophosphorylated 5'-ends. Of note, genetic RNase E variants with unstable quaternary structure exhibited decreased catalytic activity. In summary, our results show that RNase E can degrade its target RNAs in the absence of the RNA chaperone Hfq. We conclude that RNase E-mediated, Hfq-independent RNA decay in E. coli requires a cognate sRNA sequence for annealing to the target RNA, a 5'-monophosphate at the RNA 5'-end, and a stable RNase E quaternary structure.


Subject(s)
Endoribonucleases/metabolism , RNA Stability/physiology , Binding Sites , Endoribonucleases/physiology , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/physiology , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/physiology , Molecular Chaperones/metabolism , Nucleic Acid Conformation , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Small Untranslated/metabolism , Ribonuclease, Pancreatic , Ribonucleases/metabolism
8.
RNA ; 24(12): 1761-1784, 2018 12.
Article in English | MEDLINE | ID: mdl-30217864

ABSTRACT

MgrR is an Hfq-dependent sRNA, whose transcription is controlled by the level of Mg2+ ions in Escherichia coli MgrR belongs to Class II sRNAs because its stability in the cell is affected by mutations in Hfq differently than canonical, Class I sRNAs. Here, we examined the effect of mutations in RNA binding sites of Hfq on the kinetics of the annealing of MgrR to two different target mRNAs, eptB and ygdQ, by global data fitting of the reaction kinetics monitored by gel electrophoresis of intermediates and products. The data showed that the mutation on the rim of the Hfq ring trapped MgrR on Hfq preventing the annealing of MgrR to either mRNA. The mutation in the distal face slowed the ternary complex formation and affected the release of MgrR-mRNA complexes from Hfq, while the mutation in the proximal face weakened the MgrR binding to Hfq and in this way affected the annealing. Moreover, competition assays established that MgrR bound to both faces of Hfq and competed against other sRNAs. Further studies showed that uridine-rich sequences located in less structurally stable regions served as Hfq binding sites in each mRNA. Overall, the data show that the binding of MgrR sRNA to both faces of the Hfq ring enables it to efficiently anneal to target mRNAs. It also confers on MgrR a competitive advantage over other sRNAs, which could contribute to efficient cellular response to changes in magnesium homeostasis.


Subject(s)
Escherichia coli Proteins/genetics , Host Factor 1 Protein/genetics , RNA, Small Untranslated/genetics , RNA-Binding Proteins/genetics , Binding Sites , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/chemistry , Magnesium/chemistry , Magnesium/metabolism , Mutation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA, Messenger/genetics , RNA, Small Untranslated/chemistry , RNA-Binding Proteins/chemistry
9.
Nucleic Acids Res ; 46(3): 1470-1485, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29244160

ABSTRACT

In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.


Subject(s)
Bacterial Proteins/genetics , Catabolite Repression , Host Factor 1 Protein/genetics , Protein Biosynthesis , Pseudomonas aeruginosa/genetics , RNA, Bacterial/genetics , Repressor Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Bordetella pertussis/genetics , Bordetella pertussis/metabolism , Carbohydrate Metabolism/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Kinetics , Models, Molecular , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , Regulon , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcriptome
10.
J Biol Chem ; 293(35): 13377-13388, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30002121

ABSTRACT

Acinetobacter baumannii is a Gram-negative nosocomial pathogen that causes soft tissue infections in patients who spend a long time in intensive care units. This recalcitrant bacterium is very well known for developing rapid drug resistance, which is a combined outcome of its natural competence and mobile genetic elements. Successful efforts to treat these infections would be aided by additional information on the physiology of A. baumannii Toward that end, we recently reported on a small RNA (sRNA), AbsR25, in this bacterium that regulates the genes of several efflux pumps. Because sRNAs often require the RNA chaperone Hfq for assistance in binding to their cognate mRNA targets, we identified and characterized this protein in A. baumannii The homolog in A. baumannii is a large protein with an extended C terminus unlike Hfqs in other Gram-negative pathogens. The extension has a compositional bias toward glycine and, to a lower extent, phenylalanine and glutamine, suggestive of an intrinsically disordered region. We studied the importance of this glycine-rich tail using truncated versions of Hfq in biophysical assays and complementation of an hfq deletion mutant, finding that the tail was necessary for high-affinity RNA binding. Further tests implicate Hfq in important cellular processes of A. baumannii like metabolism, drug resistance, stress tolerance, and virulence. Our findings underline the importance of the glycine-rich C terminus in RNA binding, ribo-regulation, and auto-regulation of Hfq, demonstrating this hitherto overlooked protein motif to be an indispensable part of the A. baumannii Hfq.


Subject(s)
Acinetobacter baumannii/physiology , Bacterial Proteins/metabolism , Glycine/metabolism , Host Factor 1 Protein/metabolism , RNA, Bacterial/metabolism , Acinetobacter Infections/microbiology , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/growth & development , Amino Acid Motifs , Bacterial Proteins/chemistry , Glycine/chemistry , Host Factor 1 Protein/chemistry , Humans , Protein Stability , Protein Structure, Secondary , RNA, Small Untranslated/metabolism , Stress, Physiological
11.
Proc Natl Acad Sci U S A ; 113(41): E6089-E6096, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27681631

ABSTRACT

The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA-mRNA interactions and rapidly cycle between competing targets in the cell.


Subject(s)
Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Protein Interaction Domains and Motifs , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , Base Pairing , Host Factor 1 Protein/genetics , Kinetics , Nucleic Acid Conformation , Protein Binding , RNA Stability , RNA, Messenger/genetics , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Proteins
12.
Genes Dev ; 25(19): 2106-17, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21979921

ABSTRACT

Hfq is a bacterial post-transcriptional regulator. It facilitates base-pairing between sRNA and target mRNA. Hfq mediates DsrA-dependent translational activation of rpoS mRNA at low temperatures. rpoS encodes the stationary-phase σ factor σ(S), which is the central regulator in general stress response. However, structural information on Hfq-DsrA interaction is not yet available. Although Hfq is reported to hydrolyze ATP, the ATP-binding site is still unknown. Here, we report a ternary crystal complex structure of Escherichia coli Hfq bound to a major Hfq recognition region on DsrA (AU(6)A) together with ADP, and a crystal complex structure of Hfq bound to ADP. AU(6)A binds to the proximal and distal sides of two Hfq hexamers. ADP binds to a purine-selective site on the distal side and contacts conserved arginine or glutamine residues on the proximal side of another hexamer. This binding mode is different from previously postulated. The cooperation of two different Hfq hexamers upon nucleic acid binding in solution is verified by fluorescence polarization and solution nuclear magnetic resonance (NMR) experiments using fragments of Hfq and DsrA. Fluorescence resonance energy transfer conducted with full-length Hfq and DsrA also supports cooperation of Hfq hexamers upon DsrA binding. The implications of Hfq hexamer cooperation have been discussed.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Host Factor 1 Protein/chemistry , Models, Molecular , RNA, Small Untranslated/metabolism , Adenosine Diphosphate/metabolism , Binding Sites , Polymers , Protein Binding , Protein Structure, Tertiary
13.
Phys Chem Chem Phys ; 19(31): 21152-21164, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28752165

ABSTRACT

In Escherichia coli, hexameric Hfq is an important RNA chaperone that facilitates small RNA-mediated post-transcriptional regulation. The Hfq monomer consists of an evolutionarily conserved Sm domain (residues 1-65) and a flexible C-terminal region (residues 66-102). It has been recognized that the existence of the C-terminal region is important for the function of Hfq, but its detailed structural and dynamic properties remain elusive due to its disordered nature. In this work, using integrative experimental techniques, such as nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, as well as multi-scale computational simulations, new insights into the structure and dynamics of the C-terminal region in the context of the Hfq hexamer are provided. Although the C-terminal region is intrinsically disordered, some residues (83-86) are motionally restricted. The hexameric core may affect the secondary structure propensity of the C-terminal region, due to transient interactions between them. The residues at the rim and the proximal side of the core have significantly more transient contacts with the C-terminal region than those residues at the distal side, which may facilitate the function of the C-terminal region in the release of double-stranded RNAs and the cycling of small non-coding RNAs. Structure ensembles constructed by fitting the experimental data also support that the C-terminal region prefers to locate at the proximal side. From multi-scale simulations, we propose that the C-terminal region may play a dual role of steric effect (especially at the proximal side) and recruitment (at the both sides) in the binding process of RNA substrates. Interestingly, we have found that these motionally restricted residues may serve as important binding sites for the incoming RNAs that is probably driven by favorable electrostatic interactions. These integrative studies may aid in our understanding of the functional role of the C-terminal region of Hfq.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Host Factor 1 Protein/chemistry , Molecular Dynamics Simulation , RNA/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary , RNA/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Scattering, Small Angle , X-Ray Diffraction
14.
Nucleic Acids Res ; 43(4): 2400-11, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25670676

ABSTRACT

Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σ(s) subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell.


Subject(s)
Escherichia coli Proteins/chemistry , Host Factor 1 Protein/chemistry , RNA, Small Untranslated/chemistry , Adenine/chemistry , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/metabolism , Models, Molecular , Protein Binding , Protein Biosynthesis , RNA, Small Untranslated/metabolism
15.
Proc Natl Acad Sci U S A ; 111(48): 17134-9, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404287

ABSTRACT

The Sm-like protein Hfq (host factor Q-beta phage) facilitates regulation by bacterial small noncoding RNAs (sRNAs) in response to stress and other environmental signals. Here, we present a low-resolution model of Escherichia coli Hfq bound to the rpoS mRNA, a bacterial stress response gene that is targeted by three different sRNAs. Selective 2'-hydroxyl acylation and primer extension, small-angle X-ray scattering, and Monte Carlo molecular dynamics simulations show that the distal face and lateral rim of Hfq interact with three sites in the rpoS leader, folding the RNA into a compact tertiary structure. These interactions are needed for sRNA regulation of rpoS translation and position the sRNA target adjacent to an sRNA binding region on the proximal face of Hfq. Our results show how Hfq specifically distorts the structure of the rpoS mRNA to enable sRNA base pairing and translational control.


Subject(s)
Escherichia coli Proteins/chemistry , Host Factor 1 Protein/chemistry , RNA, Bacterial/chemistry , RNA, Messenger/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , Molecular Dynamics Simulation , Monte Carlo Method , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Scattering, Small Angle , Sigma Factor/chemistry , Sigma Factor/genetics , Sigma Factor/metabolism , X-Ray Diffraction
16.
Biochim Biophys Acta ; 1850(9): 1661-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25863287

ABSTRACT

BACKGROUND: Small RNAs (sRNAs) are important modulators of gene expression in bacteria. Regulation by sRNAs is yet to be established in Bacillus anthracis. Here, regulation and RNA-binding properties of Hfq-like RNA chaperones in B. anthracis are investigated. METHODS: Transcript levels were measured by RT-PCR. Proteins were cloned, purified, and their ability to bind sRNA was seen by EMSA. Regulators of Hfq1 were identified by in silico analysis and validated by EMSA. Conserved sRNAs were identified by homology search and their ability to bind Hfq1 was seen by EMSA. Residues crucial for sRNA binding were identified by mutational studies. RESULTS: hfq1 and hfq3 showed expression during exponential phase on BHI medium, while hfq2 showed no expression. Hfq1 and Hfq3 formed hexamer and sRNA-Hfq complex, not Hfq2. In silico prediction and EMSA confirmed AbrB binding to the promoter of Hfq1. Homology search identified 7 sRNAs in B. anthracis. The sRNA CsfG showed binding to Hfq1 via residues Y24, F29, Q30, R32, K56, and H57. CONCLUSIONS: Hfq1 and Hfq3 can function as RNA chaperones in B. anthracis. The transition phase repressor AbrB might be responsible for the growth-dependent expression of Hfq1. The sporulation-specific sRNA CsfG binds to Hfq1 via its distal surface and requires an intact hexameric structure for forming CsfG-Hfq1 complex. GENERAL SIGNIFICANCE: This is the first report demonstrating the regulation and functional properties of Hfq-like RNA chaperones in B. anthracis and paves the path towards establishing sRNA-based regulation in B. anthracis.


Subject(s)
Bacillus anthracis/genetics , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/physiology , Molecular Chaperones/physiology , RNA, Bacterial/metabolism , Base Sequence , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/genetics , Molecular Sequence Data , Promoter Regions, Genetic , RNA, Bacterial/chemistry
17.
Biochim Biophys Acta ; 1854(8): 950-66, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25896386

ABSTRACT

The bacterial Sm-like protein Hfq has been linked functionally to reactions that involve RNA; however, its explicit role and primary cellular localization remain elusive. We carried out a detailed biochemical characterization of native Escherichia coli Hfq obtained through methods that preserve its posttranslational modifications. ESI-MS analyses indicate modifications in 2-3 subunits/hexamer with a molecular mass matching that of an oxidized C:18 lipid. We show that the majority of cellular Hfq cannot be extracted without detergents and that purified Hfq can be retained on hydrophobic matrices. Analyses of purified Hfq and the native Hfq complexes observed in whole-cell E. coli extracts indicate the existence of dodecameric assemblies likely stabilized by interlocking C-terminal polypeptides originating from separate Hfq hexamers and/or accessory nucleic acid. We demonstrate that cellular Hfq is redistributed between transcription complexes and an insoluble fraction that includes protein complexes harboring polynucleotide phosphorylase (PNP). This distribution pattern is consistent with a function at the interface of the apparatuses responsible for synthesis and degradation of RNA. Taken together with the results of prior studies, these results suggest that Hfq could function as an anchor/coupling factor responsible for de-solubilization of RNA and its tethering to the degradosome complex.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Host Factor 1 Protein , Multiprotein Complexes , Protein Processing, Post-Translational/physiology , RNA, Bacterial , RNA , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA/biosynthesis , RNA/chemistry , RNA, Bacterial/biosynthesis , RNA, Bacterial/chemistry
18.
RNA ; 20(10): 1548-59, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25150227

ABSTRACT

Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNA-binding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Gram-positive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of all other known Hfq structures. The U6 RNA binds on the "proximal face" in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U6 with high affinity. In contrast, the longer oligo-uridine, U16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU)3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces.


Subject(s)
Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Listeria monocytogenes/metabolism , RNA, Messenger/metabolism , RNA, Small Nuclear/metabolism , Amino Acid Motifs , Crystallography, X-Ray , Fluorescence Polarization , Host Factor 1 Protein/chemistry , Listeria monocytogenes/genetics , Mutation/genetics , Protein Binding , Protein Conformation , RNA, Messenger/genetics , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism
19.
Nucleic Acids Res ; 42(4): 2736-49, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24288369

ABSTRACT

Hfq is a posttranscriptional riboregulator and RNA chaperone that binds small RNAs and target mRNAs to effect their annealing and message-specific regulation in response to environmental stressors. Structures of Hfq-RNA complexes indicate that U-rich sequences prefer the proximal face and A-rich sequences the distal face; however, the Hfq-binding sites of most RNAs are unknown. Here, we present an Hfq-RNA mapping approach that uses single tryptophan-substituted Hfq proteins, all of which retain the wild-type Hfq structure, and tryptophan fluorescence quenching (TFQ) by proximal RNA binding. TFQ properly identified the respective distal and proximal binding of A15 and U6 RNA to Gram-negative Escherichia coli (Ec) Hfq and the distal face binding of (AA)3A, (AU)3A and (AC)3A to Gram-positive Staphylococcus aureus (Sa) Hfq. The inability of (GU)3G to bind the distal face of Sa Hfq reveals the (R-L)n binding motif is a more restrictive (A-L)n binding motif. Remarkably Hfq from Gram-positive Listeria monocytogenes (Lm) binds (GU)3G on its proximal face. TFQ experiments also revealed the Ec Hfq (A-R-N)n distal face-binding motif should be redefined as an (A-A-N)n binding motif. TFQ data also demonstrated that the 5'-untranslated region of hfq mRNA binds both the proximal and distal faces of Ec Hfq and the unstructured C-terminus.


Subject(s)
Escherichia coli Proteins/chemistry , Host Factor 1 Protein/chemistry , RNA/metabolism , Tryptophan/chemistry , 5' Untranslated Regions , Amino Acid Motifs , Binding Sites , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fluorescence , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , Listeria monocytogenes , Models, Molecular , Mutation , Protein Binding , RNA/chemistry , Staphylococcus aureus
20.
Biochemistry ; 54(5): 1157-70, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25582129

ABSTRACT

Bacterial regulatory RNAs require the chaperone protein Hfq to enable their pairing to mRNAs. Recent data showed that there is a hierarchy among sRNAs in the competition for access to Hfq, which could be important for the tuning of sRNA-dependent translation regulation. Here, seven structurally different sRNAs were compared using filter-based competition assays. Moreover, chimeric sRNA constructs were designed to identify structure elements important for competition performance. The data showed that besides the 3'-terminal oligouridine sequences also the 5'-terminal structure elements of sRNAs were essential for their competition performance. When the binding of sRNAs to Hfq mutants was compared, the data showed the important role of the proximal and rim sites of Hfq for the binding of six out of seven sRNAs. However, ChiX sRNA, which was the most efficient competitor, bound Hfq in a unique way using the opposite-distal and proximal-faces of this ring-shaped protein. The data indicated that the simultaneous binding to the opposite faces of Hfq was enabled by separate adenosine-rich and uridine-rich sequences in the long, single-stranded region of ChiX. Overall, the results suggest that the individual structural composition of sRNAs serves to tune their performance to different levels resulting in a hierarchy of sRNAs in the competition for access to the Hfq protein.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Host Factor 1 Protein/chemistry , Molecular Chaperones/chemistry , RNA, Bacterial/chemistry , RNA, Untranslated/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Nucleic Acid Conformation , Protein Binding , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL