Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genomics ; 116(5): 110881, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906513

ABSTRACT

Alkaloids are the main medicinal components in Houttuynia cordata. In this study, two accessions 6# and 7# of H. cordata underwent thorough metabolomic analyses to identify and quantify alkaloid phytometabolites. It turned out that the alkaloid types were largely similar between 6# and 7#, and the identified 81 alkaloids could be divided into nine structural classes. However, the content of alkaloids in the two accessions was quite different. According to transcriptome data, a total of 114 differentially expressed genes related to alkaloid metabolism were screened. The alkaloid synthesis pathway of the two varieties was mainly different in the isoquinoline alkaloid biosynthesis and indole alkaloid biosynthesis; four genes A22110063c_transcript_59323, A22110063c_transcript_60118, A22110063c_transcript_51672 and A22110063c_transcript_48784 were highly expressed in 7#, which could be key candidate genes of alkaloid metabolism and warrant further analysis. These results provide a reference for the medicinal application of H. cordata and breeding alkaloid rich varieties.


Subject(s)
Alkaloids , Houttuynia , Metabolome , Transcriptome , Houttuynia/metabolism , Houttuynia/genetics , Alkaloids/metabolism , Gene Expression Regulation, Plant
2.
Arch Virol ; 169(6): 130, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807015

ABSTRACT

Qingke Pingchuan granules (QPGs), which contain Houttuynia cordata Thunb, Fritillaria cirrhosa, fired licorice, and fired bitter almonds, among other components, can clear heat and ventilate the lungs, relieving cough and asthma. Clinically, QPGs are mainly used to treat cough, asthma, fever and other discomforts caused by acute or chronic bronchitis. In this study, the antiviral activity of QPGs against respiratory syncytial virus (RSV), influenza A virus A/FM/1/47 (H1N1), oseltamivir-resistant H1N1, A/Beijing/32/92 (H3N2), Sendai virus, and human adenovirus type 3 in Hep-2 or MDCK cells was evaluated using the CCK-8 method, and the cytotoxicity of QPGs to these two cell lines was tested. The effect of QPGs on mice infected with influenza A virus A/FM/1/47 (H1N1) was evaluated by measuring body weight, survival time, and survival rate, as well as virus titers and lesions in the lungs and levels of inflammatory factors in serum. In addition, the expression of TLR-7-My88-NF-κB signaling pathway-related proteins in lung tissues was analyzed by Western blotting and qRT-PCR. The results showed that QPGs had a potent inhibitory effect on the six viruses tested in vitro. Interestingly, QPGs also displayed particularly pronounced antiviral activity against H1N1-OC, similar to that of oseltamivir, a well-known antiviral drug. QPGs effectively protected mice from infection by H1N1, as indicated by significantly increased body weights, survival times, and survival rates and reduced lung virus titers of inflammatory factors and lung tissue injury. The levels of TLR-7-MyD88-NF-κB-pathway-related proteins in the lung tissue of infected mice were found to be decreased after QPG treatment, thereby alleviating lung injury caused by excessive release of inflammatory factors. Taken together, these findings indicate that QPGs have satisfactory activity against influenza virus infection.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Drugs, Chinese Herbal/pharmacology , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Dogs , Madin Darby Canine Kidney Cells , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Mice, Inbred BALB C , Lung/virology , Lung/drug effects , Lung/pathology , Cell Line , Houttuynia/chemistry , Influenza, Human/drug therapy , Influenza, Human/virology , NF-kappa B/metabolism , Female , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/physiology
3.
Ecotoxicol Environ Saf ; 278: 116417, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701655

ABSTRACT

Cadmium (Cd) pollutes 7.0 % of China's land area. This study examined the potential of Houttuynia cordata for Cd phytoremediation because of its ability to accumulate Cd in its growth matrix. H. cordata were planted in plastic pots filled with paddy field soils having low (LCd), medium (MCd), and high (HCd) Cd levels of 0.19, 0.69, and 2.91 mg/kg, respectively. After six months of growth, harvested plant parts were evaluated for Cd uptake and tolerance mechanisms. Metabolomics and metagenomics approaches were employed to investigate the soil rhizosphere mechanism. Results showed that the average plant biomass increased as soil Cd increased. The biomass Cd contents surpassed the allowable Cd limits for food (≤ 0.2 mg/kg) and medicinal uses (≤ 0.3 mg/kg). Cd contents were higher in H. cordata roots (30.59-86.27 mg/kg) than in other plant parts (0.63-2.90 mg/kg), with significantly increasing values as Cd soil level increased. Phenolic acids, lipids, amino acids and derivatives, organic acids, and alkaloids comprised the majority (69 in MCd vs HCd and 73 % in LCd vs HCd) of the shared upregulated metabolites. In addition, 13 metabolites specific to H. cordata root exudates were significantly increased. The top two principal metabolic pathways were arginine and proline metabolism, and beta-alanine metabolism. H. cordata increased the abundance of Firmicutes and Glomeromycota across all three Cd levels, and also stimulated the growth of Patescibacteria, Rozellomycota, and Claroideoglomus in HCd. Accordingly, H. cordata demonstrated potential for remediation of Cd-contaminated soils, and safety measures for its production and food use must be highly considered.


Subject(s)
Biodegradation, Environmental , Cadmium , Houttuynia , Rhizosphere , Soil Pollutants , Cadmium/metabolism , Cadmium/analysis , Soil Pollutants/metabolism , China , Plant Roots/metabolism , Soil/chemistry , Biomass
4.
Plant Dis ; 108(7): 2081-2089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38386301

ABSTRACT

Houttuynia cordata is a prevalent vegetable in several Asian countries and is commonly used as a traditional Chinese medicinal herb for treating various diseases in China. Unfortunately, its yield and quality are adversely affected by root rot. However, the pathogen responsible for the losses remains unidentified, and effective fungicides for its management have not been thoroughly explored. In this work, we demonstrate the first report of Globisporangium spinosum as the causative agent causing root rot of H. cordata. Moreover, we evaluated the efficacy of hymexazol to manage the disease, which displayed remarkable inhibitory effects against mycelial growth of G. spinosum in vitro, with EC50 values as low as 1.336 µg/ml. Furthermore, hymexazol completely inhibited sporangia in G. spinosum at a concentration of 0.3125 µg/ml. Specifically, we observed that hymexazol was highly efficacious in reducing the incidence of H. cordata root rot caused by G. spinosum in a greenhouse setting. These findings offer a potential management tool for utilization of hymexazol in controlling H. cordata root rot in field production.


Subject(s)
Fungicides, Industrial , Houttuynia , Plant Diseases , Plant Roots , Houttuynia/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Fungicides, Industrial/pharmacology
5.
Fish Physiol Biochem ; 50(4): 1495-1512, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38696022

ABSTRACT

This study investigated whether adding Herba Houttuyniae to feed can improve intestinal function and prevent diseases for koi carp (Cyprinus carpio) infected with Aeromonas veronii. There was a total of 168 koi carp with an average body length of (9.43 ± 0.99) cm and an average body weight of (26.00 ± 11.40) g. The K group was the control group fed with basal feed, while the C group was fed with feed with a H. houttuyniae content of six per thousand. After 14 days of feeding, the fish were fasted for a day and then intraperitoneally injected with A. veronii for artificial infection, injection dose is 0.2 mL, and the concentration is 1 × 107 CFU/mL. Samples were collected from the two groups on days 0, 1, 2, and 4. The fold height, intestinal villus width, and muscle layer thickness in the gut of the koi carp were measured. In addition, on day 4, the activities of trypsin, α-amylase, and lipase in the gut were determined, and the intestinal flora of the carp in both groups was tested. The results showed that on the second and fourth days of sampling, the fold height and muscle layer thickness in the C group were significantly higher than those in the K group (P < 0.05). The villus width in the C group was slightly higher than that in the K group, but the difference was not significant (P > 0.05). Microscopic observation revealed that the intestinal structure of the carp in the C4 (day 4 in C group) group was more intact than that in the K4 (day 4 in K group) group. Moreover, the activities of trypsin, α-amylase, and lipase in the foregut and midgut in the C4 group were higher than those in the K4 group (P < 0.05). The activities of trypsin and α-amylase in the hindgut in the C4 group were higher than those in the K4 group (P < 0.05). Furthermore, beneficial bacteria, especially those in the genus Cetobacterium, were more abundant in the intestinal tract of the carp in the C4 group compared to the K group. In addition, comparisons and tests of IL-4 and IL-10 in the intestines of the fish in both groups demonstrated that the H. houttuyniae added to feed enhanced the immune function of the fish intestines after bacterial attack. In conclusion, for koi carp infected with A.veronii, adding H. houttuyniae to their feed not only improves the activity of digestive enzymes and the morphological structure of the intestine but also optimizes the beneficial intestinal microbiota, thereby protecting the intestinal tract.


Subject(s)
Aeromonas veronii , Animal Feed , Carps , Fish Diseases , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Intestines , Animals , Carps/microbiology , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Animal Feed/analysis , Houttuynia , Lipase/metabolism , Diet/veterinary , alpha-Amylases/metabolism
6.
Georgian Med News ; (346): 6-9, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38501613

ABSTRACT

Houttuynia cordata is an herbal plant distributed throughout Asia. H. cordata has many bioactive properties, including antibacterial properties. The antibacterial effects of H. cordata on S. mutans remain unknown. Therefore, we treated S. mutans with 1, 3, 5, 10, 20, 30, or 40 mg/mL H. cordata extract at 37°C for 24 h. The antibacterial effect of H. cordata against S. mutans was confirmed using colony forming unit assay and disk diffusion assays. The results of the cell concentration assay demonstrated that H. cordata inhibited the growth of S. mutans in a dose-dependent manner. Prominent growth inhibition was observed after treatment with 10 mg/mL H. cordata extract, and these findings were statistically significant. In addition, no colonies of S. mutans were detected after treatment with 40 mg/mL H. cordata. Disk diffusion assays revealed that 20 mg/mL of H. cordata created a zone of growth inhibition of 11 mm. Therefore, our findings suggest the possibility of using H. cordata in the treatment and prevention of dental caries.


Subject(s)
Dental Caries , Drugs, Chinese Herbal , Houttuynia , Plant Extracts/pharmacology , Streptococcus mutans , Dental Caries/drug therapy , Dental Caries/prevention & control , Anti-Bacterial Agents/pharmacology
7.
Phytother Res ; 37(7): 2854-2863, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36814130

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by amyloid-ß (Aß) deposition, accompanied by neuroinflammation and memory dysfunction. Houttuyniae Herba (aerial parts of Houttuynia cordata, also known as fish mint; HH), an herbal medicine traditionally used to treat fever, urinary disorders, and pus, is revealed to protect neurons from Aß toxicity and regulate cholinergic dysfunction in AD models. In this study, we aimed to investigate the effects of HH on excessive accumulation of Aß followed by neuroinflammation, synaptic degeneration, and memory impairment. Two-month-old 5xFAD transgenic mice were administered HH at 100 mg/kg for 4 months. We observed that HH treatment ameliorated memory impairment and reduced Aß deposits in the brains of the mice. HH directly inhibited Aß aggregation in vitro using the Thioflavin T assay and indirectly suppressed the amyloidogenic pathway by increasing alpha-secretase expression in the mice brain. In addition, HH exerted antineuroinflammatory effects by reducing of glial activation and p38 phosphorylation. Moreover, HH treatment increased the expression of synaptophysin, a presynaptic marker protein. Overall, HH alleviates memory impairment in AD by facilitating nonamyloidogenic pathway and inhibiting neuroinflammation. Therefore, we suggest that HH can be a promising herbal drug for patients with AD requiring multifaceted improvement.


Subject(s)
Alzheimer Disease , Houttuynia , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Houttuynia/metabolism , Neuroinflammatory Diseases , Mice, Transgenic , Plant Components, Aerial , Disease Models, Animal
8.
Molecules ; 28(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687204

ABSTRACT

Chemical profiling for quality monitoring and evaluation of medicinal plants is gaining attention. This study aims to develop an HPLC method followed by multivariate analysis to obtain HPLC profiles of five specific flavonoids, including rutin (1), hyperin (2), isoquercitrin (3), quercitrin (4), and quercetin (5) from Houttuynia cordata leaves and powder products and assess the quality of H. cordata samples. Eventually, we successfully established HPLC-based flavonoid profiles and quantified the contents of 32 H. cordata fresh leave samples and four powder products. The study also quantified the contents of those five essential flavonoids using an optimized RP-HPLC method. Peak areas of samples were then investigated with principal component analysis (PCA) and hierarchical cluster analysis (HCA) to evaluate the similarity and variance. Principal components in PCA strongly influenced by hyperin and quercetin showed that the samples were clustered into subgroups, demonstrating H. cordata samples' quality. The results of HCA showed the similarity and divided the samples into seven subgroups. In conclusion, we have successfully developed a practical methodology that combined the HPLC-based flavonoid profiling and multivariate analysis for the quantification and quality control of H. cordata samples from fresh leaves and powder products. For further studies, we will consider various environmental factors, including climate and soil factors, to investigate their effects on the flavonoid contents of H. cordata.


Subject(s)
Flavonoids , Houttuynia , Quercetin , Chromatography, High Pressure Liquid , Powders , Plant Leaves
9.
Molecules ; 28(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630353

ABSTRACT

The U.S. Department of Agriculture (USDA) has established research programs to fight the phytopathogen Colletotrichum fragariae and the invasive red imported fire ant, Solenopsis invicta. C. fragariae is known to cause anthracnose disease in fruits and vegetables, while S. invicta is known for its aggressive behavior and painful stings and for being the cause of significant damage to crops, as well as harm to humans and animals. Many plants have been studied for potential activity against C. fragariae and S. invicta. Among the studied plants, Houttuynia cordata Thunb has been shown to contain 2-undecanone, which h is known for its antifungal activity against Colletotrichum gloesporioides. Based on the mean amount of sand removed, 2-undecanone showed significant repellency at 62.5 µg/g, similar to DEET (N,N-diethyl-meta-toluamide), against S. invicta. The 2-Undecanone with an LC50 of 44.59 µg/g showed toxicity against S. invicta workers. However, neither H. cordata extract nor 2-undecanone had shown activity against C. fragariae despite their known activity against C. gloesporioides, which in turn motivates us in repositioning 2-undecanone as a selected candidate for a Claisen-Schmidt condensation that enables access to several analogs (2a-f). Among the prepared analogs, (E)-1-(3-methylbenzo[b]thiophen-2-yl)dodec-1-en-3-one (2b) and (E)-1-(5-bromothiophen-2-yl)dodec-1-en-3-one (2f) showed promising activity against C. fragariae, revealing a distinctive structural activity relationship (SAR). The generated analogs revealed a clear regioselectivity pattern through forming the C=C alkene bond at position C-1. These data open the window for further lead optimization and product development in the context of managing C. fragariae and S. invicta.


Subject(s)
Ants , Colletotrichum , Fungicides, Industrial , Houttuynia , Insect Repellents , Insecticides , Animals , Humans , Insect Repellents/pharmacology
10.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903438

ABSTRACT

Two new 4-hydroxy-2-pyridone alkaloids furanpydone A and B (1 and 2), along with two known compounds N-hydroxyapiosporamide (3) and apiosporamide (4) were isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606 in Houttuynia cordata Thunb. Furanpydone A and B had unusual 5-(7-oxabicyclo[2.2.1]heptane)-4-hydroxy-2-pyridone skeleton. Their structures including absolute configurations were determined on the basis of spectroscopic analysis, as well as the X-ray diffraction experiment. Compound 1 showed inhibitory activity against ten cancer cell lines (MKN-45, HCT116, K562, A549, DU145, SF126, A-375, 786O, 5637, and PATU8988T) with IC50 values from 4.35 to 9.72 µM. Compounds 1, 3 and 4 showed moderate inhibitory effects against four Gram-positive strains (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus Subtilis, Clostridium perfringens) and one Gram-negative strain (Ralstonia solanacarum) with MIC values from 1.56 to 25 µM. However, compounds 1-4 showed no obvious inhibitory activity against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two pathogenic fungi (Candida albicans and Candida glabrata) at 50 µM. These results show that compounds 1-4 are expected to be developed as lead compounds for antibacterial or anti-tumor drugs.


Subject(s)
Alkaloids , Anti-Infective Agents , Antineoplastic Agents , Houttuynia , Methicillin-Resistant Staphylococcus aureus , Xylariales , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Alkaloids/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology
11.
Environ Sci Technol ; 56(12): 7997-8007, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35618674

ABSTRACT

Houttuynia cordata Thunb (H. cordata) is a native vegetable colonizing mercury (Hg) mining sites in the southwest of China; it can accumulate high Hg concentrations in the rhizomes and roots (edible sections), and thus consumption of H. cordata represents an important Hg exposure source to human. Here, we studied the spatial distribution, chemical speciation, and stable isotope compositions of Hg in the soil-H. cordata system at the Wuchuan Hg mining region in China, aiming to provide essential knowledge for assessing Hg risks and managing the transfer of Hg from soils to plants and agricultural systems. Mercury was mainly compartmentalized in the outlayer (periderm) of the underground tissues, with little Hg being translocated to the vascular bundle of the stem. Mercury presented as Hg-thiolates (94% ± 8%), with minor fractional amount of nanoparticulate ß-HgS (ß-HgSNP, 15% ± 4%), in the roots and rhizomes. Analysis of Hg stable isotope ratios showed that cysteine-extractable soil Hg pool (δ202Hgcys), root and rhizome Hg (δ202Hgroot, δ202Hgrhizome) were isotopically lighter than Hg in the bulk soils. A significant positive correlation between δ202Hgcys and δ202Hgroot was observed, suggesting that cysteine-extractable soil Hg pool was an important Hg source to H. cordata. The slightly positive Δ199Hg value in the plant (Δ199Hgroot = 0.07 ± 0.07‰, 2SD, n = 21; Δ199Hgrhizome = 0.06 ± 0.06‰, 2SD, n = 22) indicated that minor Hg was sourced from the surface water. Our results are important to assess the risks of Hg in H. cordata, and to develop sustainable methods to manage the transfer of Hg from soils to agricultural systems.


Subject(s)
Houttuynia , Mercury , Soil Pollutants , Cysteine , Environmental Monitoring/methods , Humans , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Plants , Soil/chemistry , Soil Pollutants/analysis
12.
Cell Mol Biol (Noisy-le-grand) ; 67(6): 281-290, 2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35818185

ABSTRACT

Polyphenols and flavonoids are phytochemicals that have essential roles in human nutrition. In this regard, the contents of polyphenols and flavonoids in Houttuynia cordata Thunb and their antioxidant activities were evaluated in the current study. Two Houttuynia cordata materials with the same chromosome number and chemical type were used to comprehensively assess the contents of total phenols and flavonoids in different parts of H. cordata. These chemical components were extracted by the ultrasonic method. The results showed that the total phenols and antioxidant capacity of different parts of H. cordata were significantly different. The content of polyphenols in roots and stems was low, the antioxidant capacity was weak, the total phenols in flowers and leaves were high, and the antioxidant capacity was strong. Therefore, different parts of H. cordata had different pharmacological and food effects. The whole herb can be used as Chinese herbal medicine, and its young leaves and roots can be used as vegetables. Flavonoids are the main phenolic components, and total phenols are the main components of antioxidant activity. It can explain a very significant positive correlation between total phenols and flavonoids. Therefore, in the further breeding work of H. cordata, the procedure can be simplified by determining one of the above indexes to predict the varieties with high total phenolic and antioxidant activity.


Subject(s)
Houttuynia , Antioxidants/pharmacology , Flavonoids/pharmacology , Houttuynia/chemistry , Humans , Phenols/pharmacology , Polyphenols , Ultrasonics
13.
Mol Divers ; 26(1): 365-388, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33961167

ABSTRACT

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC-MS/LC-MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of - 7.274 and - 5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020-3 has demonstrated better stability in the ligand-receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Houttuynia , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Houttuynia/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Tandem Mass Spectrometry
14.
Molecules ; 27(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745045

ABSTRACT

Houttuynia cordata is a medicinal and edible plant with a wide biological interest. Many parts were discarded due to various modes of consumption, resulting in resource waste. In this study, a comprehensive study was conducted on various edible indicators and medicinal components of Houttuynia cordata to understand its edible and medicinal value. The edible indexes of each root, stem, and leaf were determined, and the metabolites of different parts were investigated using the headspace solid-phase micro-extraction technique (HS-SPME-GC-MS). The differential metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA) and clustering analysis. The results of the study showed that the parts of Houttuynia cordata with high edibility values as a vegetable were mainly the roots and leaves, with the highest vitamin C content in the roots and the highest total flavonoids, soluble sugars, and total protein in the leaves. The nutrient content of all the stems of Houttuynia cordata was lower and significantly different from the roots and leaves (p < 0.05). In addition, 209 metabolites were isolated from Houttuynia cordata, 135 in the roots, 146 in the stems, 158 in the leaves, and 91 shared metabolites. The clustering analysis and OPLS-DA found that the parts of Houttuynia cordata can be mainly divided into above-ground parts (leaves and stems) and underground parts (roots). When comparing the differential metabolites between the above-ground parts and underground parts, it was found that the most important medicinal component of Houttuynia cordata, 2-undecanone, was mainly concentrated in the underground parts. The cluster analysis resulted in 28 metabolites with up-regulation and 17 metabolites with down-regulation in the underground parts. Most of the main components of the underground part have pharmacological effects such as anti-inflammatory, anti-bacterial and antiviral, which are more suitable for drug development. Furthermore, the above-ground part has more spice components and good antioxidant capacity, which is suitable for the extraction of edible flavors. Therefore, by comparing and analyzing the differences between the edible and medicinal uses of different parts of Houttuynia cordata as a medicinal and food plant, good insights can be obtained into food development, pharmaceutical applications, agricultural development, and the hygiene and cosmetic industries. This paper provides a scientific basis for quality control and clinical use.


Subject(s)
Houttuynia , Gas Chromatography-Mass Spectrometry , Metabolomics , Plant Leaves , Solid Phase Microextraction
15.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558024

ABSTRACT

Houttuynia cordata Thunb. is a medicinal and edible plant that has been commonly used in traditional Chinese medicine since ancient times. This study used headspace solid-phase microextraction (HS-SPME) and direct injection, combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), to identify the volatile compounds in H. cordata. Extraction from different parts of the plant using different extraction techniques for the identification of volatile compounds were determined. A total of 93 volatile components were analyzed in the leaves, stems, rhizomes, and whole plant samples of H. cordata. The leaves contained more (Z)-3-hexenal, ß-myrcene, (Z)-ß-ocimene, and (4E,6E)-allo-ocimene; the stems contained more geranyl acetate and nerolidol; and rhizomes contained more α-pinene, ß-pinene, limonene, 2-undecanone, and decanoyl acetaldehyde. Among them, the essential oil extracted by HS-SPME could produce more monoterpenes, while direct injection could obtain higher contents of aliphatic ketones, terpene esters, sesquiterpenes, and was more conducive to the extraction of 2-undecanone and decanoyl acetaldehyde.


Subject(s)
Houttuynia , Volatile Organic Compounds , Houttuynia/chemistry , Gas Chromatography-Mass Spectrometry/methods , Monoterpenes/analysis , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods
16.
J Sci Food Agric ; 102(15): 6848-6857, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35639719

ABSTRACT

BACKGROUND: Polysaccharides and probiotics can play an outstanding role in the treatment of liver disease by regulating gut microbiota. Recently, the combined therapeutic effect of probiotics and polysaccharides has attracted the attention of researchers. Houttuynia cordata polysaccharide (HCP) combined with Lactiplantibacillus plantarum P101 was used to prevent carbon tetrachloride (CCl4 )-induced acute liver injury (ALI) in mice, and its effect on gut microbiota regulation was explored. RESULTS: Results showed that, in mice, HCP combined with L. plantarum P101 significantly alleviated oxidative stress and inflammatory injury in the liver by activating Nrf2 signals and inhibiting NF-κB signals. The analysis of gut microbiota revealed that the combination of HCP and L. plantarum P101 increased the abundance of beneficial bacteria such as Alloprevotella, Roseburia, and Akkermansia, but reduced that of the pro-inflammatory bacteria Alistipes, Enterorhabdus, Anaerotruncus, and Escherichia-Shigella. Correlation analysis also indicated that the expression of Nrf2 and TLR4/NF-κB was connected to the changes in gut microbiota composition. Houttuynia cordata polysaccharide combined with L. plantarum P101 can regulate the gut microbiota and then mediate the gut-liver axis to activate the antioxidant pathway and inhibit inflammatory responses, thereby alleviating CCl4 -induced ALI. CONCLUSION: Our study provided a new perspective on the use of polysaccharides combined with probiotics in the treatment of liver disease. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Houttuynia , Lactobacillus plantarum , Probiotics , Mice , Animals , Houttuynia/chemistry , Houttuynia/metabolism , NF-E2-Related Factor 2 , NF-kappa B/metabolism , Polysaccharides/chemistry , Liver/metabolism , Bacteroidetes , Lactobacillus plantarum/metabolism
17.
Nutr Cancer ; 73(1): 160-168, 2021.
Article in English | MEDLINE | ID: mdl-32180441

ABSTRACT

Gastric cancer is one of the most common malignant tumors in the world, and prevention through diet is one of the ways to control. Houttuynia cordata thunb.(HCT) is a plant having medicine and food function, has many biological properties. However, the effect of food style on the anticancer activity of HCT is not clear. So, we investigate the effect of heat treatment on anticancer activity of HCT. HCT extracts (heated aerial stem, heated subterraneous stem, heated leaves defined as HAS, HSS, HL, respectively, and not heated defined as NAS, NSS, NL, respectively) were obtained, and their inhibited activity were detected by alamar blue assay. The cell apoptosis was detected by DAPI staining and flow cytometry analysis. Western blot was performed to test the expression of apoptotic related protein. HCT showed the anticancer activity in four human tumor cell lines. Interestingly, heat treatment could increase the anticancer activity. In SCG-7901 cells, heat treatment increased anticancer activity of AS by 2-14 folds and induced apoptosis through regulating the intrinsic signaling pathways. Intriguingly, the caspase nine specific inhibitor blocked AS-reduced cell viability. Heat treatment increased the anticancer activity of HCT, and can be used as a dietary style for prevention of gastric cancer.


Subject(s)
Houttuynia , Stomach Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Hot Temperature , Humans , Plant Extracts
18.
J Appl Toxicol ; 41(12): 2068-2082, 2021 12.
Article in English | MEDLINE | ID: mdl-34057207

ABSTRACT

Houttuynia cordata has been used as a traditional medicine for more than 1500 years. It has aroused wide public concern about its safety in the past few years, for it contains various aristolactams. However, the safety of H. cordata extract remains unclear. In the present study, single dose (2000 mg/kg) and subacute (250, 500, and 1000 mg/kg/day for 28 days) oral toxicity studies of the 95% ethanol extract of H. cordata (HCE) were performed in both male and female Sprague-Dawley (SD) rats. Hematological, biochemical, histopathological parameters, and plasma metabolic profiling were assessed. The single-dose toxicity of HCE was more than 2000 mg/kg. The subacute toxicity results showed that no significant adverse effect of HCE was observed at 250 mg/kg/day. However, five rats died in 500 and 1000 mg/kg/day groups and exhibited toxicities to liver and kidney. Plasma metabolic profiling analysis suggested that a number of metabolic disturbances were induced by oral administration of HCE, focusing on energy metabolism, amino acid metabolism, and lipids metabolism. Moreover, it appeared that male rats were more susceptible to the toxic effects of HCE than female rats. Therefore, in this preliminary study, oral administration of HCE 250 mg/kg/day can be regarded as the no observed adverse effect level in rats over 28 days. However, long-term use of HCE with large doses exhibited some hepatotoxicity and nephrotoxicity in rats.


Subject(s)
Houttuynia/chemistry , Metabolome/drug effects , Plant Extracts/toxicity , Animals , Female , Male , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Toxicity Tests, Acute , Toxicity Tests, Subacute
19.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923761

ABSTRACT

Houttuynia essential oil (HEO) has excellent antiviral, anti-inflammatory, and other pharmacological effects, but the lack of effective analytical methods to quantify HEO in plasma has hindered its better clinical monitoring. Houttuynine (Hou) is one of the main active ingredients and quality control substances of HEO, so the pharmacokinetic study of HEO could be conducted by determining Hou blood concentration. Hou is active and not stable in plasma, which makes its blood concentration difficult to measure. In this work, a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method for Hou determination in rat blood was established that involves Hou being derivatized with 2, 4-dinitrophenylhydrazine to form a stable compound to prevent degradation. Herein, p-Tolualdehyde-2,4-dinitrophenylphenylhydrazone was selected as an internal standard substance and the LC-MS/MS method was evaluated for selectivity, precision, accuracy, calibration limit, matrix effect, recovery, and stability. Good linearity (r2 = 0.998) was reached in the range of 2-2000 ng/mL, and the lower limit of quantification of Hou was determined to be 2 ng/mL. The mean intra-assay accuracy ranged from 77.7% to 115.6%, whereas the intra-assay precision (relative standard deviation, RSD) was below 11.42%. The matrix effect value for Hou in rat plasma was greater than 75%, and for the internal standard (IS) it was 104.56% ± 3.62%. The extraction recovery of Hou were no less than 90%, and for the IS it was 96.50% ± 4.68%. Our method is sensitive and reliable and has been successfully applied to the pharmacokinetic analysis of Hou in rats given HEO via gavage and injection.


Subject(s)
Chromatography, Liquid/methods , Houttuynia/chemistry , Oils, Volatile/analysis , Oils, Volatile/chemistry , Tandem Mass Spectrometry/methods , Animals , Male , Rats , Rats, Sprague-Dawley
20.
Fish Shellfish Immunol ; 98: 193-200, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923565

ABSTRACT

The present study addressed the possible effects of fishwort (Houttuynia cordata) powder (FWP) on Nile tilapia's skin mucus parameter, serum immune response, and growth performance. Three hundred twenty tilapia fingerlings (average weight of 39.06 ± 0.16 g) were divided into four treatments and fed four levels of FWP; 0, 5, 10, and 20 g kg-1 for 72 days. Completed randomised design of the four replications was applied and revealed that fish fed FWP significantly improved skin mucus lysozyme activity (SMLA). The highest value (P < 0.05) was recorded in fish fed 10 g kg-1 FWP. However, no significant difference in SMLA was observed by feeding the fish 5 and 20 g kg-1 FWP. Significant (P < 0.05) enhanced skin mucus peroxidase activity (SMPA) was observed in fish fed 10 g kg-1 FWP, but no significant difference in SMPA was detected between FWP supplemented diets (5 and 20 g kg-1 FWP) and the control group. Regarding serum immunity, dietary administration of FWP showed significantly (P < 0.05) improved serum lysozyme, peroxidase, alternative complement (ACH50), and phagocytosis vs. the control. The highest values of serum immunity (P < 0.05) were recorded in fish fed 10 g kg-1 FWP. However, no significance in respiratory burst activity was observed. Similarly, no significant difference in growth performance, feed conversion ratio, and survival rate was observed in fish fed FWP compared to the control. In summary, diets supplemented with FWP (10 g kg-1) increased the serum and mucosal immunity; however, no FWP supplementations had effects on Nile tilapia growth and survival rate.


Subject(s)
Cichlids/immunology , Dietary Supplements , Houttuynia/chemistry , Skin/immunology , Animal Feed/analysis , Animals , Aquaculture , Cichlids/growth & development , Diet/veterinary , Immunity, Humoral , Immunity, Mucosal
SELECTION OF CITATIONS
SEARCH DETAIL