ABSTRACT
PURPOSE: Multiple factors are thought to give rise to common, recurrent kidney stone disease, but for monogenic stone disorders a firm diagnosis is possible through genetic testing. The autosomal recessive primary hyperoxalurias (PH) are rare forms of monogenic kidney stone disease. All 3 types of PH are caused by inborn errors of glyoxylate metabolism in the liver, leading to hepatic oxalate overproduction and excessive renal urinary oxalate excretion. These conditions are characterized by kidney stones, nephrocalcinosis, progressive chronic kidney disease, and kidney failure. Systemic oxalosis, the extra-renal deposition of oxalate resulting in severe morbidity and mortality, occurs in chronic kidney disease when oxalate clearance by the kidneys declines. Novel small interfering RNA-based therapeutics targeting the liver to reduce urinary oxalate excretion have been approved, introducing precision medicine to treat primary hyperoxaluria type 1. The goal of this narrative review is to address the benefits and practicalities of genetic testing for suspected monogenic kidney stone disease and the critical roles of a multidisciplinary team. MATERIALS AND METHODS: We collated our procedures, education, training, and workflows to help other clinicians integrate genetic assessment into their diagnostic routines. RESULTS: In our experience, increased access to genetic testing facilitates early detection of PH and other monogenic causes of kidney stone disease so that individualized care can be instituted promptly. CONCLUSIONS: Alongside biochemical assessments, more widespread genetic testing may ensure more timely diagnoses so that patients with suspected monogenic kidney stone disease gain access to an expanded range of services and enrollment in clinical trials and registries.
Subject(s)
Genetic Testing , Hyperoxaluria, Primary , Kidney Calculi , Humans , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/therapy , Genetic Testing/methods , Kidney Calculi/genetics , Kidney Calculi/diagnosis , Kidney Calculi/etiology , Kidney Calculi/therapyABSTRACT
BACKGROUND: Three types of primary hyperoxaluria (PH) are recognized. However, data on PH type 2 (PH2), caused by defects in the GRHPR gene, are limited. METHODS: We reviewed the medical records of patients < 18 years of age with genetically-proven PH2 from seven centres across India to identify the age of onset, patterns of clinical presentation, short-term outcomes and genetic profile, and to determine if genotype-phenotype correlation exists. RESULTS: We report 20 patients (all with nephrolithiasis or nephrocalcinosis) diagnosed to have PH2 at a median (IQR) age of 21.5 (7, 60) months. Consanguinity and family history of kidney stones were elicited in nine (45%) and eight (40%) patients, respectively. The median (IQR) serum creatinine at PH2 diagnosis was 0.45 (0.29, 0.56) mg/dL with the corresponding estimated glomerular filtration rate being 83 (60, 96) mL/1.73 m2/min. A mutational hotspot (c.494 G > A), rare in Caucasians, was identified in 12 (60%) patients. An intronic splice site variant (c.735-1G > A) was noted in five (25%) patients. Four (20%) patients required surgical intervention for stone removal. Major adverse kidney events (mortality or chronic kidney disease (CKD) stages 3-5) were noted in six (30%) patients at a median (IQR) follow-up of 12 (6, 27) months. Risk factors for CKD progression and genotype-phenotype correlation could not be established. CONCLUSIONS: PH2 should no longer be considered an innocuous disease, but rather a potentially aggressive disease with early age of presentation, and possible rapid progression to CKD stages 3-5 in childhood in some patients. A mutational hotspot (c.494 G > A variant) was identified in 60% of cases, but needs further exploration to decipher the genotype-phenotype correlation.
Subject(s)
Hyperoxaluria, Primary , Nephrolithiasis , Renal Insufficiency, Chronic , Child , Humans , Infant , Genetic Profile , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Nephrolithiasis/geneticsABSTRACT
The primary hyperoxalurias (PH 1, 2, and 3) are rare autosomal recessive disorders of glyoxylate metabolism resulting in hepatic overproduction of oxalate. Clinical presentations that should prompt consideration of PH include kidney stones, nephrocalcinosis, and kidney failure of unknown etiology, especially with echogenic kidneys on ultrasound. PH1 is the most common and severe of the primary hyperoxalurias with a high incidence of kidney failure as early as infancy. Until the recent availability of a novel RNA interference (RNAi) agent, PH care was largely supportive of eventual need for kidney/liver transplantation in PH1 and PH2. Together with the Oxalosis and Hyperoxaluria Foundation, the authors developed a diagnostic algorithm for PH1 and in this report outline best clinical practices related to its early diagnosis, supportive treatment, and long-term management, including the use of the novel RNAi. PH1-focused approaches to dialysis and kidney/liver transplantation for PH patients with progression to chronic kidney disease/kidney failure and systemic oxalosis are suggested. Therapeutic advances for this devastating disease heighten the importance of early diagnosis and informed treatment.
Subject(s)
Hyperoxaluria, Primary , Humans , Hyperoxaluria, Primary/therapy , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/complications , Liver Transplantation , Kidney Transplantation , Algorithms , Early Diagnosis , Renal DialysisABSTRACT
BACKGROUND: Lumasiran is the first RNA interference (RNAi) therapy of primary hyperoxaluria type 1 (PH1). Here, we report on the rapid improvement and even disappearance of nephrocalcinosis after early lumasiran therapy. CASE-DIAGNOSIS/TREATMENT: In patient 1, PH1 was suspected due to incidental discovery of nephrocalcinosis stage 3 in a 4-month-old boy. Bilateral nephrocalcinosis stage 3 was diagnosed in patient 2 at 22 months concomitantly to acute pyelonephritis. Urinary oxalate (UOx) and glycolate (UGly) were increased in both patients allowing to start lumasiran therapy before genetic confirmation. Nephrocalcinosis started to improve and disappeared after 27 months and 1 year of treatment in patients 1 and 2, respectively. CONCLUSION: These cases illustrate the efficacy of early lumasiran therapy in infants to improve and even normalize nephrocalcinosis. As proposed in the 2023 European guidelines, the interest of starting treatment quickly without waiting for genetic confirmation may have an impact on long-term outcomes.
Subject(s)
Hyperoxaluria, Primary , Nephrocalcinosis , Humans , Nephrocalcinosis/genetics , Nephrocalcinosis/diagnosis , Nephrocalcinosis/therapy , Male , Infant , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/therapy , Hyperoxaluria, Primary/urine , Hyperoxaluria, Primary/complications , RNAi Therapeutics/methods , Treatment Outcome , Glycolates/therapeutic use , Glycolates/urineABSTRACT
A 6-month-old girl, previously diagnosed with cystic fibrosis (CF), was admitted to hospital for nephrolithiasis. Her parents were first-degree cousins. The patient underwent endoscopic stone management. Despite no family history of stones and medical treatment with potassium citrate, the patient developed recurrent renal stones and atypical urinary tract infections during follow-up. Basic investigations were all normal. Due to consanguinity and early presentation of nephrolithiasis, metabolic causes such as cystinuria and hyperoxaluria were considered. Cystinuria was excluded due to normal cystine levels. High urinary oxalate excretion was found as expected due to absorptive (secondary) hyperoxaluria in CF patients. An early stone burden in the patient with a history of medical treatment and consanguinity led us to perform a genetic testing. Genetic testing revealed a missense homozygous variant in exon 1 of the AGXT gene. The patient was diagnosed with primary hyperoxaluria type 1. Two rare life-threatening genetic diseases were found together in the same child.
Subject(s)
Cystic Fibrosis , Hyperoxaluria, Primary , Recurrence , Humans , Female , Cystic Fibrosis/genetics , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/complications , Infant , Transaminases/genetics , Urolithiasis/genetics , Urolithiasis/diagnosis , Urolithiasis/etiology , Consanguinity , Mutation, Missense , Hyperoxaluria/genetics , Hyperoxaluria/complications , Hyperoxaluria/diagnosis , Hyperoxaluria/etiology , Oxalates/urine , HomozygoteABSTRACT
BACKGROUND: Primary hyperoxaluria type 1 (PH1) is characterized by increased endogenous oxalate production and deposition as calcium oxalate crystals. The main manifestations are nephrocalcinosis/nephrolithiasis, causing impaired kidney function. We aimed to evaluate the clinical characteristics and overall outcomes of paediatric PH1 patients in Turkey. METHODS: This is a nationwide, multicentre, retrospective study evaluating all available paediatric PH1 patients from 15 different paediatric nephrology centres in Turkey. Detailed patient data was collected which included demographic, clinical and laboratory features. Patients were classified according to their age and characteristics at presentation: patients presenting in the first year of life with nephrocalcinosis/nephrolithiasis (infantile oxalosis, Group 1), cases with recurrent nephrolithiasis diagnosed during childhood (childhood-onset PH1, Group 2), and asymptomatic children diagnosed with family screening (Group 3). RESULTS: Forty-eight patients had a mutation consistent with PH1. The most common mutation was c.971_972delTG (25%). Infantile oxalosis patients had more advanced chronic kidney disease (CKD) or kidney failure necessitating dialysis (76.9% vs. 45.5%). These patients had much worse clinical course and mortality rates seemed to be higher (23.1% vs. 13.6%). Patients with fatal outcomes were the ones with significant comorbidities, especially with cardiovascular involvement. Patients in Group 3 were followed with better outcomes, with no kidney failure or mortality. CONCLUSION: PH1 is not an isolated kidney disease but a systemic disease. Family screening helps to preserve kidney function and prevent systemic complications. Despite all efforts made with traditional treatment methods including transplantation, our results show devastating outcomes or mortality.
Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Failure, Chronic , Nephrocalcinosis , Nephrolithiasis , Renal Insufficiency , Humans , Child , Nephrocalcinosis/diagnosis , Nephrocalcinosis/epidemiology , Nephrocalcinosis/etiology , Retrospective Studies , Kidney Failure, Chronic/complications , Renal Dialysis/adverse effects , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Nephrolithiasis/complications , Nephrolithiasis/diagnosis , Nephrolithiasis/genetics , Hyperoxaluria/complicationsABSTRACT
We retrospectively analyzed the clinical data of seven patients (four men and three women) with primary hyperoxaluria (PH) type 1 (PH1) in the Department of Nephrology of Zhongda Hospital, Southeast University from January 2018 to October 2023. The mean age at disease onset was 32.1 (range: 26-42) years. The mean age at diagnosis was 40.6 (range: 28-51) years. All patients initially had kidney stones, and three patients were found to have renal insufficiency at the time of disease onset. Among them, two patients underwent hemodialysis immediately. Symptoms at the first visit included bone pain (n=7), joint pain or deformity (n=5), fatigue (n=5), hypotension (n=3), and subcutaneous nodules (n=2). Four patients had a family history of PH. All patients had varying degrees of anemia (60-114 g/L), significant hypoalbuminemia (16.5-32.1 g/L), and hypercoagulable state (D-dimer: 2 230-12 781 µg/L). Seven patients received maintenance hemodialysis; their mean age was 37.7 (range: 26-50) years. The mean duration from disease onset to hemodialysis was 5.6 (range: 0-20) years. Five patients repeatedly experienced dialysis access dysfunction. Three patients underwent kidney transplantation before a diagnosis was made, and all transplanted kidneys lost function due to oxalate deposition. The mean follow-up duration was 14.43 (range: 4-38) months. Unfortunately, one patient died. All seven patients underwent computed tomography of the abdomen. All patients suffered skeletal abnormalities, bilateral nephrolithiasis, and nephrocalcinosis. Six patients carried AGXT gene mutations, including four compound heterozygous mutations and two pure homozygous mutations.The mutation sites included: c.823-824dup.AG (p.S275Rfs*38)(exon 8), c.815-816ins.GA (p.S275Rfs*38)(exon 8), c.595G>A (p.G199S) (exon 5), c.32C>G (p.P11R) (exon 1), and c.638C>T (p.A213V)(exon 6). According to the American College of Medical Genetics and Genomics guidelines, two loci were identified as likely pathogenic variants, seven were identified as pathogenic variants, and one locus was identified as having uncertain significance. In addition, patients 1 and 4 underwent skin biopsy, patient 2 underwent renal transplant biopsy, and patient 3 underwent bone marrow biopsy. Interestingly, significant oxalate deposition was found in the tissues. Therefore, PH1 is a rare autosomal recessive inherited disease. This study not only enhanced the understanding of the clinical characteristics of PH1 patients but also had great significance in early diagnosis and treatment of the disease.
Subject(s)
Hyperoxaluria, Primary , Mutation , Renal Dialysis , Humans , Male , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/complications , Female , Adult , Retrospective Studies , Middle Aged , Kidney Calculi/diagnosis , Kidney TransplantationABSTRACT
Primary hyperoxaluria (PH) is a rare autosomal recessive disorder, with PH type 1 (PH1) being the most common. It is primarily characterized by recurrent renal calculi, renal calcification, and can lead to acute renal failure. In infants, PH1 often results in early end-stage renal disease (ESRD) with a high mortality rate. This paper reports a case of an infant with acute renal failure in the Second Hospital of Shandong University who was diagnosed as PH1 using whole-exome sequencing, revealing a homozygous mutation in the AGXT gene (c.596-2A>G), which is reported here for the first time in the Chinese population. Previous literature indicates that urinary oxalate levels and stone composition can suggest PH1, with the gold standard for diagnosis being liver biopsy combined with alanine-glyoxylate aminotransferase (AGT) enzyme activity assessment. However, due to its convenience, AGXT gene sequencing has increasingly become the preferred diagnostic method. Conservative treatments for PH1 include adequate fluid intake, citrate, vitamin B6, and continuous renal replacement therapy, while liver transplantation is the only curative treatment. Infants with unexplained acute renal failure should be evaluated for PH1, with early detection of the level of urine oxalate and screening for genetic testing recommended.
Subject(s)
Hyperoxaluria, Primary , Mutation , Transaminases , Humans , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/complications , Infant , Transaminases/genetics , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Exome Sequencing , Homozygote , Oxalates/urineABSTRACT
Nedosiran is an investigational RNA interference agent designed to inhibit expression of hepatic lactate dehydrogenase, the enzyme thought responsible for the terminal step of oxalate synthesis. Oxalate overproduction is the hallmark of all genetic subtypes of primary hyperoxaluria (PH). In this double-blind, placebo-controlled study, we randomly assigned (2:1) 35 participants with PH1 (n = 29) or PH2 (n = 6) with eGFR ≥30 mL/min/1.73 m2 to subcutaneous nedosiran or placebo once monthly for 6 months. The area under the curve (AUC) of percent reduction from baseline in 24-hour urinary oxalate (Uox) excretion (primary endpoint), between day 90-180, was significantly greater with nedosiran vs placebo (least squares mean [SE], +3507 [788] vs -1664 [1190], respectively; difference, 5172; 95% CI 2929-7414; P < 0.001). A greater proportion of participants receiving nedosiran vs placebo achieved normal or near-normal (<0.60 mmol/24 hours; <1.3 × ULN) Uox excretion on ≥2 consecutive visits starting at day 90 (50% vs 0; P = 0.002); this effect was mirrored in the nedosiran-treated PH1 subgroup (64.7% vs 0; P < 0.001). The PH1 subgroup maintained a sustained Uox reduction while on nedosiran, whereas no consistent effect was seen in the PH2 subgroup. Nedosiran-treated participants with PH1 also showed a significant reduction in plasma oxalate versus placebo (P = 0.017). Nedosiran was generally safe and well tolerated. In the nedosiran arm, the incidence of injection-site reactions was 9% (all mild and self-limiting). In conclusion, participants with PH1 receiving nedosiran had clinically meaningful reductions in Uox, the mediator of kidney damage in PH.
Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Humans , Hyperoxaluria/urine , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/drug therapy , Hyperoxaluria, Primary/genetics , Oxalates/metabolism , RNA Interference , Double-Blind MethodABSTRACT
The primary hyperoxalurias are rare disorders of glyoxylate metabolism. Accurate diagnosis is essential for therapeutic and management strategies. We conducted a molecular study on patients suffering from recurrent calcium-oxalate stones and nephrocalcinosis and screened primary hyperoxaluria causing genes in a large cohort of early-onset cases. Disease-associated pathogenic-variants were defined as missense, nonsense, frameshift-indels, and splice-site variants with a reported minor allele frequency <1% in controls. We found pathogenic-variants in 34% of the cases. Variants in the AGXT gene causing PH-I were identified in 81% of the mutation positive cases. PH-II-associated variants in the GRHPR gene are found in 15% of the pediatric PH-positive population. Only 3% of the PH-positive cases have pathogenic-variants in the HOGA1 gene, responsible to cause PH-III. A population-specific AGXT gene variant c.1049G>A; p.Gly350Asp accounts for 22% of the PH-I-positive patients. Pathogenicity of the identified variants was evaluated by in-silico tools and ACMG guidelines. We have devised a rapid and low-cost approach for the screening of PH by using targeted-NGS highlighting the importance of an accurate and cost-effective screening platform. This is the largest study in Pakistani pediatric patients from South-Asian region that also expands the mutation spectrum of the three known genes.
Subject(s)
Hyperoxaluria, Primary , Humans , Child , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , MutationABSTRACT
BACKGROUND: With declining kidney function and therefore increasing plasma oxalate, patients with primary hyperoxaluria type I (PHI) are at risk to systemically deposit calcium-oxalate crystals. This systemic oxalosis may occur even at early stages of chronic kidney failure (CKD) but is difficult to detect with non-invasive imaging procedures. METHODS: We tested if magnetic resonance imaging (MRI) is sensitive to detect oxalate deposition in bone. A 3 Tesla MRI of the left knee/tibial metaphysis was performed in 46 patients with PHI and in 12 healthy controls. In addition to the investigator's interpretation, signal intensities (SI) within a region of interest (ROI, transverse images below the level of the physis in the proximal tibial metaphysis) were measured pixelwise, and statistical parameters of their distribution were calculated. In addition, 52 parameters of texture analysis were evaluated. Plasma oxalate and CKD status were correlated to MRI findings. MRI was then implemented in routine practice. RESULTS: Independent interpretation by investigators was consistent in most cases and clearly differentiated patients from controls. Statistically significant differences were seen between patients and controls (p < 0.05). No correlation/relation between the MRI parameters and CKD stages or Pox levels was found. However, MR imaging of oxalate osteopathy revealed changes attributed to clinical status which differed clearly to that in secondary hyperparathyroidism. CONCLUSIONS: MRI is able to visually detect (early) oxalate osteopathy in PHI. It can be used for its monitoring and is distinguished from renal osteodystrophy. In the future, machine learning algorithms may aid in the objective assessment of oxalate deposition in bone. Graphical Abstract A higher resolution version of the Graphical abstract is available as Supplementary information.
Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Failure, Chronic , Humans , Oxalates , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/diagnostic imaging , Hyperoxaluria/complications , Calcium OxalateABSTRACT
Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion. The relation between genotype and clinical phenotype in PH1 is extremely heterogeneous with respect to age of first symptoms and development of kidney failure. Some mutations are significantly linked to pyridoxine-sensitivity in PH1, such as homozygosity for p.G170R and p.F152I combined with a common polymorphism. Although patients with these mutations display on average better outcomes, they may also present with CKD stage 5 in infancy. In vitro studies suggest pyridoxine-sensitivity for some other mutations, but confirmatory clinical data are lacking (p.G47R, p.G161R, p.I56N/major allele) or scarce (p.I244T). These studies also suggest that other vitamin B6 derivatives than pyridoxine may be more effective and should be a focus for clinical testing. PH patients displaying the same mutation, even within one family, may have completely different clinical outcomes. This discordance may be caused by environmental or genetic factors that are unrelated to the effect of the causative mutation(s). No relation between genotype and clinical or biochemical phenotypes have been found so far in PH types 2 and 3. This manuscript reviews the current knowledge on the genetic background of the three types of primary hyperoxaluria and its impact on clinical management, including prenatal diagnosis.
Subject(s)
Hyperoxaluria, Primary , Humans , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Pyridoxine/therapeutic use , Mutation , Genetic Testing/methods , Genotype , Transaminases/geneticsABSTRACT
BACKGROUND: Primary hyperoxalurias (PHs) constitute rare disorders resulting in abnormal glyoxalate metabolism. PH-associated phenotypes range from progressive nephrocalcinosis and/or recurrent urolithiasis to early kidney failure. METHODS: A retrospective study was conducted for patients with confirmed PH diagnoses from three tertiary centers in Saudi Arabia. Detailed clinical molecular diagnosis was performed for 25 affected individuals. Whole exome sequencing (WES)-based molecular diagnosis was performed for all affected individuals. RESULTS: The male:female ratio was 52% male (n = 13) and 48% female (n = 12), and consanguinity was present in 88%. Nephrolithiasis and/or nephrocalcinosis were present in all patients. Kidney stones were present in 72%, nephrocalcinosis in 60%, hematuria in 32%, proteinuria in 16%, abdominal pain in 36%, developmental delay in 8%, and chronic kidney disease stage 5 (CKD stage 5) was observed in 28% of the patients. The most common PH disorder was type I caused by variants in the AGXT gene, accounting for 56%. The GRHPR gene variants were identified in 4 patients, 16% of the total cases. Seven patients did not reveal any associated variants. Missense variants were the most commonly observed variants (48%), followed by frame-shift duplication variants (28%). CONCLUSIONS: Characterization of the genetic and clinical aspects of PH in this unique population provides direction for improved patient management and further research. A higher resolution version of the Graphical abstract is available as Supplementary information.
Subject(s)
Hyperoxaluria, Primary , Nephrocalcinosis , Nephrolithiasis , Male , Humans , Female , Nephrocalcinosis/epidemiology , Nephrocalcinosis/genetics , Nephrocalcinosis/diagnosis , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/epidemiology , Retrospective Studies , Saudi Arabia/epidemiology , Nephrolithiasis/geneticsABSTRACT
BACKGROUND: The primary hyperoxalurias (PH1-3) are rare inherited disorders of the glyoxylate metabolism characterized by endogenous overproduction of oxalate. As oxalate cannot be metabolized by humans, oxalate deposits may affect various organs, primarily the kidneys, bones, heart, and eyes. Vision loss induced by severe retinal deposits is commonly seen in infantile PH1; less frequently and milder retinal alterations are found in non-infantile PH1. Retinal disease has not systematically been investigated in patients with PH2 and PH3. METHODS: A comprehensive ophthalmic examination was performed in 19 genetically confirmed PH2 (n = 7) and PH3 (n = 12) patients (median age 11 years, range 3-59). RESULTS: Median best corrected visual acuity was 20/20. In 18 patients, no retinal oxalate deposits were found. A 30-year-old male with PH2 on maintenance hemodialysis with plasma oxalate (Pox) elevation (> 100 µmol/l; normal < 7.4) demonstrated bilateral drusen-like, hyperreflective deposits which were interpreted as crystallized oxalate. Two siblings of consanguineous parents with PH2 presented with retinal degeneration and vision loss; exome-wide analysis identified a second monogenic disease, NR2E3-associated retinal dystrophy. CONCLUSIONS: Retinal disease manifestation in PH2 and PH3 is rare but mild changes can occur at least in PH2-associated kidney failure. Decline in kidney function associated with elevated plasma oxalate levels could increase the risk of systemic oxalosis. Deep phenotyping combined with genomic profiling is vital to differentiate extrarenal disease in multisystem disorders such as PH from independent inherited (retinal) disease. A higher resolution version of the Graphical abstract is available as Supplementary information.
Subject(s)
Hyperoxaluria, Primary , Retinal Diseases , Male , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Oxalates , Retinal Diseases/etiology , Retinal Diseases/genetics , PhenotypeABSTRACT
BACKGROUND: Primary hyperoxaluria (PH) results from genetic mutations in different genes of glyoxylate metabolism, which cause significant increases in production of oxalate by the liver. This study aimed to report clinical and laboratory manifestations and outcome of PH type 1 in children in our center. METHODS: A single-center observational cohort study was conducted at Children's University Hospital in Damascus, and included all patients admitted from 2018 to 2020, with a diagnosis of hyperoxaluria (urinary oxalate excretion > 45 mg/1.73 m2/day, or > 0.5 mmol/1.73 m2/day). PH type 1 (PH1) diagnosis was established by identification of biallelic pathogenic variants (compound heterozygous or homozygous mutations) in AGXT gene on molecular genetic testing. RESULTS: The study included 100 patients with hyperoxaluria, with slight male dominance (57%), and median age 1.75 years (range, 1 month-14 years). Initial complaint was urolithiasis or nephrocalcinosis in 47%, kidney failure manifestations in 29%, and recurrent urinary tract infection in 24%. AGXT mutations were detected in 40 patients, and 72.5% of PH1 patients had kidney failure at presentation. Neither gender, age nor urinary oxalate excretion in 24 h had statistical significance in distinguishing PH1 from other forms of hyperoxaluria (P-Value > 0.05). Parental consanguinity, family history of kidney stones, bilateral nephrocalcinosis, presence of oxalate crystals in random urine sample, kidney failure and mortality were statistically significantly higher in PH1 (P-values < 0.05). Mortality was 32.5% among PH1 patients, with 4 PH1 patients (10%) on hemodialysis awaiting combined liver-kidney transplantation. CONCLUSION: PH1 is still a grave disease with wide variety of clinical presentations which frequent results in delays in diagnosis, thus kidney failure is still a common presentation. In Syria, we face many challenges in diagnosis of PH, especially PH2 and PH3, and in management, with hopes that diagnosis tools and modern therapies will become available in our country. Graphical abstract A higher resolution version of the Graphical abstract is available as Supplementary information.
Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Calculi , Nephrocalcinosis , Renal Insufficiency , Child , Humans , Male , Infant , Nephrocalcinosis/genetics , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , OxalatesABSTRACT
BACKGROUND: Without effective intervention, primary hyperoxaluria type 1 (PH1) causes oxalate-induced kidney damage, leading to end-stage kidney disease and serious complications throughout the body. Although PH1 carries a heavy burden that impacts quality of life, literature on the experiences of those living with PH1 and caring for patients with PH1 is limited. This study aimed to describe the diagnostic journey in PH1 and characterize patients' and caregivers' self-reported experiences throughout the disease course. METHODS: This was an observational study involving in-depth, semi-structured telephone interviews. Dominant trends were assessed using constant comparative analysis to identify themes in interviewees' descriptions of their experiences. Individuals aged ≥ 12 years and caregivers of children aged 6-17 years with genetically confirmed PH1 were eligible. Informed consent/assent and ability to read and speak English were required. RESULTS: Interviewees (16 patients, 12 caregivers) reported a prolonged diagnostic journey due to low disease awareness, among other factors. Upon diagnosis, PH1 was frequently symptomatic, typically involving kidney stone-related symptoms but also potentially symptoms arising beyond the kidneys. PH1 most commonly led to worry and social impairment in adolescents, impaired physical function in adults, and a range of impacts on caregivers. In late-stage disease, dialysis was the most burdensome aspect of living with PH1 (due to time requirements, limitations from living with a catheter, etc.), and this burden was exacerbated by the COVID-19 pandemic. Benefits desired from PH1 management included reductions in laboratory measures of oxalate burden, kidney stone and urination frequency, and oxalate-related skin ulcers. CONCLUSIONS: PH1 greatly impacts patients' and caregivers' lives, primarily due to burdensome disease manifestations and associated emotional, physical, and practical impacts, as well as disease management challenges - particularly those related to dialysis in late-stage disease.
Subject(s)
Hyperoxaluria, Primary , Kidney Calculi , Child , Adult , Adolescent , Humans , Pandemics , Quality of Life , Renal Dialysis , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/complications , Oxalates , Patient Outcome AssessmentABSTRACT
Primary hyperoxalurias (PH) are a group of rare heterogeneous disorders characterized by deficiencies in glyoxylate metabolism. To date, three genes have been identified to cause three types of PH (I, II, and III). The HOGA1 gene caused type III in around 10% of the PH cases. Disease-associated pathogenic variants have been reported from several populations and a comprehensive spectrum of these mutations and genotype-phenotype correlation has never been presented. In this study, we describe new cases of the HOGA1 gene pathogenic variants identified in our population. We report the first case of ESKD with successful kidney transplantation with 5 years of follow-up. Furthermore, a comprehensive overview of PH type III associated HOGA1 gene variants was carried out. Compiling the data from the literature, we reviewed 57 distinct HOGA1 gene pathogenic variants in 175 patients worldwide. The majority of reported variants are missense variants that predicted a loss of function mechanism as the underlying pathology. There has been evidence of the presence of founder mutations in several populations like Europeans, Ashkenazi Jews, Arab, and Chinese populations. No significant genotype-phenotype correlation was identified concerning the ages of onset of the disease and biochemical and metabolic parameters. Nephrocalcinosis was rare in patients with disease-associated variants. Most of the patients were presented with urolithiasis early in life; only five cases reported disease progression after the second decade of life. The establishment of impairment of renal function in 8% of all the reported cases makes this type a relatively severe form of primary hyperoxaluria, not a benign etiology as suggested previously.
Subject(s)
Hyperoxaluria, Primary , Oxo-Acid-Lyases , Humans , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/metabolism , Mutation , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolismABSTRACT
PURPOSE: We evaluated the utility of diagnostic codes to screen for patients with primary hyperoxaluria (PH) and evaluate their positive predictive value (PPV) in identifying children with this rare condition in PEDSnet, a clinical research network of pediatric health systems that shares electronic health records data. MATERIALS AND METHODS: We conducted a cross-sectional study of children who received care at 7 PEDSnet institutions from January 2009 through January 2021. We developed and applied screening criteria using diagnostic codes that generated 3 categories of the hypothesized probability of PH. Tier 1 had specific diagnostic codes for PH; tier 2 had codes for hyperoxaluria, oxalate nephropathy, or oxalosis; and tier 3 had a combination of ≥2 codes for disorder of carbohydrate metabolism and ≥1 code for kidney stones. We reviewed the electronic health records of patients with possible PH to confirm PH diagnosis and evaluate the accuracy and timing of diagnostic codes. The PPV of the codes was compared across tiers, time, PH type, and site. RESULTS: We identified 341 patients in the screen; 33 had confirmed PH (9.7%). Tier 1 had the highest proportion of PH; however, the PPV was only 20%. The degree to which an institution accurately represented point of care diagnoses in the data extraction process was predictive of higher PPV. The PPV of diagnostic codes was highest for PH3 (100%) and lowest for PH1 (22.8%). CONCLUSIONS: Diagnostic codes for PH have poor PPV. Findings suggest that one should be careful in research using large databases in which source validation is not possible.
Subject(s)
Hyperoxaluria, Primary , Child , Cross-Sectional Studies , Databases, Factual , Electronic Health Records , Humans , Hyperoxaluria, Primary/diagnosis , Predictive Value of TestsABSTRACT
Primary hyperoxaluria (PH) is a group of genetic disorders that result in an increased hepatic production of oxalate. PH type 3 (PH3) is the most recently identified subtype and results from mutations in the mitochondrial 4-hydroxy-2-oxoglutarate aldolase gene (HOGA1). To date, there have been 2 cases of kidney failure reported in PH3 patients. We present a case of a young man with a history of recurrent urinary tract infections and voiding dysfunction who developed kidney failure at 33 years of age. He developed a bladder stone and bilateral staghorn calculi at 12 years of age. Initial metabolic evaluation revealed hyperoxaluria with very low urinary citrate excretion on multiple measurements for which he was placed on oral citrate supplements. Further investigation of the hyperoxaluria was not completed as the patient was lost to follow-up observation until he presented at 29 years of age with chronic kidney disease stage 4 (estimated glomerular filtration rate 24mL/min/1.73m2). Hemodialysis 3 times a week was started at 33 years of age, and subsequent genetic testing revealed a homozygous HOGA1 mutation (C.973G>A p.Gly325Ser) diagnostic of PH3. The patient is currently being evaluated for all treatment options including possible liver/kidney transplantation. All cases of a childhood history of recurrent urinary stone disease with marked hyperoxaluria should prompt genetic testing for the 3 known PH types. Hyperhydration and crystallization inhibitors (citrate) are standard of care, but the role of RNA interference agents for all 3 forms of PH is also under active study.
Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Oxo-Acid-Lyases , Renal Insufficiency , Humans , Hyperoxaluria/complications , Hyperoxaluria/diagnosis , Hyperoxaluria/genetics , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Male , OxalatesABSTRACT
Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.