Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.672
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Annu Rev Immunol ; 40: 221-247, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35061510

ABSTRACT

As central effectors of the adaptive immune response, immunoglobulins, or antibodies, provide essential protection from pathogens through their ability to recognize foreign antigens, aid in neutralization, and facilitate elimination from the host. Mammalian immunoglobulins can be classified into five isotypes-IgA, IgD, IgE, IgG, and IgM-each with distinct roles in mediating various aspects of the immune response. Of these isotypes, IgA and IgM are the only ones capable of multimerization, arming them with unique biological functions. Increased valency of polymeric IgA and IgM provides high avidity for binding low-affinity antigens, and their ability to be transported across the mucosal epithelium into secretions by the polymeric immunoglobulin receptor allows them to play critical roles in mucosal immunity. Here we discuss the molecular assembly, structure, and function of these multimeric antibodies.


Subject(s)
Immunoglobulin A , Receptors, Polymeric Immunoglobulin , Animals , Humans , Immunity, Mucosal , Immunoglobulin M/chemistry , Immunoglobulin M/metabolism , Mammals/metabolism , Mucous Membrane , Receptors, Polymeric Immunoglobulin/chemistry
2.
Annu Rev Immunol ; 39: 695-718, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33646857

ABSTRACT

Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.


Subject(s)
Immunity, Mucosal , Immunoglobulin A , Animals , Humans , Intestinal Mucosa , Peyer's Patches
3.
Annu Rev Immunol ; 36: 359-381, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29400985

ABSTRACT

IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.


Subject(s)
Gastrointestinal Microbiome/immunology , Immunoglobulin A/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Age Factors , Animals , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Intestinal Mucosa/metabolism , Protein Binding
4.
Annu Rev Immunol ; 35: 119-147, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28125357

ABSTRACT

The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.


Subject(s)
Epithelial Cells/physiology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Animals , Cell Communication , Homeostasis , Humans , Immunity, Innate , Immunoglobulin A/metabolism , Intestinal Mucosa/pathology , Wound Healing
5.
Nat Immunol ; 25(10): 1913-1927, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39227514

ABSTRACT

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin A , SARS-CoV-2 , Animals , Immunoglobulin A/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Macaca mulatta , Adenoviridae/immunology , Adenoviridae/genetics , Immunity, Mucosal , Adenovirus Vaccines/immunology , Adenovirus Vaccines/administration & dosage , Female , Lung/virology , Lung/immunology , B-Lymphocytes/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Administration, Intranasal , Vaccination/methods , Humans
6.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33412089

ABSTRACT

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Subject(s)
Antibodies, Neutralizing/immunology , Biomarkers/analysis , COVID-19/immunology , COVID-19/physiopathology , Adult , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , Comorbidity , Coronavirus/classification , Coronavirus/physiology , Cross Reactions , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Massachusetts/epidemiology , Middle Aged , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Survival Analysis , Treatment Outcome
7.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34015271

ABSTRACT

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Expression Profiling , Humans , Immunoglobulin A/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Protein Domains/immunology , Protein Multimerization , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Nat Immunol ; 24(3): 531-544, 2023 03.
Article in English | MEDLINE | ID: mdl-36658240

ABSTRACT

Immunoglobulin A (IgA) secretion by plasma cells, terminally differentiated B cells residing in the intestinal lamina propria, assures microbiome homeostasis and protects the host against enteric infections. Exposure to diet-derived and commensal-derived signals provides immune cells with organizing cues that instruct their effector function and dynamically shape intestinal immune responses at the mucosal barrier. Recent data have described metabolic and microbial inputs controlling T cell and innate lymphoid cell activation in the gut; however, whether IgA-secreting lamina propria plasma cells are tuned by local stimuli is completely unknown. Although antibody secretion is considered to be imprinted during B cell differentiation and therefore largely unaffected by environmental changes, a rapid modulation of IgA levels in response to intestinal fluctuations might be beneficial to the host. In the present study, we showed that dietary cholesterol absorption and commensal recognition by duodenal intestinal epithelial cells lead to the production of oxysterols, evolutionarily conserved lipids with immunomodulatory functions. Using conditional cholesterol 25-hydroxylase deleter mouse line we demonstrated that 7α,25-dihydroxycholesterol from epithelial cells is critical to restrain IgA secretion against commensal- and pathogen-derived antigens in the gut. Intestinal plasma cells sense oxysterols via the chemoattractant receptor GPR183 and couple their tissue positioning with IgA secretion. Our findings revealed a new mechanism linking dietary cholesterol and humoral immune responses centered around plasma cell localization for efficient mucosal protection.


Subject(s)
Immunity, Innate , Plasma Cells , Animals , Mice , Cholesterol, Dietary , Epithelial Cells , Immunoglobulin A , Intestinal Mucosa , Receptors, G-Protein-Coupled , Intestines
9.
Cell ; 181(6): 1276-1290.e13, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32402238

ABSTRACT

At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORƎĀ³-expressing regulatory TĀ cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORƎĀ³+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORƎĀ³+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORƎĀ³+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.


Subject(s)
Digestive System/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Susceptibility/immunology , Female , Gastrointestinal Microbiome/immunology , Homeostasis/immunology , Immunoglobulin A/immunology , Inflammation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred NOD , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
10.
Cell ; 183(4): 1024-1042.e21, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32991844

ABSTRACT

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49Ā days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Epitope Mapping/methods , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Reactions , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Kinetics , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Cell ; 183(6): 1508-1519.e12, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33207184

ABSTRACT

The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised FcƉĀ£ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.


Subject(s)
COVID-19 , Immunity, Humoral , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , Female , HL-60 Cells , Humans , Male
12.
Nat Immunol ; 23(11): 1564-1576, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36316480

ABSTRACT

Durable antibody immunity depends on long-lived plasma cells (LLPCs) that primarily reside in the bone marrow (BM). However, due to LLPC rarity, it has not been possible to define their phenotypes or determine their heterogeneity. By single-cell mRNA sequencing, cytometry and a genetic pulse-chase mouse model, we show that IgG and IgM LLPCs display an EpCAMhiCXCR3- phenotype, whereas IgA LLPCs are Ly6AhiTigit-. While IgG and IgA LLPCs are mainly contributed by somatically hypermutated cells following immunization or infection, cells with innate properties and public antibodies are found in IgA and IgM LLPC compartments. Particularly, IgM LLPCs are highly enriched with public clones shared among different individual animals, differentiated in a T cell-independent manner and have affinity for self-antigens and microbial-derived antigens. Taken together, our work reveals different routes toward LLPC development and paves the way for deeper understanding of cellular and molecular underpinnings of long-term antibody immunity.


Subject(s)
Microbiota , Plasma Cells , Mice , Animals , Autoantigens , Immunization , Immunoglobulin M , Immunoglobulin A , Immunoglobulin G
13.
Nat Immunol ; 23(1): 33-39, 2022 01.
Article in English | MEDLINE | ID: mdl-34848871

ABSTRACT

The first ever US Food and Drug Administration-approved messenger RNA vaccines are highly protective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3. However, the contribution of each dose to the generation of antibodies against SARS-CoV-2 spike (S) protein and the degree of protection against novel variants warrant further study. Here, we investigated the B cell response to the BNT162b2 vaccine by integrating B cell repertoire analysis with single-cell transcriptomics pre- and post-vaccination. The first vaccine dose elicits a recall response of IgA+ plasmablasts targeting the S subunit S2. Three weeks after the first dose, we observed an influx of minimally mutated IgG+ memory B cells that targeted the receptor binding domain on the S subunit S1 and likely developed from the naive B cell pool. This response was strongly boosted by the second dose and delivers potently neutralizing antibodies against SARS-CoV-2 and several of its variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Memory T Cells/immunology , Protein Domains/immunology , Vaccine Efficacy
14.
Cell ; 176(3): 610-624.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612739

ABSTRACT

Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.


Subject(s)
Immunoglobulin A/metabolism , Interleukin-10/metabolism , Intestines/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Immunoglobulin A/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Neuroimmunomodulation/immunology , Plasma Cells/metabolism
15.
Cell ; 178(5): 1072-1087.e14, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442401

ABSTRACT

Nutritional status potentially influences immune responses; however, how nutritional signals regulate cellular dynamics and functionality remains obscure. Herein, we report that temporary fasting drastically reduces the number of lymphocytes by Ć¢ĀˆĀ¼50% in Peyer's patches (PPs), the inductive site of the gut immune response. Subsequent refeeding seemingly restored the number of lymphocytes, but whose cellular composition was conspicuously altered. A large portion of germinal center and IgA+ B cells were lost via apoptosis during fasting. Meanwhile, naive B cells migrated from PPs to the bone marrow during fasting and then back to PPs during refeeding when stromal cells sensed nutritional signals and upregulatedĀ CXCL13 expression to recruit naive BĀ cells. Furthermore, temporal fasting before oral immunizationĀ with ovalbumin abolished the induction of antigen-specific IgA, failed to induce oral tolerance, and eventually exacerbated food antigen-induced diarrhea. Thus, nutritional signals are critical in maintaining gut immune homeostasis.


Subject(s)
B-Lymphocytes/physiology , Immunity, Mucosal , Animals , Antigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bone Marrow/immunology , Bone Marrow/metabolism , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Fasting , Gene Expression Regulation , Glycolysis , Immunoglobulin A/metabolism , Male , Mice , Mice, Inbred BALB C , Nutritional Status , Ovalbumin/immunology , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/pathology , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism , Signal Transduction , Stromal Cells/cytology , Stromal Cells/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Nat Immunol ; 22(1): 25-31, 2021 01.
Article in English | MEDLINE | ID: mdl-33154590

ABSTRACT

Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , COVID-19/virology , Child , Child, Preschool , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/physiology , Young Adult
17.
Nat Immunol ; 22(11): 1452-1464, 2021 11.
Article in English | MEDLINE | ID: mdl-34611361

ABSTRACT

There is limited understanding of the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children. Herein, SARS-CoV-2 proteome-wide immunoprofiling of children with mild/moderate or severe coronavirus disease 2019 (COVID-19) versus multisystem inflammatory syndrome in children versus hospitalized control patients revealed differential cytokine responses, IgM/IgG/IgA epitope diversity, antibody binding and avidity. Apart from spike and nucleocapsid, IgG/IgA recognized epitopes in nonstructural protein (NSP) 2, NSP3, NSP12-NSP14 and open reading frame (ORF) 3a-ORF9. Peptides representing epitopes in NSP12, ORF3a and ORF8 demonstrated SARS-CoV-2 serodiagnosis. Antibody-binding kinetics with 24 SARS-CoV-2 proteins revealed antibody parameters that distinguish children with mild/moderate versus severe COVID-19 or multisystem inflammatory syndrome in children. Antibody avidity to prefusion spike correlated with decreased illness severity and served as a clinical disease indicator. The fusion peptide and heptad repeat 2 region induced SARS-CoV-2-neutralizing antibodies in rabbits. Thus, we identified SARS-CoV-2 antibody signatures in children associated with disease severity and delineate promising serodiagnostic and virus neutralization targets. These findings might guide the design of serodiagnostic assays, prognostic algorithms, therapeutics and vaccines in this important but understudied population.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/complications , COVID-19/immunology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/diagnosis , Child , Child, Preschool , Disease Progression , Epitopes/metabolism , Female , Hospitalization , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Prognosis , Proteome , Severity of Illness Index , Systemic Inflammatory Response Syndrome/diagnosis
18.
Annu Rev Immunol ; 29: 273-93, 2011.
Article in English | MEDLINE | ID: mdl-21219173

ABSTRACT

Mucosal surfaces are colonized by large communities of commensal bacteria and represent the primary site of entry for pathogenic agents. To prevent microbial intrusion, mucosal B cells release large amounts of immunoglobulin (Ig) molecules through multiple follicular and extrafollicular pathways. IgA is the most abundant antibody isotype in mucosal secretions and owes its success in frontline immunity to its ability to undergo transcytosis across epithelial cells. In addition to translocating IgA onto the mucosal surface, epithelial cells educate the mucosal immune system as to the composition of the local microbiota and instruct B cells to initiate IgA responses that generate immune protection while preserving immune homeostasis. Here we review recent advances in our understanding of the cellular interactions and signaling pathways governing IgA production at mucosal surfaces and discuss new findings on the regulation and function of mucosal IgD, the most enigmatic isotype of our mucosal antibody repertoire.


Subject(s)
Immunity, Mucosal , Immunoglobulin A/immunology , Mucous Membrane/immunology , Animals , B-Lymphocytes/immunology , Humans , Immunoglobulin D/immunology , Mucous Membrane/microbiology , T-Lymphocytes/immunology
19.
Immunity ; 57(6): 1428-1441.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723638

ABSTRACT

Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.


Subject(s)
B-Lymphocytes , Animals , B-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Peyer's Patches/immunology , Lymphocyte Activation/immunology , Antigens, Bacterial/immunology , Somatic Hypermutation, Immunoglobulin , Peptide Library , Lymph Nodes/immunology , Cell Surface Display Techniques , Symbiosis/immunology , Immunoglobulin G/immunology , Immunoglobulin A/immunology
20.
Annu Rev Immunol ; 28: 243-73, 2010.
Article in English | MEDLINE | ID: mdl-20192805

ABSTRACT

In mammals, the gastrointestinal tract harbors an extraordinarily dense and complex community of microorganisms. The gut microbiota provide strong selective pressure to the host to evolve adaptive immune responses required for the maintenance of local and systemic homeostasis. The continuous antigenic presence in the gut imposes a dynamic remodeling of gut-associated lymphoid tissues (GALT) and the selection of multiple layered strategies for immunoglobulin (Ig) A production. The composite and dynamic gut environment also necessitates heterogeneous, versatile, and convertible T cells, capable of inhibiting (Foxp3(+) T cells) or helping (T(FH) cells) local immune responses. In this review, we describe recent advances in our understanding of dynamic pathways that lead to IgA synthesis, in gut follicular structures and in extrafollicular sites, by T cell-dependent and T cell-independent mechanisms. We discuss the finely tuned regulatory mechanisms for IgA production and emphasize the role of mucosal IgA in the selection and maintenance of the appropriate microbial composition that is necessary for immune homeostasis.


Subject(s)
Adaptive Immunity , Antibody Formation , Gastrointestinal Tract/immunology , Immunoglobulin A/immunology , T-Lymphocytes/immunology , Animals , Homeostasis , Humans , Immunoglobulin A/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL