Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 33: 291-353, 2015.
Article in English | MEDLINE | ID: mdl-25861976

ABSTRACT

Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.


Subject(s)
Adaptive Immunity/physiology , Immunity, Innate/physiology , Ion Channels/metabolism , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Hypersensitivity/metabolism , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Immunotherapy/methods , Ion Channels/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Molecular Targeted Therapy , Mutation , Signal Transduction
2.
Annu Rev Immunol ; 33: 823-74, 2015.
Article in English | MEDLINE | ID: mdl-25706096

ABSTRACT

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Genetic Predisposition to Disease , Inflammation/genetics , Inflammation/immunology , Animals , Autoimmune Diseases/metabolism , Autoimmunity , Disease Models, Animal , Humans , Immunity, Innate , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferons/metabolism , Interleukin-1/metabolism , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , Signal Transduction
3.
Nat Immunol ; 24(5): 814-826, 2023 05.
Article in English | MEDLINE | ID: mdl-36997670

ABSTRACT

Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.


Subject(s)
Bone Marrow Transplantation , Granulocyte Colony-Stimulating Factor , Animals , Mice , Cytokines , Interleukin-1 , Tumor Necrosis Factor-alpha/genetics , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism
4.
Cell ; 159(7): 1578-90, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525876

ABSTRACT

Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1ß. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health.


Subject(s)
Adaptive Immunity , Aminopeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Glycolysis , Immunity, Innate , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Amino Acid Sequence , Aminopeptidases/chemistry , Animals , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Female , Humans , Immunologic Deficiency Syndromes/immunology , Lysosomes/metabolism , Male , Models, Molecular , Molecular Sequence Data , Pedigree , Sequence Alignment , Serine Endopeptidases/chemistry
5.
Blood ; 143(15): 1476-1487, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38194689

ABSTRACT

ABSTRACT: Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.


Subject(s)
Immunologic Deficiency Syndromes , Leukocyte-Adhesion Deficiency Syndrome , Primary Immunodeficiency Diseases , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Neutrophils/metabolism , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Superoxides/metabolism
6.
J Immunol ; 212(6): 962-973, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38315012

ABSTRACT

NK cell deficiency (NKD) occurs when an individual's major clinical immunodeficiency derives from abnormal NK cells and is associated with several genetic etiologies. Three categories of ß-actin-related diseases with over 60 ACTB (ß-actin) variants have previously been identified, none with a distinct NK cell phenotype. An individual with mild developmental delay, macrothrombocytopenia, and susceptibility to infections, molluscum contagiosum virus, and EBV-associated lymphoma had functional NKD for over a decade. A de novo ACTB variant encoding G342D ß-actin was identified and was consistent with the individual's developmental and platelet phenotype. This novel variant also was found to have direct impact in NK cells because its expression in the human NK cell line YTS (YTS-NKD) caused increased cell spreading in lytic immune synapses created on activating surfaces. YTS-NKD cells were able to degranulate and perform cytotoxicity, but they demonstrated defective serial killing because of prolonged conjugation to the killed target cell and thus were effectively unable to terminate lytic synapses. G342D ß-actin results in a novel, to our knowledge, mechanism of functional NKD via increased synaptic spreading and defective lytic synapse termination with resulting impaired serial killing, leading to overall reductions in NK cell cytotoxicity.


Subject(s)
Actins , Immunologic Deficiency Syndromes , Humans , Actins/metabolism , Killer Cells, Natural , Cell Line , Blood Platelets/metabolism , Immunologic Deficiency Syndromes/metabolism
7.
Hum Mol Genet ; 32(9): 1439-1456, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36458887

ABSTRACT

Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is in most cases caused by mutations in either DNA methyltransferase (DNMT)3B, zinc finger and BTB domain containing 24, cell division cycle associated 7 or helicase lymphoid-specific. However, the causative genes of a few ICF patients remain unknown. We, herein, identified ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) as a novel causative gene of one such patient with atypical symptoms. This patient is a compound heterozygote for two previously unreported mutations in UHRF1: c.886C > T (p.R296W) and c.1852C > T (p.R618X). The R618X mutation plausibly caused nonsense-mediated decay, while the R296W mutation changed the higher order structure of UHRF1, which is indispensable for the maintenance of CG methylation along with DNMT1. Genome-wide methylation analysis revealed that the patient had a centromeric/pericentromeric hypomethylation, which is the main ICF signature, but also had a distinctive hypomethylation pattern compared to patients with the other ICF syndrome subtypes. Structural and biochemical analyses revealed that the R296W mutation disrupted the protein conformation and strengthened the binding affinity of UHRF1 with its partner LIG1 and reduced ubiquitylation activity of UHRF1 towards its ubiquitylation substrates, histone H3 and proliferating cell nuclear antigen -associated factor 15 (PAF15). We confirmed that the R296W mutation causes hypomethylation at pericentromeric repeats by generating the HEK293 cell lines that mimic the patient's UHRF1 molecular context. Since proper interactions of the UHRF1 with LIG1, PAF15 and histone H3 are essential for the maintenance of CG methylation, the mutation could disturb the maintenance process. Evidence for the importance of the UHRF1 conformation for CG methylation in humans is, herein, provided for the first time and deepens our understanding of its role in regulation of CG methylation.


Subject(s)
Histones , Primary Immunodeficiency Diseases , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA/genetics , DNA/metabolism , DNA Methylation/genetics , DNA Methylation/physiology , HEK293 Cells , Histones/genetics , Histones/metabolism , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Mutation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Chromosomal Instability/genetics , Chromosomal Instability/physiology , Centromere/genetics , Centromere/metabolism , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , Face/abnormalities , Genome, Human/genetics , Genome, Human/physiology
8.
Nat Immunol ; 13(12): 1178-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23104095

ABSTRACT

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1ß (IL-1ß) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1ß. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1ß responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1ß responses differently in different cell types.


Subject(s)
Glycogen Storage Disease Type IV/genetics , Hereditary Autoinflammatory Diseases/genetics , Immunologic Deficiency Syndromes/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Bacterial Infections/genetics , Bacterial Infections/immunology , Cell Cycle Proteins/genetics , Cell Line , Fibroblasts/immunology , Fibroblasts/metabolism , Humans , Immunologic Deficiency Syndromes/metabolism , Interleukin-1beta/metabolism , Monocytes/immunology , Monocytes/metabolism , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , Transcription Factors , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
Cell ; 136(3): 420-34, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203578

ABSTRACT

The biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited to sites of DNA damage by binding to ubiquitylated histone H2A. RNF168 acts with UBC13 to amplify the RNF8-dependent histone ubiquitylation by targeting H2A-type histones and by promoting the formation of lysine 63-linked ubiquitin conjugates. These RNF168-dependent chromatin modifications orchestrate the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome.


Subject(s)
DNA Damage , Immunologic Deficiency Syndromes/metabolism , Signal Transduction , Ubiquitin/metabolism , Cell Line , Histones/metabolism , Humans , Immunologic Deficiency Syndromes/genetics , Radiation Tolerance , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34583994

ABSTRACT

Cytidine triphosphate synthase 1 (CTPS1) is necessary for an effective immune response, as revealed by severe immunodeficiency in CTPS1-deficient individuals [E. Martin et al], [Nature] [510], [288-292] ([2014]). CTPS1 expression is up-regulated in activated lymphocytes to expand CTP pools [E. Martin et al], [Nature] [510], [288-292] ([2014]), satisfying increased demand for nucleic acid and lipid synthesis [L. D. Fairbanks, M. Bofill, K. Ruckemann, H. A. Simmonds], [J. Biol. Chem. ] [270], [29682-29689] ([1995]). Demand for CTP in other tissues is met by the CTPS2 isoform and nucleoside salvage pathways [E. Martin et al], [Nature] [510], [288-292] ([2014]). Selective inhibition of the proliferative CTPS1 isoform is therefore desirable in the treatment of immune disorders and lymphocyte cancers, but little is known about differences in regulation of the isoforms or mechanisms of known inhibitors. We show that CTP regulates both isoforms by binding in two sites that clash with substrates. CTPS1 is less sensitive to CTP feedback inhibition, consistent with its role in increasing CTP levels in proliferation. We also characterize recently reported small-molecule inhibitors, both CTPS1 selective and nonselective. Cryo-electron microscopy (cryo-EM) structures reveal these inhibitors mimic CTP binding in one inhibitory site, where a single amino acid substitution explains selectivity for CTPS1. The inhibitors bind to CTPS assembled into large-scale filaments, which for CTPS1 normally represents a hyperactive form of the enzyme [E. M. Lynch et al], [Nat. Struct. Mol. Biol.] [24], [507-514] ([2017]). This highlights the utility of cryo-EM in drug discovery, particularly for cases in which targets form large multimeric assemblies not amenable to structure determination by other techniques. Both inhibitors also inhibit the proliferation of human primary T cells. The mechanisms of selective inhibition of CTPS1 lay the foundation for the design of immunosuppressive therapies.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Protein Isoforms/metabolism , Cell Proliferation/physiology , Humans , Immunologic Deficiency Syndromes/metabolism , T-Lymphocytes/metabolism
11.
Genes Immun ; 24(1): 12-20, 2023 02.
Article in English | MEDLINE | ID: mdl-36517554

ABSTRACT

Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.


Subject(s)
Immunologic Deficiency Syndromes , Leucovorin , Reduced Folate Carrier Protein , Humans , Folic Acid/genetics , Folic Acid/metabolism , Leucovorin/therapeutic use , Leucovorin/metabolism , Leukocytes, Mononuclear/metabolism , Methotrexate/pharmacology , Methotrexate/therapeutic use , Proton-Coupled Folate Transporter/genetics , Proton-Coupled Folate Transporter/metabolism , Reduced Folate Carrier Protein/genetics , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism
12.
Hum Mol Genet ; 30(3-4): 226-233, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33517393

ABSTRACT

Interleukin-6 signal transducer (IL6ST) encodes the GP130 protein which transduces the proinflammatory signaling of the IL6 cytokine family through Janus kinase signal transducers and activators of transcription pathway (JAK/STAT) activation. Biallelic loss-of-function IL6ST variants cause autosomal recessive hyper-IgE syndrome or a variant of the Stuve-Wiedemann syndrome. Somatic gain-of-function IL6ST mutations, in particular, small monoallelic in-frame deletions of which the most prevalent is the IL6ST Ser187_Tyr190del, are an established cause of inflammatory hepatocellular tumors, but so far, no disease caused by such mutations present constitutively has been described. Herein, we report a pediatric proband with a novel syndrome of neonatal onset immunodeficiency with autoinflammation and dysmorphy associated with the IL6ST Tyr186_Tyr190del variant present constitutively. Tyr186_Tyr190del was found by exome sequencing and was shown to be de novo (absent in proband's parents and siblings) and mosaic (present in approximately 15-40% of cells depending on the tissue studied-blood, urine sediment, hair bulbs and buccal swab). Functional studies were performed in the Epstein-Barr virus-immortalized patient's B cell lymphoblastoid cell line, which carried the variant in approximately 95% of the cells. Western blot showed that the patient's cells exhibited constitutive hyperphosphorylation of Tyr705 in STAT3, which is indicative of IL6-independent activation of GP130. Interestingly, the STAT3 phosphorylation could be inhibited with ruxolitinib as well as tofacitinib, which are clinically approved JAK1 and JAK3 (to lesser extent JAK2 and JAK1) inhibitors, respectively. Given our results and the recent reports of ruxolitinib and tofacitinib use for the treatment of diseases caused by direct activation of STAT3 or STAT1, we speculate that these drugs may be effective in the treatment of our patient's condition.


Subject(s)
Cytokine Receptor gp130/genetics , Hereditary Autoinflammatory Diseases/genetics , Immunologic Deficiency Syndromes/genetics , Sequence Deletion , Signal Transduction , Child , Cytokine Receptor gp130/metabolism , Hereditary Autoinflammatory Diseases/drug therapy , Hereditary Autoinflammatory Diseases/metabolism , Humans , Immunologic Deficiency Syndromes/congenital , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/metabolism , Male , Nitriles/pharmacology , Nitriles/therapeutic use , Pedigree , Phosphorylation , Piperidines/pharmacology , Piperidines/therapeutic use , Poland , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Processing, Post-Translational , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , White People/genetics , Exome Sequencing
13.
Blood ; 137(18): 2450-2462, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33512449

ABSTRACT

Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.


Subject(s)
Bone Marrow Failure Disorders/pathology , Gain of Function Mutation , Immunologic Deficiency Syndromes/pathology , Inflammation/pathology , Mosaicism , Pancytopenia/pathology , Toll-Like Receptor 8/genetics , Adolescent , Adult , B-Lymphocytes/pathology , Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/metabolism , Cell Differentiation , Child , Child, Preschool , Cytokines/metabolism , Female , Follow-Up Studies , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/metabolism , Infant , Inflammation/etiology , Inflammation/metabolism , Lymphocyte Activation , Male , Pancytopenia/etiology , Pancytopenia/metabolism , Pedigree , Prognosis , T-Lymphocytes/immunology , Young Adult
14.
J Immunol ; 207(2): 542-554, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34253576

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC) plays pivotal roles in regulating lymphocyte activation, inflammation, and cell death. This is highlighted by the fact that patients with mutations in LUBAC catalytic subunit HOIP suffer from autoinflammation combined with immunodeficiency. Although defective development of T and B cells resulting from HOIP deficiency in adaptive immunity can explain immunodeficiency, the pathogenesis of autoinflammation is not clear. In this study, we found that dendritic cell (DC)-specific deletion of HOIP resulted in spontaneous inflammation, indicating the essential role of HOIP in maintaining DC homeostasis. Although HOIP deficiency in DCs did not affect TNF-α-induced NF-κB activation, it enhanced TNF-α-induced apoptosis and necroptosis. However, crossing HoipDC KO mice with TNFR1-knockout mice surprisingly could not rescue the systematic inflammation, suggesting that the autoinflammation is not due to the effect of HOIP on TNF-α signaling. In contrast, treatment of HoipDC KO mice with antibiotics reduced the inflammation, implying that TLR signaling may contribute to the inflammatory phenotype found in HoipDC KO mice. Consistently, we found that LPS induced more cell death and significantly higher levels of IL-1α and IL-1ß in HoipDC KO cells. Importantly, MyD88 deficiency rescued the inflammatory phenotype in HoipDC KO mice. Together, these findings reveal the indispensable function of HOIP in maintaining DC homeostasis, and MyD88-dependent proinflammatory signal plays a substantial role in the pathogenesis of human autoinflammation associated with HOIP mutations.


Subject(s)
Inflammation/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/physiology , Cell Death/physiology , Gene Expression Regulation/physiology , Immunologic Deficiency Syndromes/metabolism , Mice , Mice, Knockout , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology
15.
Genes Immun ; 23(6): 196-204, 2022 09.
Article in English | MEDLINE | ID: mdl-36089616

ABSTRACT

Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in CXCR4 C-terminus. We assessed genotype-phenotype correlations for known pathogenic CXCR4 variants and in vitro response of each variant to mavorixafor, an investigational CXCR4 antagonist. We used cell-based assays to analyze CXCL12-induced receptor trafficking and downstream signaling of 14 pathogenic CXCR4 variants previously identified in patients with WHIM syndrome. All CXCR4 variants displayed impaired receptor trafficking, hyperactive downstream signaling, and enhanced chemotaxis in response to CXCL12. Mavorixafor inhibited CXCL12-dependent signaling and hyperactivation in cells harboring CXCR4WHIM mutations. A strong correlation was found between CXCR4 internalization defect and severity of blood leukocytopenias and infection susceptibility, and between AKT activation and immunoglobulin A level and CD4+ T-cell counts. This study is the first to show WHIM syndrome clinical phenotype variability as a function of both CXCR4WHIM genotype diversity and associated functional dysregulation. Our findings suggest that CXCR4 internalization may be used to assess the pathogenicity of CXCR4 variants in vitro and also as a potential WHIM-related disease biomarker. The investigational CXCR4 antagonist mavorixafor inhibited CXCL12-dependent signaling in all tested CXCR4-variant cell lines at clinically relevant concentrations.


Subject(s)
Agammaglobulinemia , Immunologic Deficiency Syndromes , Neutropenia , Warts , Agammaglobulinemia/genetics , Aminoquinolines , Benzimidazoles , Biomarkers , Butylamines , Genetic Association Studies , Humans , Immunoglobulin A/genetics , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology , Neutropenia/genetics , Neutropenia/metabolism , Primary Immunodeficiency Diseases , Proto-Oncogene Proteins c-akt/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Warts/genetics , Warts/metabolism , Warts/pathology
16.
J Clin Immunol ; 42(3): 672-683, 2022 04.
Article in English | MEDLINE | ID: mdl-35089479

ABSTRACT

PURPOSE: Anti-interferon (IFN)-γ autoantibodies (anti-IFN-γ Abs) is an emerging adult-onset immunodeficiency syndrome. Immune dysfunction in this distinct disorder remains to be clarified. METHODS: We prospectively collected blood samples of 20 patients with anti-IFN-γ Abs and 40 healthy normal subjects. The percentages of lymphocyte subpopulations, most relevant to T, B, and NK cells, and the percentages of stimulated lymphocytes with cytokine production were assessed using eight-color flow cytometry. The results were adjusted to age and absolute lymphocyte counts. RESULTS: Most (85%) patients presented nontuberculous mycobacterial infection. Skin lesions were predominantly manifested by neutrophilic dermatoses. The involved lymph nodes had granulomatous inflammation, except 22.2% showing atypical lymphoid hyperplasia without granuloma formation. The percentages of CD4 + T cells and nonactivated subpopulations (recent thymic emigrants and naïve subtypes) decreased significantly with increased expression of activation markers and polarization to differentiated cells. The percentage of NK cells increased, but that of two major NK subpopulations, CD161 + CD56bright and CD161 + CD56 + CD16 + subsets, decreased. Increased CD161dim, CD161 + CD56 - CD16 + , and CD57 + NK cell subsets coupled with the decreased expression of NKp30 and NKp46 indicate reconfiguration of the NK cell population and acquisition of adaptive features. Intracellular cytokine production of the lymphocyte subpopulations was significantly low in the patients compared with the control group. CONCLUSION: We conclude that the immune system in patients with anti-IFN-γ Abs could be exhausted in T cells and be adaptive in NK cells, contributing to the distinct clinicopathologic features.


Subject(s)
Autoantibodies , Immunologic Deficiency Syndromes , Autoantibodies/metabolism , CD56 Antigen/metabolism , Flow Cytometry , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural , Phenotype
17.
J Immunol ; 205(11): 2979-2987, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33115853

ABSTRACT

Mutations in two genes can result in activated PI3Kδ syndrome (APDS), a rare immunodeficiency disease with limited therapeutic options. Seletalisib, a potent, selective PI3Kδ inhibitor, was evaluated in patients with APDS1 and APDS2. In the phase 1b study (European Clinical Trials Database 2015-002900-10) patients with genetic and clinical confirmation of APDS1 or APDS2 received 15-25 mg/d seletalisib for 12 wk. Patients could enter an extension study (European Clinical Trials Database 2015-005541). Primary endpoints were safety and tolerability, with exploratory efficacy and immunology endpoints. Seven patients (median age 15 years; APDS1 n = 3; APDS2 n = 4) received seletalisib; five completed the phase 1b study. For the extension study, four patients entered, one withdrew consent (week 24), three completed ≥84 wk of treatment. In the phase 1b study, patients had improved peripheral lymphadenopathy (n = 2), lung function (n = 1), thrombocyte counts (n = 1), and chronic enteropathy (n = 1). Overall, effects were maintained in the extension. In the phase 1b study, percentages of transitional B cells decreased, naive B cells increased, and senescent CD8 T cells decreased (human cells); effects were generally maintained in the extension. Seletalisib-related adverse events occurred in four of seven patients (phase 1b study: hepatic enzyme increased, dizziness, aphthous ulcer, arthralgia, arthritis, increased appetite, increased weight, restlessness, tendon disorder, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (aphthous ulcer). Serious adverse events occurred in three of seven patients (phase 1b study: hospitalization, colitis, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (stomatitis). Patients with APDS receiving seletalisib had improvements in variable clinical and immunological features, and a favorable risk-benefit profile was maintained for ≤96 wk.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Immunologic Deficiency Syndromes/drug therapy , Pyridines/therapeutic use , Quinolines/therapeutic use , Adolescent , Adult , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Child , Female , Humans , Immunologic Deficiency Syndromes/metabolism , Male , Mutation/drug effects , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/metabolism , Young Adult
18.
Immunity ; 36(4): 515-28, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22520845

ABSTRACT

Inborn errors of the genes encoding two of the four human JAKs (JAK3 and TYK2) and three of the six human STATs (STAT1, STAT3, and STAT5B) have been described. We review the disorders arising from mutations in these five genes, highlighting the way in which the molecular and cellular pathogenesis of these conditions has been clarified by the discovery of inborn errors of cytokines, hormones, and their receptors, including those interacting with JAKs and STATs. The phenotypic similarities between mice and humans lacking individual JAK-STAT components suggest that the functions of JAKs and STATs are largely conserved in mammals. However, a wide array of phenotypic differences has emerged between mice and humans carrying biallelic null alleles of JAK3, TYK2, STAT1, or STAT5B. Moreover, the high degree of allelic heterogeneity at the human JAK3, TYK2, STAT1, and STAT3 loci has revealed highly diverse immunological and clinical phenotypes, which had not been anticipated.


Subject(s)
Immunologic Deficiency Syndromes/genetics , Janus Kinases/genetics , STAT Transcription Factors/genetics , Animals , Genetic Predisposition to Disease , Humans , Immunologic Deficiency Syndromes/metabolism , Interferons/metabolism , Interleukins/metabolism , Janus Kinases/metabolism , Mice , Mutation , STAT Transcription Factors/metabolism , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Signal Transduction
19.
Mol Cell Biochem ; 476(2): 1221-1232, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33201382

ABSTRACT

The mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein that is ubiquitously present in human cells. It functions to regulate intracellular pH removing an intracellular proton in exchange for one extracellular sodium and is involved in heart disease and in promoting metastasis in cancer. It is made of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. The membrane domain is thought to have 12 transmembrane segments and a large membrane-associated extracellular loop. Early studies demonstrated that in mice, disruption of the NHE1 gene results in locomotor ataxia and a phenotype of slow-wave epilepsy. Defects included a progressive neuronal degeneration. Growth and reproductive ability were also reduced. Recent studies have identified human autosomal homozygous recessive mutations in the NHE1 gene (SLC9A1) that result in impaired development, ataxia and other severe defects, and explain the cause of the human disease Lichtenstein-Knorr syndrome. Other human mutations have been identified that are stop codon polymorphisms. These cause short non-functional NHE1 proteins, while other genetic polymorphisms in the NHE1 gene cause impaired expression of the NHE1 protein, reduced activity, enhanced protein degradation or altered kinetic activation of the protein. Since NHE1 plays a key role in many human physiological functions and in human disease, genetic polymorphisms of the protein that significantly alter its function and are likely play significant roles in varying human phenotypes and be involved in disease.


Subject(s)
Fibrous Dysplasia of Bone/pathology , Immunologic Deficiency Syndromes/pathology , Mutation , Neurodegenerative Diseases/pathology , Neutropenia/pathology , Sodium-Hydrogen Exchanger 1/genetics , Amino Acid Sequence , Animals , Facies , Fibrous Dysplasia of Bone/genetics , Fibrous Dysplasia of Bone/metabolism , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neutropenia/genetics , Neutropenia/metabolism , Protein Transport , Proteolysis , Sodium-Hydrogen Exchanger 1/metabolism
20.
J Immunol ; 202(2): 441-450, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30552163

ABSTRACT

Zinc deficiency causes immune dysfunction. In T lymphocytes, hypozincemia promotes thymus atrophy, polarization imbalance, and altered cytokine production. Zinc supplementation is commonly used to boost immune function to prevent infectious diseases in at-risk populations. However, the molecular players involved in zinc homeostasis in lymphocytes are poorly understood. In this paper, we wanted to determine the identity of the transporter responsible for zinc entry into lymphocytes. First, in human Jurkat cells, we characterized the effect of zinc on proliferation and activation and found that zinc supplementation enhances activation when T lymphocytes are stimulated using anti-CD3/anti-CD28 Abs. We show that zinc entry depends on specific pathways to correctly tune the NFAT, NF-κB, and AP-1 activation cascades. Second, we used various human and murine models to characterize the zinc transporter family, Zip, during T cell activation and found that Zip6 was strongly upregulated early during activation. Therefore, we generated a Jurkat Zip6 knockout (KO) line to study how the absence of this transporter affects lymphocyte physiology. We found that although Zip6KO cells showed no altered zinc transport or proliferation under basal conditions, under activation, these KO cells showed deficient zinc transport and a drastically impaired activation program. Our work shows that zinc entry into activated lymphocytes depends on Zip6 and that this transporter is essential for the correct function of the cellular activation machinery.


Subject(s)
Cation Transport Proteins/metabolism , Immunologic Deficiency Syndromes/metabolism , Neoplasm Proteins/metabolism , T-Lymphocytes/immunology , Thymus Gland/pathology , Zinc/metabolism , Animals , Atrophy , Biological Transport , Cation Transport Proteins/genetics , Cation Transport Proteins/immunology , Cell Proliferation , Cytokines/metabolism , Gene Knockdown Techniques , Humans , Jurkat Cells , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Models, Animal , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Signal Transduction , Transcription Factor AP-1/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL