Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.325
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 277-300, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36716750

ABSTRACT

Emerging and re-emerging respiratory viral infections pose a tremendous threat to human society, as exemplified by the ongoing COVID-19 pandemic. Upon viral invasion of the respiratory tract, the host initiates coordinated innate and adaptive immune responses to defend against the virus and to promote repair of the damaged tissue. However, dysregulated host immunity can also cause acute morbidity, hamper lung regeneration, and/or lead to chronic tissue sequelae. Here, we review our current knowledge of the immune mechanisms regulating antiviral protection, host pathogenesis, inflammation resolution, and lung regeneration following respiratory viral infections, mainly using influenza virus and SARS-CoV-2 infections as examples. We hope that this review sheds light on future research directions to elucidate the cellular and molecular cross talk regulating host recovery and to pave the way to the development of pro-repair therapeutics to augment lung regeneration following viral injury.


Subject(s)
COVID-19 , Humans , Animals , Immunity, Innate , Pandemics , SARS-CoV-2 , Inflammation/pathology
2.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32017655

ABSTRACT

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Subject(s)
Caspases/metabolism , Cell Death , Inflammation/etiology , Inflammation/metabolism , Neoplasm Proteins/genetics , Pyroptosis/genetics , Animals , Apoptosis , Biomarkers , Caspases/genetics , Cell Death/genetics , Disease Susceptibility , Enzyme Activation , Humans , Inflammation/pathology , Neoplasm Proteins/metabolism , Signal Transduction
3.
Cell ; 187(8): 2010-2028.e30, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38569542

ABSTRACT

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Humans , Mice , Colitis/metabolism , Colitis/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , In Situ Hybridization, Fluorescence/methods , Inflammation/metabolism , Inflammation/pathology , Cell Communication , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology
4.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38295787

ABSTRACT

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Subject(s)
Gastritis , Stomach Neoplasms , Streptococcal Infections , Streptococcus anginosus , Animals , Humans , Mice , Atrophy/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Gastric Mucosa , Gastritis/pathology , Inflammation/pathology , Mitogen-Activated Protein Kinases , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Streptococcus anginosus/physiology , Streptococcal Infections/pathology
5.
Cell ; 187(19): 5316-5335.e28, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39096902

ABSTRACT

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.


Subject(s)
Inflammation , Mast Cells , Mice, Inbred C57BL , Neutrophils , Animals , Mast Cells/metabolism , Mast Cells/immunology , Neutrophils/metabolism , Neutrophils/immunology , Mice , Inflammation/metabolism , Inflammation/immunology , Inflammation/pathology , Leukotriene B4/metabolism , Signal Transduction , Cell Degranulation , Macrophages/metabolism , Macrophages/immunology , Extracellular Traps/metabolism , Male , Female
6.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38838669

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Subject(s)
Clonal Hematopoiesis , DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Periodontitis , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Mice , Clonal Hematopoiesis/genetics , Humans , Periodontitis/genetics , Periodontitis/pathology , Mutation , Male , Female , Inflammation/genetics , Inflammation/pathology , Osteoclasts/metabolism , Mice, Inbred C57BL , Adult , Interleukin-17/metabolism , Interleukin-17/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Hematopoiesis/genetics , Osteogenesis/genetics , Hematopoietic Stem Cells/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Middle Aged
7.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38518773

ABSTRACT

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lung , Polysaccharides, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Female , Male , Mice , Biofilms , Escherichia coli/physiology , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas aeruginosa/physiology , Sensory Receptor Cells , Polysaccharides, Bacterial/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Nociceptors/metabolism
8.
Cell ; 186(7): 1309-1327, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001498

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Central Nervous System , Neuroglia , Cell Physiological Phenomena , Inflammation/pathology
9.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37774678

ABSTRACT

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Subject(s)
Alzheimer Disease , Microglia , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Gene Expression Regulation , Inflammation/pathology , Microglia/metabolism , Transcription Factors/metabolism , Transcriptome , Epigenome
10.
Cell ; 186(18): 3753-3755, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37657416

ABSTRACT

In addition to acute hyperinflammatory responses, SARS-CoV-2 infections can have long-term effects on our immune system leading to, for example, post-acute sequelae of COVID-19 (PASC). In this issue of Cell, Cheong et al. show that severe infections via IL-6 induce persistent epigenetic signatures in hemopoietic stem cells and their myeloid progenitors associated with increased inflammatory potential.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Epigenomics , Hematopoietic Stem Cells , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/pathology , SARS-CoV-2 , Trained Immunity , Inflammation/pathology
11.
Annu Rev Immunol ; 33: 715-45, 2015.
Article in English | MEDLINE | ID: mdl-25861980

ABSTRACT

Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.


Subject(s)
Inflammation/immunology , Inflammation/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Stromal Cells/immunology , Stromal Cells/metabolism , Animals , Cell Communication , Chronic Disease , Humans , Inflammation/pathology , Organogenesis/immunology , Phenotype
12.
Annu Rev Immunol ; 33: 79-106, 2015.
Article in English | MEDLINE | ID: mdl-25493335

ABSTRACT

Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.


Subject(s)
Inflammation/metabolism , Inflammation/pathology , Necrosis/metabolism , Signal Transduction , Animals , Bacterial Infections/genetics , Bacterial Infections/metabolism , Bacterial Infections/pathology , Biological Evolution , Cell Death , Humans , Inflammasomes/metabolism , Inflammation/genetics , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Parasitic Diseases/genetics , Parasitic Diseases/metabolism , Parasitic Diseases/pathology , Phosphorylation , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitination , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Diseases/pathology
13.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051369

ABSTRACT

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Subject(s)
Gastrointestinal Microbiome/genetics , Genes, Bacterial , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems/genetics , Clostridium/genetics , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Drug Resistance, Microbial/genetics , Female , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Germ-Free Life , Inflammation/pathology , Intestines/pathology , Male , Metabolome/genetics , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Insertional/genetics , Mutation/genetics , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
14.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35148840

ABSTRACT

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, Viral/immunology , Candida albicans/chemistry , Mannans/immunology , Aluminum Hydroxide/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Immunity, Innate , Immunization , Inflammation/pathology , Interferons/metabolism , Lectins, C-Type/metabolism , Ligands , Lung/immunology , Lung/pathology , Lung/virology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Paranasal Sinuses/metabolism , Protein Subunits/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Solubility , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , Transcription Factor RelB/metabolism , Vero Cells , beta-Glucans/metabolism
15.
Nat Rev Mol Cell Biol ; 25(8): 599-616, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38528155

ABSTRACT

Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.


Subject(s)
Skin , Wound Healing , Humans , Wound Healing/physiology , Animals , Skin/metabolism , Skin/pathology , Inflammation/pathology , Inflammation/metabolism , Cicatrix/metabolism , Cicatrix/pathology , Neovascularization, Physiologic , Keratinocytes/metabolism
16.
Cell ; 184(13): 3361-3375, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34171319

ABSTRACT

Surface epithelia provide a critical barrier to the outside world. Upon a barrier breach, resident epithelial and immune cells coordinate efforts to control infections and heal tissue damage. Inflammation can etch lasting marks within tissues, altering features such as scope and quality of future responses. By remembering inflammatory experiences, tissues are better equipped to quickly and robustly respond to barrier breaches. Alarmingly, in disease states, memory may fuel the inflammatory fire. Here, we review the cellular communication networks in barrier tissues and the integration between tissue-resident and recruited immune cells and tissue stem cells underlying tissue adaptation to environmental stress.


Subject(s)
Adaptation, Physiological , Inflammation/pathology , Organ Specificity , Animals , Humans , Lymphocytes/metabolism , Models, Biological , Stem Cells
17.
Cell ; 184(21): 5482-5496.e28, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597583

ABSTRACT

Determining how cells vary with their local signaling environment and organize into distinct cellular communities is critical for understanding processes as diverse as development, aging, and cancer. Here we introduce EcoTyper, a machine learning framework for large-scale identification and validation of cell states and multicellular communities from bulk, single-cell, and spatially resolved gene expression data. When applied to 12 major cell lineages across 16 types of human carcinoma, EcoTyper identified 69 transcriptionally defined cell states. Most states were specific to neoplastic tissue, ubiquitous across tumor types, and significantly prognostic. By analyzing cell-state co-occurrence patterns, we discovered ten clinically distinct multicellular communities with unexpectedly strong conservation, including three with myeloid and stromal elements linked to adverse survival, one enriched in normal tissue, and two associated with early cancer development. This study elucidates fundamental units of cellular organization in human carcinoma and provides a framework for large-scale profiling of cellular ecosystems in any tissue.


Subject(s)
Neoplasms/pathology , Tumor Microenvironment , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Inflammation/pathology , Ligands , Neoplasms/genetics , Phenotype , Prognosis , Transcription, Genetic
18.
Cell ; 184(6): 1455-1468, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33657411

ABSTRACT

Environmental insults impair human health around the world. Contaminated air, water, soil, food, and occupational and household settings expose humans of all ages to a plethora of chemicals and environmental stressors. We propose eight hallmarks of environmental insults that jointly underpin the damaging impact of environmental exposures during the lifespan. Specifically, they include oxidative stress and inflammation, genomic alterations and mutations, epigenetic alterations, mitochondrial dysfunction, endocrine disruption, altered intercellular communication, altered microbiome communities, and impaired nervous system function. They provide a framework to understand why complex mixtures of environmental exposures induce severe health effects even at relatively modest concentrations.


Subject(s)
Environmental Exposure , Antioxidants/analysis , Gastrointestinal Microbiome , Humans , Inflammation/pathology , Mutation/genetics , Oxidative Stress
19.
Cell ; 184(4): 1047-1063.e23, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33539780

ABSTRACT

DNA has not been utilized to record temporal information, although DNA has been used to record biological information and to compute mathematical problems. Here, we found that indel generation by Cas9 and guide RNA can occur at steady rates, in contrast to typical dynamic biological reactions, and the accumulated indel frequency can be a function of time. By measuring indel frequencies, we developed a method for recording and measuring absolute time periods over hours to weeks in mammalian cells. These time-recordings were conducted in several cell types, with different promoters and delivery vectors for Cas9, and in both cultured cells and cells of living mice. As applications, we recorded the duration of chemical exposure and the lengths of elapsed time since the onset of biological events (e.g., heat exposure and inflammation). We propose that our systems could serve as synthetic "DNA clocks."


Subject(s)
CRISPR-Associated Protein 9/metabolism , Animals , Base Sequence , Cellular Microenvironment , Computer Simulation , HEK293 Cells , Half-Life , Humans , INDEL Mutation/genetics , Inflammation/pathology , Integrases/metabolism , Male , Mice, Nude , Promoter Regions, Genetic/genetics , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results , Time Factors
20.
Cell ; 184(11): 2807-2824, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34048704

ABSTRACT

Endometriosis is a common condition associated with infertility that causes chronic pain in many, but not all, women. It is defined by the presence of endometrial-like tissue outside the uterus. Although the cause and natural history of the disorder remain uncertain, hormonal, neurological, and immunological factors are all implicated in the mechanisms contributing to development of symptoms. Because definitive diagnosis requires surgery, there is often a long diagnostic delay after onset of symptoms. Current interventions for endometriosis have limited efficacy and unacceptable side effects/risks and are associated with high rates of symptom recurrence. Here, we review recent advances in our understanding of the etiology of endometriosis, discuss current diagnostic and treatment strategies, highlight current clinical trials, and consider how recent results offer new avenues for the identification of endometriosis biomarkers and the development of effective non-surgical therapies that are fertility-sparing.


Subject(s)
Endometriosis/etiology , Endometriosis/pathology , Endometriosis/therapy , Adult , Delayed Diagnosis , Endometrium/pathology , Female , Hormones/therapeutic use , Humans , Inflammation/pathology , Middle Aged , Pelvic Pain/physiopathology , Pelvic Pain/therapy , Surgical Procedures, Operative/methods , Tissue Adhesions/surgery , Uterus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL