Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.034
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Annu Rev Immunol ; 41: 207-228, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36696569

ABSTRACT

The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.


Subject(s)
Inflammatory Bowel Diseases , Skin , Humans , Animals , Epithelium , Regeneration/physiology
2.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026411

ABSTRACT

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/immunology , Inflammation/microbiology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/microbiology , Animals , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Homeostasis , Humans , Immune Tolerance , Immunomodulation , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology
3.
Annu Rev Immunol ; 36: 755-781, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677472

ABSTRACT

Inflammatory bowel disease (IBD) defines a spectrum of complex disorders. Understanding how environmental risk factors, alterations of the intestinal microbiota, and polygenetic and epigenetic susceptibility impact on immune pathways is key for developing targeted therapies. Mechanistic understanding of polygenic IBD is complemented by Mendelian disorders that present with IBD, pharmacological interventions that cause colitis, autoimmunity, and multiple animal models. Collectively, this multifactorial pathogenesis supports a concept of immune checkpoints that control microbial-host interactions in the gut by modulating innate and adaptive immunity, as well as epithelial and mesenchymal cell responses. In addition to classical immunosuppressive strategies, we discuss how resetting the microbiota and restoring innate immune responses, in particular autophagy and epithelial barrier function, might be key for maintaining remission or preventing IBD. Targeting checkpoints in genetically stratified subgroups of patients with Mendelian disorder-associated IBD increasingly directs treatment strategies as part of personalized medicine.


Subject(s)
Disease Susceptibility/immunology , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/therapy , Animals , Biomarkers , Chronic Disease , Disease Management , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions , Dysbiosis , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/prevention & control , Molecular Targeted Therapy , Translational Research, Biomedical
4.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446062

ABSTRACT

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Subject(s)
Cardiovascular Diseases/immunology , Diabetes Mellitus, Type 1/immunology , Gastrointestinal Microbiome/immunology , Hypersensitivity/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Diet , Homeostasis , Humans , Immunity , Receptors, G-Protein-Coupled/immunology
5.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776919

ABSTRACT

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Subject(s)
Fungi , Gastrointestinal Microbiome , Mycobiome , Animals , Humans , Male , Mice , Feces/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genome, Fungal/genetics , Genomics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Metagenome , Phylogeny , Female , Adult , Middle Aged
6.
Annu Rev Immunol ; 34: 31-64, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27168239

ABSTRACT

Inflammatory bowel disease (IBD), including Crohn disease and ulcerative colitis, is characterized by chronic intestinal inflammation due to a complex interaction of genetic determinants, disruption of mucosal barriers, aberrant inflammatory signals, loss of tolerance, and environmental triggers. Importantly, the incidence of pediatric IBD is rising, particularly in children younger than 10 years. In this review, we discuss the clinical presentation of these patients and highlight environmental exposures that may affect disease risk, particularly among people with a background genetic risk. With regard to both children and adults, we review advancements in understanding the intestinal epithelium, the mucosal immune system, and the resident microbiota, describing how dysfunction at any level can lead to diseases like IBD. We conclude with future directions for applying advances in IBD genetics to better understand pathogenesis and develop therapeutics targeting key pathogenic nodes.


Subject(s)
Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Immunity, Mucosal , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Adult , Animals , Child , Child, Preschool , Environmental Exposure/adverse effects , Gene-Environment Interaction , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Molecular Targeted Therapy
7.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37236193

ABSTRACT

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Subject(s)
Enteric Nervous System , Inflammatory Bowel Diseases , Humans , Glucocorticoids/pharmacology , Inflammation , Enteric Nervous System/physiology , Stress, Psychological
8.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931020

ABSTRACT

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Subject(s)
Bacteriophages , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Colitis/therapy , Humans , Inflammation/therapy , Inflammatory Bowel Diseases/therapy , Klebsiella pneumoniae , Mice
9.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35303419

ABSTRACT

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Sialyltransferases/genetics , Animals , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mucus/metabolism , Sialyltransferases/metabolism , Symbiosis
10.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36240781

ABSTRACT

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Gastrointestinal Microbiome/physiology , Nociceptors/physiology , Substance P , Dysbiosis , Inflammation
11.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021065

ABSTRACT

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , Base Sequence , Case-Control Studies , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial Cells/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , HEK293 Cells , HT29 Cells , Humans , Inflammatory Bowel Diseases/genetics , Methotrexate/pharmacology , Mutation/genetics , Phosphorylation/drug effects , Polymorphism, Single Nucleotide/genetics , Pyroptosis/drug effects , Pyroptosis/genetics , Reproducibility of Results , Transcriptome/drug effects , Transcriptome/genetics , Up-Regulation/drug effects , Wound Healing/drug effects , Wound Healing/genetics
12.
Nat Immunol ; 25(5): 886-901, 2024 May.
Article in English | MEDLINE | ID: mdl-38609547

ABSTRACT

Intestinal immune responses to microbes are controlled by the cytokine IL-10 to avoid immune pathology. Here, we use single-cell RNA sequencing of colon lamina propria leukocytes (LPLs) along with RNA-seq and ATAC-seq of purified CD4+ T cells to show that the transcription factors Blimp-1 (encoded by Prdm1) and c-Maf co-dominantly regulate Il10 while negatively regulating proinflammatory cytokines in effector T cells. Double-deficient Prdm1fl/flMaffl/flCd4Cre mice infected with Helicobacter hepaticus developed severe colitis with an increase in TH1/NK/ILC1 effector genes in LPLs, while Prdm1fl/flCd4Cre and Maffl/flCd4Cre mice exhibited moderate pathology and a less-marked type 1 effector response. LPLs from infected Maffl/flCd4Cre mice had increased type 17 responses with increased Il17a and Il22 expression and an increase in granulocytes and myeloid cell numbers, resulting in increased T cell-myeloid-neutrophil interactions. Genes over-expressed in human inflammatory bowel disease showed differential expression in LPLs from infected mice in the absence of Prdm1 or Maf, revealing potential mechanisms of human disease.


Subject(s)
Colitis , Helicobacter hepaticus , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-maf , Animals , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Mice , Proto-Oncogene Proteins c-maf/genetics , Colitis/immunology , Colitis/genetics , Humans , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/genetics , Gene Expression Regulation , Disease Models, Animal
13.
Cell ; 184(19): 5015-5030.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34407392

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.


Subject(s)
Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Disease Progression , Immunity, Innate , Immunotherapy , Lymphocytes/immunology , Animals , Cell Communication/drug effects , Cell Plasticity/drug effects , Colonic Neoplasms/microbiology , Feces/microbiology , Histocompatibility Antigens Class II/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunity, Innate/drug effects , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Lymphocytes/drug effects , Mice, Inbred C57BL , Microbiota/drug effects , Neoplasm Invasiveness , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tissue Donors
14.
Cell ; 184(10): 2633-2648.e19, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33864768

ABSTRACT

Long non-coding RNA (lncRNA) genes have well-established and important impacts on molecular and cellular functions. However, among the thousands of lncRNA genes, it is still a major challenge to identify the subset with disease or trait relevance. To systematically characterize these lncRNA genes, we used Genotype Tissue Expression (GTEx) project v8 genetic and multi-tissue transcriptomic data to profile the expression, genetic regulation, cellular contexts, and trait associations of 14,100 lncRNA genes across 49 tissues for 101 distinct complex genetic traits. Using these approaches, we identified 1,432 lncRNA gene-trait associations, 800 of which were not explained by stronger effects of neighboring protein-coding genes. This included associations between lncRNA quantitative trait loci and inflammatory bowel disease, type 1 and type 2 diabetes, and coronary artery disease, as well as rare variant associations to body mass index.


Subject(s)
Disease/genetics , Multifactorial Inheritance/genetics , Population/genetics , RNA, Long Noncoding/genetics , Transcriptome , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling , Genetic Variation , Humans , Inflammatory Bowel Diseases/genetics , Organ Specificity/genetics , Quantitative Trait Loci
15.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Article in English | MEDLINE | ID: mdl-37563310

ABSTRACT

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Multiple Sclerosis , Humans , Genome-Wide Association Study , Inflammatory Bowel Diseases/genetics , Quantitative Trait Loci , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Inflammation/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide
16.
Cell ; 182(3): 672-684.e11, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32697969

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with increased risk of gastrointestinal cancers. We whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from our previous publication on the mutation landscape of the normal colon. The average mutation rate of affected colonic epithelial cells is 2.4-fold that of healthy colon, and this increase is mostly driven by acceleration of mutational processes ubiquitously observed in normal colon. In contrast to the normal colon, where clonal expansions outside the confines of the crypt are rare, we observed widespread millimeter-scale clonal expansions. We discovered non-synonymous mutations in ARID1A, FBXW7, PIGR, ZC3H12A, and genes in the interleukin 17 and Toll-like receptor pathways, under positive selection in IBD. These results suggest distinct selection mechanisms in the colitis-affected colon and that somatic mutations potentially play a causal role in IBD pathogenesis.


Subject(s)
Clonal Evolution/genetics , Colitis/genetics , Inflammatory Bowel Diseases/genetics , Mutation Rate , Adult , Aged , Aged, 80 and over , Aging/genetics , Clonal Evolution/immunology , Colitis/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , F-Box-WD Repeat-Containing Protein 7/genetics , Female , Humans , INDEL Mutation , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Interleukin-17/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged , Phylogeny , Point Mutation , Receptors, Cell Surface/genetics , Ribonucleases/genetics , Toll-Like Receptors/genetics , Transcription Factors/genetics , Whole Genome Sequencing
17.
Cell ; 178(5): 1041-1056, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442399

ABSTRACT

The current understanding of inflammatory bowel disease (IBD) pathogenesis implicates a complex interaction between host genetics, host immunity, microbiome, and environmental exposures. Mechanisms gleaned from genetics and molecular pathogenesis offer clues to the critical triggers of mucosal inflammation and guide the development of therapeutic interventions. A complex network of interactions between host genetic factors, microbes, and microbial metabolites governs intestinal homeostasis, making classification and mechanistic dissection of involved pathways challenging. In this Review, we discuss these challenges, areas of active translation, and opportunities for development of next-generation therapies.


Subject(s)
Inflammatory Bowel Diseases/pathology , Microbiota , Adaptive Immunity , Animals , Bacteria/genetics , Bacteria/metabolism , Biological Products/pharmacology , Cytokines/genetics , Cytokines/metabolism , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Microbiota/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Cell ; 179(5): 1160-1176.e24, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730855

ABSTRACT

Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.


Subject(s)
Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/therapy , Intestinal Mucosa/pathology , Antigens, CD/metabolism , Apyrase/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cell Death/drug effects , Cellular Microenvironment/drug effects , Child , Cohort Studies , Colon/pathology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dipyridamole/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Homeostasis/drug effects , Humans , Immunoglobulin G/blood , Immunologic Memory , Inflammation/pathology , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/genetics , Interferon Type I/metabolism , Macrophages/drug effects , Macrophages/metabolism , Methylprednisolone/pharmacology , Myeloid Cells/drug effects , Myeloid Cells/metabolism
19.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Article in English | MEDLINE | ID: mdl-34326534

ABSTRACT

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Subject(s)
DNA-Binding Proteins/genetics , Hereditary Autoinflammatory Diseases/genetics , Inflammatory Bowel Diseases/genetics , Macrophages/immunology , Transcription Factors/genetics , Animals , Calgranulin A/metabolism , Female , Gene Expression Regulation/genetics , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/pathology , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Interleukin 1 Receptor Antagonist Protein/immunology , Lipocalin-2/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells/immunology , Transcription, Genetic/genetics , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/metabolism
20.
Cell ; 175(2): 372-386.e17, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30270042

ABSTRACT

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.


Subject(s)
Inflammatory Bowel Diseases/physiopathology , Mesoderm/physiology , Animals , Cell Proliferation , Colitis/genetics , Colitis/physiopathology , Colon/physiology , Epithelial Cells/metabolism , Fibroblasts/physiology , Genetic Heterogeneity , Homeostasis , Humans , Inflammation , Intestinal Mucosa/immunology , Intestinal Mucosa/physiology , Intestines/immunology , Intestines/physiology , Mesenchymal Stem Cells/physiology , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Myofibroblasts , Pericytes , RAW 264.7 Cells , SOXD Transcription Factors/physiology , Single-Cell Analysis/methods , Thromboplastin/physiology , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Wnt Signaling Pathway/physiology
SELECTION OF CITATIONS
SEARCH DETAIL