Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biochem Biophys Res Commun ; 529(4): 963-969, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32819606

ABSTRACT

Influenza A virus, the H9N2 subtype, is an avian influenza virus that has long been circulating in the worldwide poultry industry and is occasionally found to be transmissible to humans. Evidence from genomic analysis suggests that H9N2 provides the genes for the H5N1 and H7N9 subtypes, which have been found to infect mammals and pose a threat to human health. However, due to the lack of a structural model of the interaction between H9N2 and host cells, the mechanism of the extensive adaptability and strong transformation capacity of H9N2 is not fully understood. In this paper, we collected 40 representative H9N2 virus samples reported recently, mainly in China and neighboring countries, and investigated the interactions between H9N2 hemagglutinin and the mammalian receptor, the polysaccharide α-2,6-linked lactoseries tetrasaccharide c, at the atomic level using docking simulation tools. We categorized the mutations of studied H9N2 hemagglutinin according to their effects on ligand-binding interactions and the phylogenetic analysis. The calculations indicated that all the studied H9N2 viruses can establish a tight binding with LSTc although the mutations caused a variety of perturbations to the local conformation of the binding pocket. Our calculations suggested that a marginal equilibrium is established between the conservative ligand-receptor interaction and the conformational dynamics of the binding pocket, and it might be this equilibrium that allows the virus to accommodate mutations to adapt to a variety of environments. Our results provided a way to understand the adaptive mechanisms of H9N2 viruses, which may help predict its propensity to spread in mammals.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Host-Pathogen Interactions/genetics , Influenza A Virus, H9N2 Subtype/chemistry , Polysaccharides/chemistry , Receptors, Virus/chemistry , Animals , Binding Sites , Chickens/virology , China/epidemiology , Crystallography, X-Ray , Ducks/virology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/metabolism , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , Molecular Dynamics Simulation , Phylogeny , Polysaccharides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/metabolism , Structural Homology, Protein
2.
Nature ; 511(7510): 475-7, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24870229

ABSTRACT

H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.


Subject(s)
Birds/virology , Orthomyxoviridae/chemistry , Orthomyxoviridae/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/chemistry , Models, Molecular , Zoonoses/transmission , Zoonoses/virology
3.
J Virol ; 92(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29848588

ABSTRACT

The avian influenza A(H7N9) virus continues to cause human infections in China and is a major ongoing public health concern. Five epidemic waves of A(H7N9) infection have occurred since 2013, and the recent fifth epidemic wave saw the emergence of two distinct lineages with elevated numbers of human infection cases and broader geographic distribution of viral diseases compared to the first four epidemic waves. Moreover, highly pathogenic avian influenza (HPAI) A(H7N9) viruses were also isolated during the fifth epidemic wave. Here, we present a detailed structural and biochemical analysis of the surface hemagglutinin (HA) antigen from viruses isolated during this recent epidemic wave. Results highlight that, compared to the 2013 virus HAs, the fifth-wave virus HAs remained a weak binder to human glycan receptor analogs. We also studied three mutations, V177K-K184T-G219S, that were recently reported to switch a 2013 A(H7N9) HA to human-type receptor specificity. Our results indicate that these mutations could also switch the H7 HA receptor preference to a predominantly human binding specificity for both fifth-wave H7 HAs analyzed in this study.IMPORTANCE The A(H7N9) viruses circulating in China are of great public health concern. Here, we report a molecular and structural study of the major surface proteins from several recent A(H7N9) influenza viruses. Our results improve the understanding of these evolving viruses and provide important information on their receptor preference that is central to ongoing pandemic risk assessment.


Subject(s)
Epidemics/statistics & numerical data , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H7N9 Subtype/metabolism , Influenza, Human/epidemiology , China/epidemiology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/genetics , Models, Molecular , Mutation , Phylogeny , Polysaccharides/metabolism , Protein Binding , Protein Conformation
4.
PLoS Pathog ; 13(6): e1006390, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617868

ABSTRACT

The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Poultry Diseases/virology , Amino Acid Sequence , Animals , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host Specificity , Humans , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/metabolism , Influenza in Birds/genetics , Influenza in Birds/metabolism , Influenza, Human/genetics , Influenza, Human/metabolism , Molecular Sequence Data , Mutation , Poultry , Poultry Diseases/genetics , Poultry Diseases/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Sequence Alignment
5.
J Proteome Res ; 17(4): 1474-1484, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29558158

ABSTRACT

Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.


Subject(s)
Influenza A Virus, H7N9 Subtype/chemistry , RNA, Messenger/antagonists & inhibitors , Viral Nonstructural Proteins/pharmacology , Animals , Cleavage And Polyadenylation Specificity Factor , Host Microbial Interactions , Humans , Immunoblotting , Immunoprecipitation , Influenza A Virus, H7N9 Subtype/pathogenicity , Protein Binding , mRNA Cleavage and Polyadenylation Factors
6.
J Virol ; 91(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28331080

ABSTRACT

Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses.IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses.


Subject(s)
Cross Protection , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/classification , Influenza, Human/virology , Lung/virology , Mice , Orthomyxoviridae Infections/virology , Phylogeny , Vaccination , Vaccines, Inactivated/immunology
7.
J Virol ; 91(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28356532

ABSTRACT

The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-ß-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Interferons/immunology , Membrane Fusion , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , A549 Cells , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Cell Line , Dogs , Ducks , Epithelial Cells/drug effects , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/genetics , Interferon-beta/immunology , Madin Darby Canine Kidney Cells , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Virus Internalization , Virus Replication
8.
Vet Res ; 49(1): 98, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30285871

ABSTRACT

The emerging avian-origin H7N9 influenza A virus, which causes mild to lethal human respiratory disease, continues to circulate in China, posing a great threat to public health. Influenza NS1 protein plays a key role in counteracting host innate immune responses, allowing the virus to efficiently replicate in the host. In this study, we compared NS1 amino acid sequences of H7N9 influenza A virus with those of other strains, and determined NS1 protein variability within the H7N9 virus and then evaluated the impact of amino acid substitutions on ability of the NS1 proteins to inhibit host innate immunity. Interestingly, the amino acid residue S212 was identified to have a profound effect on the primary function of NS1, since S212P substitution disabled H7N9 NS1 in suppressing the host RIG-I-dependent interferon response, as well as the ability to promote the virus replication. In addition, we identified another amino acid residue, I178, serving as a key site to keep NS1 protein high steady-state levels. When the isoleucine was replaced by valine at 178 site (I178V mutation), NS1 of H7N9 underwent rapid degradation through proteasome pathway. Furthermore, we observed that P212S and V178I mutation in NS1 of PR8 virus enhanced virulence and promoted the virus replication in vivo. Together, these results indicate that residues I178 and S212 within H7N9 NS1 protein are critical for stability and functioning of the NS1 protein respectively, and may contribute to the enhanced pathogenicity of H7N9 influenza virus.


Subject(s)
Amino Acid Substitution , Immunity, Innate , Influenza A Virus, H7N9 Subtype/chemistry , Polymorphism, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Animals , Female , Mice , Mice, Inbred BALB C , Protein Stability , Sequence Analysis, Protein , Viral Nonstructural Proteins/analysis
9.
J Virol ; 90(13): 6085-6096, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27099319

ABSTRACT

UNLABELLED: Influenza virus hemagglutinin (HA) N-glycans play important regulatory roles in the control of virus virulence, antigenicity, receptor-binding specificity, and viral escape from the immune response. Considered essential for controlling innate and adaptive immune responses against influenza virus infections, dendritic cells (DCs) trigger proinflammatory and adaptive immune responses in hosts. In this study, we engineered Chinese hamster ovary (CHO) cell lines expressing recombinant HA from pandemic H1, H5, and H7 influenza viruses. rH1HA, rH5HA, and rH7HA were obtained as wild-type proteins or in the presence of kifunensine (KIF) or further with endo-ß-N-acetylglucosaminidase-treated KIF (KIF+E) to generate single-N-acetylglucosamine (GlcNAc) N-glycans consisting of (i) terminally sialylated complex-type N-glycans, (ii) high-mannose-type N-glycans, and (iii) single-GlcNAc-type N-glycans. Our results show that high-mannose-type and single-GlcNAc-type N-glycans, but not complex-type N-glycans, are capable of inducing more active hIL12 p40, hIL12 p70, and hIL-10 production in human DCs. Significantly higher HLA-DR, CD40, CD83, and CD86 expression levels, as well reduced endocytotic capacity in human DCs, were noted in the high-mannose-type rH1HA and single-GlcNAc-type rH1HA groups than in the complex-type N-glycan rH1HA group. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). The high-mannose-type or single-GlcNAc-type N-glycans of both avian and human HA types are more stimulatory than the complex-type N-glycans. HA-stimulated DC activation was accomplished partially through a mannose receptor(s). These results provide more understanding of the contribution of glycosylation of viral proteins to the immune responses and may have implications for vaccine development. IMPORTANCE: Influenza viruses trigger seasonal epidemics or pandemics with mild-to-severe consequences for human and poultry populations. DCs are the most potent professional antigen-presenting cells, which play a crucial role in the link between innate and adaptive immunity. In this study, we obtained stable-expression CHO cells to produce rH1HA, rH5HA, and rH7HA proteins containing distinct N-glycan patterns. These rHA proteins, each with a distinct N-glycan pattern, were used to investigate interactions with mouse and human DCs. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). High-mannose-type and single-GlcNAc-type N-glycans were more effective than complex-type N-glycans in triggering mouse and human DC activation and maturation. We believe these results provide some useful information for influenza vaccine development regarding how influenza virus HA proteins with different types of N-glycans activate DCs.


Subject(s)
Dendritic Cells/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Alkaloids/pharmacology , Animals , Antigens, CD/genetics , B7-2 Antigen/genetics , Birds , CD40 Antigens/genetics , CHO Cells , Cricetinae , Cricetulus , Dendritic Cells/physiology , HLA-DR Antigens/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunoglobulins/genetics , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/immunology , Membrane Glycoproteins/genetics , Pandemics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , CD83 Antigen
10.
J Virol ; 88(3): 1684-93, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24257602

ABSTRACT

In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8(+) T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8(+) T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8(+) T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8(+) T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8(+) T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8(+) T cells may afford some protection against infection with the new virus.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Amino Acid Sequence , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Cells, Cultured , China/epidemiology , Cross Protection , Cross Reactions , Disease Outbreaks , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Interferon-gamma/immunology , Male , Middle Aged , Molecular Sequence Data , Seasons , Sequence Alignment , T-Lymphocytes, Cytotoxic/virology
11.
Genomics ; 104(6 Pt B): 545-53, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25449177

ABSTRACT

In China, the recent outbreak of novel influenza A/H7N9 virus has been assumed to be severe, and it may possibly turn brutal in the near future. In order to develop highly protective vaccines and drugs for the A/H7N9 virus, it is critical to find out the selection pressure of each amino acid site. In the present study, six different statistical methods consisting of four independent codon-based maximum likelihood (CML) methods, one hierarchical Bayesian (HB) method and one branch-site (BS) method, were employed to determine if each amino acid site of A/H7N9 virus is under natural selection pressure. Functions for both positively and negatively selected sites were inferred by annotating these sites with experimentally verified amino acid sites. Comprehensively, the single amino acid site 627 of PB2 protein was inferred as positively selected and it function was identified as a T-cell epitope (TCE). Among the 26 negatively selected amino acid sites of PB2, PB1, PA, HA, NP, NA, M1 and NS2 proteins, only 16 amino acid sites were identified to be involved in TCEs. In addition, 7 amino acid sites including, 608 and 609 of PA, 480 of NP, and 24, 25, 109 and 205 of M1, were identified to be involved in both B-cell epitopes (BCEs) and TCEs. Conversely, the function of positions 62 of PA, and, 43 and 113 of HA was unknown. In conclusion, the seven amino acid sites engaged in both BCEs and TCEs were identified as highly suitable targets, as these sites will be predicted to play a principal role in inducing strong humoral and cellular immune responses against A/H7N9 virus.


Subject(s)
Adaptation, Physiological , Evolution, Molecular , Influenza A Virus, H7N9 Subtype/genetics , Viral Proteins/chemistry , Bayes Theorem , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Influenza A Virus, H7N9 Subtype/chemistry , Likelihood Functions , Models, Genetic , Selection, Genetic , Viral Proteins/genetics , Viral Proteins/immunology
12.
Virol J ; 11: 184, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25342002

ABSTRACT

BACKGROUND: The aim of this study was to assess the prevalence of the novel avian influenza A virus (H7N9) in three high risk groups. The groups were divided into those exposed through infected individuals, those exposed through poultry and those individuals exposed through the external environment, in the early stage of the epidemic in Guangdong Province, which is located in the southern region of China. METHODS: Serologic studies were conducted among samples collected from individuals who had close contact with the first H7N9 infected patient reported in Guangdong Province, those who were most likely exposed to the first group of H7N9 infected poultry, and those who might have been exposed to H7N9 in the environmental settings, namely hemagglutinin inhibition (HI) and microneutralizaiton(MN) assays using three viruses as antigens. RESULTS: The alignment results of the viral sequences indicated the similarity of the HA gene sequence among viruses from exposure to infected poultry, infected humans and contaminated environments were highly conserved. Seven samples of individuals exposed to contaminated environments were positive in the HI assay and one sample among them was positive in the MN assay using poultry H7N9 virus as the antigen. One sample was positive against human H7N9 virus and 3 samples were positive against environmental H7N9 among those that were in contact with infected patients in HI assay. None of these were positive in MN assay. All HI titers of the 240 samples from those individuals in contact with infected poultry were less than 40 aganist the antigens from three viruses. CONCLUSIONS: The results suggest that when the H7N9 virus was in the early stages of circulation in Guangdong Province, the antigenic sites of the HA proteins of the H7N9 strain isolated from different hosts were highly conserved. The risk of new infection is low in individuals who have contact with the infected patients, poultry or a contaminated environment in the early stages of the circulation of the H7N9 virus.


Subject(s)
Antibodies, Viral/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Adolescent , Adult , Aged , Amino Acid Sequence , Animals , Chick Embryo , Child , Child, Preschool , China/epidemiology , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Infant , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , Male , Middle Aged , Molecular Sequence Data , Phylogeny , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/transmission , Poultry Diseases/virology , Sequence Alignment , Young Adult
13.
ACS Synth Biol ; 8(11): 2472-2482, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31565926

ABSTRACT

Hemagglutinin (HA) is the major surface antigen of influenza virus and the most promising influenza vaccine immunogen. In 2013, the devastating H7N9 influenza virus was identified in China, which induced high mortality. The HA of this virus (H7) is relatively unstable, making it challenging to produce an effective vaccine. To improve the stability of HA protein from H7N9 influenza virus for better vaccine antigens without impairing immunogenicity, we recombined the HA from H7N9 (H7) with a more stable HA from H3N2 (H3) by structure-guided recombination, resulting in six chimeric HAs, FrA-FrF. Two of these chimeric HAs, FrB and FrC, exhibited proper hemagglutination activity and presented improved thermal stability compared to the original H7. Mice immunized with FrB and FrC elicited H7-specific antibodies comparable to those induced by parental H7, and the antisera collected from these immunized mice successfully inhibited H7N9 infection in a microneutralization assay. These results suggest that our structural-recombination approach can create stabilizing chimeric antigens while maintaining proper immunogenicity, which may not only benefit the construction of more stable HA vaccines to fight against H7N9 infection, but also facilitate effective vaccine improvements for other influenza viruses or infectious pathogens. In addition, this study also demonstrates the potential for better engineering of multimeric protein complexes like HA to achieve improved function, which are often immunologically or pharmaceutically important but difficult to modify.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinins/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/therapy , Recombinant Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Immunization/methods , Immunogenicity, Vaccine , Immunoglobulin G/blood , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/chemistry , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/virology , Protein Stability , Recombination, Genetic , Treatment Outcome
14.
J Immunol Methods ; 470: 20-26, 2019 07.
Article in English | MEDLINE | ID: mdl-31028753

ABSTRACT

This study aimed to investigate whether the human antigen presenting cells (APCs) can process and present Salmonella expressing H7N9 hemagglutinin (Sal-HA), neuraminidase (Sal-NA) or M2 ectodomain (Sal-M2e) to T cells and subsequently activate CD4+ T cell responses in vitro. In this study, APCs generated from human peripheral blood mononuclear cells (PBMCs) were first treated with mitomycin-C, followed by stimulation with Sal-HA, Sal-M2e, Sal-NA or Salmonella alone for 24 h. Subsequently, stimulated APCs were coincubated with untreated PBMCs (1:10) of the same individual for 24 or 72 h and then analysed for cytokine induction and T cell proliferations by qRT-PCR assay and flow cytometry, respectively. Our results demonstrated that APCs stimulated with Sal-HA, Sal-M2e or Sal-NA induced significantly (p < .05) higher CD3+CD4+ T cell proliferations compared to the APCs treated with Salmonella alone. Our data further revealved that APCs treated with Sal-HA induced significantly (p < .05) higher CD3+CD4+ T cell responses compared to the APCs treated with either Sal-M2e or Sal-NA, which both induced almost comparable levels. The T cell proliferation responses were further measured by lymphocyte proliferation assay and the results showed that Sal-HA and Sal-M2e stimulated APCs induced significantly (p < .05) higher proliferations in T cells compared to the APCs stimulated with either Sal-NA or Salmonella alone. With respect to cytokine inductions, APCs treated with either Sal-HA or Sal-M2e induced significantly (p < .05) higher mRNA transcription levels of proinflammatory (IL-1ß, IL-6, IL-12 and IL-23), Th1 (IFN-γ), Th17 (IL-17 and IL-21) and Th2 (IL-10 and TGF-ß) cytokines in T cells compared to Sal-NA or Salmonella alone treated APCs. In conclusion, we show that Salmonella system can efficiently deliver vaccine antigens to APCs and is, thus, capable to elicit heterologous antigen-specific adaptive immunity.


Subject(s)
Antigen-Presenting Cells/drug effects , Antigens, Viral/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Hemagglutinin Glycoproteins, Influenza Virus/pharmacology , Neuraminidase/pharmacology , Salmonella typhimurium/genetics , Viral Matrix Proteins/pharmacology , Animals , Antigen Presentation/drug effects , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Coculture Techniques , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Cellular/drug effects , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/prevention & control , Interferon-gamma/biosynthesis , Interleukins/biosynthesis , Mitomycin/pharmacology , Neuraminidase/genetics , Neuraminidase/immunology , Primary Cell Culture , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Salmonella typhimurium/immunology , Transforming Growth Factor beta/biosynthesis , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
15.
Virology ; 500: 62-70, 2017 01.
Article in English | MEDLINE | ID: mdl-27771560

ABSTRACT

Infection of adherent cell monolayers using a liquid inoculum represents an established method to reliably and quantitatively study virus infection, but poorly recapitulates the exposure and infection of cells in the respiratory tract that occurs during infection with aerosolized pathogens. To better simulate natural infection in vitro, we adapted a system that generates viral aerosols similar to those exhaled by infected humans to the inoculation of epithelial cell monolayers. Procedures for cellular infection and calculation of exposure dose were developed and tested using viruses characterized by distinct transmission and pathogenicity phenotypes: an HPAI H5N1, an LPAI H7N9, and a seasonal H3N2 virus. While all three aerosolized viruses were highly infectious in a human bronchial epithelial cell line (Calu-3) cultured submerged in media, differences between the viruses were observed in primary human alveolar epithelial cells and in Calu-3 cells cultured at air-liquid interface. This system provides a novel enhancement to traditional in vitro experiments, particularly those focused on the early stages of infection.


Subject(s)
Aerosols/chemistry , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/virology , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Humans , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/transmission , Virus Replication
16.
Cell Host Microbe ; 22(4): 471-483.e5, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28966056

ABSTRACT

The H7N9 influenza virus causes high-mortality disease in humans but no effective therapeutics are available. Here we report a human monoclonal antibody, m826, that binds to H7 hemagglutinin (HA) and protects against H7N9 infection. m826 binds to H7N9 HA with subnanomolar affinity at acidic pH and 10-fold lower affinity at neutral pH. The high-resolution (1.9 Å) crystal structure of m826 complexed with H7N9 HA indicates that m826 binds an epitope that may be fully exposed upon pH-induced conformational changes in HA. m826 fully protects mice against lethal challenge with H7N9 virus through mechanisms likely involving antibody-dependent cell-mediated cytotoxicity. Interestingly, immunogenetic analysis indicates that m826 is a germline antibody, and m826-like sequences can be identified in H7N9-infected patients, healthy adults, and newborn babies. These m826 properties offer a template for H7N9 vaccine immunogens, a promising candidate therapeutic, and a tool for exploring mechanisms of virus infection inhibition by antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Dogs , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H7N9 Subtype/chemistry , Influenza Vaccines/immunology , Influenza, Human/therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Molecular Conformation , Orthomyxoviridae Infections/therapy , Orthomyxoviridae Infections/virology
17.
Viral Immunol ; 29(4): 235-43, 2016 05.
Article in English | MEDLINE | ID: mdl-26910526

ABSTRACT

The H7N9 influenza virus emerged in February 2013 in China, and underlies over 20% of human mortality in the country. Many efforts are being made to develop an effective vaccine against this highly pathogenic virus. We made H7N9 vaccine virus with six internal genes of A/PR/8/34 (H1N1) and two surface genes of hemagglutinin and neuraminidase from A/Anhui/1/2013 (H7N9) by reverse genetics, and the H7N9 vaccine antigens were produced in eggs. Protective antibodies were induced in mice immunized with a single dose (7.5 µg) of the H7N9 antigen. These mice survived lethal infection by the H7N9 virus, although few viruses were found in their lung tissues. However, mice administered with two doses of the H7N9 antigen survived without any viral antigen being detected in their lung tissues. Furthermore, the IgG antibody subtypes were also pronounced in lung tissues of the immunized mice. Therefore, our results suggest that the inactivated whole antigen of the H7N9 influenza virus might protect animals and humans from its lethal infection.


Subject(s)
Antigens, Viral/analysis , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Neuraminidase/immunology , Animals , Antibodies, Viral/analysis , Disease Models, Animal , Female , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/chemistry , Influenza Vaccines/chemistry , Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Influenza, Human/virology , Lung/immunology , Lung/virology , Mice , Mice, Inbred ICR , Vaccination/methods , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/immunology , Viral Load
18.
Sci Rep ; 6: 22045, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26907865

ABSTRACT

The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.


Subject(s)
Antibodies, Viral/blood , Hemagglutinins, Viral/immunology , Immune Sera/chemistry , Influenza in Birds/prevention & control , Influenza, Human/prevention & control , Animals , Birds/immunology , Birds/virology , Cross Protection , Cross Reactions , Dogs , Hemagglutinins, Viral/chemistry , Humans , Influenza A Virus, H7N2 Subtype/chemistry , Influenza A Virus, H7N2 Subtype/classification , Influenza A Virus, H7N2 Subtype/immunology , Influenza A Virus, H7N3 Subtype/chemistry , Influenza A Virus, H7N3 Subtype/classification , Influenza A Virus, H7N3 Subtype/immunology , Influenza A Virus, H7N7 Subtype/chemistry , Influenza A Virus, H7N7 Subtype/classification , Influenza A Virus, H7N7 Subtype/immunology , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/biosynthesis , Influenza in Birds/blood , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Phylogeny
19.
ACS Infect Dis ; 2(7): 471-7, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27626099

ABSTRACT

Influenza viruses are obligate parasites that hijack the host cellular system. Previous results have shown that the influenza virus PB2 subunit confers a dependence of host eukaryotic translation initiation factor 4-γ 1 (eIF4G1) for viral mRNA translation. Here, we demonstrated that peptide-mediated interference of the PB2-eIF4G1 interaction inhibited virus replication in vitro and in vivo. Remarkably, intranasal administration of the peptide provided 100% protection against lethal challenges of influenza A viruses in BALB/c mice, including H1N1, H5N1, and H7N9 influenza virus subtypes. Mapping of the PB2 protein indicated that the eIF4G1 binding sites resided within the PB2 cap-binding domain. Virtual docking analysis suggested that the inhibitory peptide associated with the conserved amino acid residues that were essential to PB2 cap-binding activity. Overall, our results identified the PB2-eIF4G1 interactive site as a druggable target for influenza therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Eukaryotic Initiation Factor-4G/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H5N1 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/metabolism , Influenza, Human/metabolism , Peptides/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Animals , Antiviral Agents/chemistry , Cell Line , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/genetics , Female , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Peptides/chemistry , Protein Binding , Protein Domains , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
20.
Comput Biol Chem ; 59 Pt A: 8-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26364271

ABSTRACT

The sudden emergence of a human infecting strain of H7N9 influenza virus in China in 2013 leading to fatalities in about 30% of the cases has caused wide concern that additional mutations in the strain leading to human to human transmission could lead to a deadly pandemic. It may happen in a short time span as the outbreak of H7N9 is more and more recurrent, which implies that H7N9 evolution is speeding up. H7N9 flu strains were not known to infect humans before this attack in China in February 2013 and it was solely an avian strain. While currently available drugs such as oseltamivir have been found to be largely effective against the H7N9, albeit with recent reported cases of development of resistance to the drug, there is a necessity to identify alternatives to combat this disease, especially if it assumes pandemic proportions. In our work, we have tried to investigate for the genetic changes in hemagglutinin (HA) protein sequence that lead to human infection by an avian infecting virus and identify possible peptide targets to design vaccines to control this upcoming risk. We identified three highly conserved regions in all H7 subtypes, of which one particular immunogenic surface exposed region was found to be well conserved in all human infecting H7N9 strains (accessed up to 27th March 2014). Compared to H7N9 avian strains, we identified two mutations in this conserved region at the receptor binding site of all post-February 2013 human-infecting H7N9China hemagglutinin protein sequences. One of the mutations is very close (3.6 Å) to the hemagglutinin sialic acid binding pocket that may lead to better binding to human host's sialic acid due to the changes in hydrophobicity of the microenvironment of the binding site. We found that the peptide region with these mutational changes that are specific for human infecting H7N9 virus possess the possibility of being used as target for a peptide vaccine.


Subject(s)
Computer Simulation , Hemagglutinins/chemistry , Hemagglutinins/immunology , Influenza A Virus, H7N9 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , China , Humans , Influenza Vaccines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL