Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Publication year range
1.
Mol Cancer ; 23(1): 95, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720319

ABSTRACT

BACKGROUND: Dysregulation of immune surveillance is tightly linked to the development of metabolic dysfunction-associated steatohepatitis (MASH)-driven hepatocellular carcinoma (HCC); however, its underlying mechanisms remain unclear. Herein, we aimed to determine the role of interleukin-21 receptor (IL-21R) in MASH-driven HCC. METHODS: The clinical significance of IL-21R was assessed in human HCC specimens using immunohistochemistry staining. Furthermore, the expression of IL-21R in mice was assessed in the STAM model. Thereafter, two different MASH-driven HCC mouse models were applied between IL-21R-deficient mice and wild type controls to explore the role of IL-21R in MASH-driven HCC. To further elucidate the potential mechanisms by which IL-21R affected MASH-driven HCC, whole transcriptome sequencing, flow cytometry and adoptive lymphocyte transfer were performed. Finally, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescent staining, chromatin immunoprecipitation assay and western blotting were conducted to explore the mechanism by which IL-21R induced IgA+ B cells. RESULTS: HCC patients with high IL-21R expression exhibited poor relapse-free survival, advanced TNM stage and severe steatosis. Additionally, IL-21R was demonstrated to be upregulated in mouse liver tumors. Particularly, ablation of IL-21R impeded MASH-driven hepatocarcinogenesis with dramatically reduction of lipid accumulation. Moreover, cytotoxic CD8+ T lymphocyte activation was enhanced in the absence of IL-21R due to the reduction of immunosuppressive IgA+ B cells. Mechanistically, the IL-21R-STAT1-c-Jun/c-Fos regulatory axis was activated in MASH-driven HCC and thus promoted the transcription of Igha, resulting in the induction of IgA+ B cells. CONCLUSIONS: IL-21R plays a cancer-promoting role by inducing IgA+ B cells in MASH-driven hepatocarcinogenesis. Targeting IL-21R signaling represents a potential therapeutic strategy for cancer therapy.


Subject(s)
B-Lymphocytes , Carcinoma, Hepatocellular , Fatty Liver , Immunoglobulin A , Liver Neoplasms , Signal Transduction , Animals , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/etiology , Gene Expression Regulation, Neoplastic , Immunoglobulin A/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukin-21 Receptor alpha Subunit/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/etiology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Receptors, Interleukin-21/metabolism , Receptors, Interleukin-21/genetics
2.
Mediators Inflamm ; 2022: 4322092, 2022.
Article in English | MEDLINE | ID: mdl-35693111

ABSTRACT

IL-21/IL-21R was documented to participate in the regulation of multiple infection and inflammation. During Chlamydia muridarum (C. muridarum) respiratory infection, our previous study had revealed that the absence of this signal induced enhanced resistance to infection with higher protective Th1/Th17 immune responses. Here, we use the murine model of C. muridarum respiratory infection and IL-21R deficient mice to further identify a novel role of IL-21/IL-21R in neutrophilic inflammation. Resistant IL-21R-/- mice showed impaired neutrophil recruitment to the site of infection. In the absence of IL-21/IL-21R, pulmonary neutrophils also exhibited reduced activation status, including lower CD64 expression, MPO activity, and neutrophil-produced protein production. These results correlated well with the decrease of neutrophil-related chemokines (KC and MIP-2), inflammatory cytokines (IL-6, IL-1ß, and TNF-α), and TLR/MyD88 pathway mediators (TLR2, TLR4, and MyD88) in infected lungs of IL-21R-/- mice than normal mice. Complementarily, decreased pulmonary neutrophil infiltration, activity, and levels of neutrophilic chemotactic factors and TLR/MyD88 signal in infected lungs can be corrected by rIL-21 administration. These results revealed that IL-21/IL-21R may aggravate the neutrophil inflammation through regulating TLR/MyD88 signal pathway during chlamydial respiratory infection.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Interleukin-21 Receptor alpha Subunit/metabolism , Animals , Immunity , Inflammation/pathology , Interleukins , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Neutrophils/metabolism , Signal Transduction
3.
Int J Med Sci ; 17(18): 3065-3072, 2020.
Article in English | MEDLINE | ID: mdl-33173427

ABSTRACT

Objectives: This study amied to whether IL-21 promotes osteoblast transdifferentiation of cultured human Valvular interstitial cells (VICs). Methods: We first confirmed that IL-21 alters gene expression between CAVD aortic valve tissue and normal samples by immunohistochemistry, qPCR, and western blotting. VICs were cultured and treated with IL-21. Gene and protein expression levels of the osteoblastic markers ALP and Runx2, which can be blocked by specific JAK3 inhibitors and/or siRNA of STAT3, were measured. Results: IL-21 expression was upregulated in calcified aortic valves and promotes osteogenic differentiation of human VICs. IL-21 accelerated VIC calcification through the JAK3/STAT3 pathway. Conclusion: Our data suggest that IL-21 is a key factor in valve calcification and a promising candidate for targeted therapeutics for CAVD.


Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Calcinosis/pathology , Interleukins/metabolism , Osteoblasts/pathology , Adult , Aortic Valve/cytology , Case-Control Studies , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Cells, Cultured , Female , Gene Knockdown Techniques , Healthy Volunteers , Humans , Interleukin-21 Receptor alpha Subunit/genetics , Interleukin-21 Receptor alpha Subunit/metabolism , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/metabolism , Male , Middle Aged , Primary Cell Culture , Quinazolines/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Up-Regulation
4.
Exp Dermatol ; 27(2): 191-195, 2018 02.
Article in English | MEDLINE | ID: mdl-29220875

ABSTRACT

Psoriasis is largely mediated by interleukin (IL)-23/T helper (Th) 17 axis, and IL-21 is a pleiotropic cytokine expressed by Th17 cells. Despite previously reported possible pathogenic roles of IL-21 in human psoriasis, we found that IL-21 receptor (IL-21R) signalling was not crucial for imiquimod-induced psoriatic inflammation, using IL-21R-/- mice. The severity of imiquimod-induced psoriatic manifestation and pro-inflammatory Th17 cytokine levels, IL-17A-producing γδ T cells and CD4+ T cells, and in vitro IL-17A production by γδ T cells after IL-23 stimulation was comparable between wild-type and IL-21R-/- mice. Collectively, IL-21R signalling was not critically involved in IMQ-induced psoriatic inflammation despite an increased IL-21 expression in the IMQ-treated mouse skin. Our data may represent the significant differences between human psoriasis and murine psoriasis model, and further studies using other models will be required to elucidate the role of IL-21 in psoriasis pathogenesis.


Subject(s)
Dermatitis/genetics , Interleukin-21 Receptor alpha Subunit/metabolism , Psoriasis/genetics , Receptors, Interleukin-21/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , Dermatitis/metabolism , Imiquimod , Inflammation , Interferon Inducers/pharmacology , Interleukin-21 Receptor alpha Subunit/genetics , Interleukin-23 Subunit p19/metabolism , Intraepithelial Lymphocytes/cytology , Mice , Mice, Knockout , Mice, Transgenic , Psoriasis/chemically induced , Psoriasis/metabolism , Receptors, Interleukin-21/genetics , Signal Transduction
5.
J Immunol ; 196(4): 1529-40, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26792801

ABSTRACT

IL-21 promotes B cell and CTL responses in vivo, conferring IL-21 with a role in both humoral and cellular responses. Because CTL can target and eliminate autoreactive B cells, we investigated whether IL-21R signaling in CD8 T cells would alter the expansion of autoreactive B cells in an autoimmune setting. We addressed this question using the parent→F1 murine model of acute and chronic (lupus-like) graft-versus-host disease (GVHD) as models of a CTL-mediated or T-dependent B cell-mediated response, respectively. Induction of acute GVHD using IL-21R-deficient donor T cells resulted in decreased peak donor CD8 T cell numbers and decreased CTL effector function due to impaired granzyme B/perforin and Fas/Fas ligand pathways and a phenotype of low-intensity chronic GVHD with persistent host B cells, autoantibody production, and mild lupus-like renal disease. CTL effector maturation was critically dependent on IL-21R signaling in Ag-specific donor CD8, but not CD4, T cells. Conversely, treatment of DBA/2J→F1 chronic GVHD mice with IL-21 strongly promoted donor CD8 T cell expansion and rescued defective donor anti-host CTLs, resulting in host B cell elimination, decreased autoantibody levels, and attenuated renal disease, despite evidence of concurrently enhanced CD4 help for B cells and heightened B cell activation. These results demonstrate that, in the setting of lupus-like CD4 T cell-driven B cell hyperactivity, IL-21 signaling on Ag-specific donor CD8 T cells is critical for CTL effector maturation, whereas a lack of IL-21R downregulates CTL responses that would otherwise limit B cell hyperactivity and autoantibody production.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/immunology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Autoantibodies/biosynthesis , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Interleukin-21 Receptor alpha Subunit/deficiency , Interleukin-21 Receptor alpha Subunit/genetics , Interleukins/administration & dosage , Lupus Erythematosus, Systemic/prevention & control , Lymphocyte Activation , Mice , Mice, Inbred DBA
6.
Immunology ; 152(3): 507-516, 2017 11.
Article in English | MEDLINE | ID: mdl-28685820

ABSTRACT

Interleukin 27 (IL-27) has been identified as a potent cytokine in the differentiation of type 1 regulatory T (Tr1) cells through interactions with several key elements, including transcription factors such as aryl hydrocarbon receptor and IL-21. Autocrine production of IL-21 is known to be important for maintaining IL-10 expression by Tr1 cells. Although previous studies have shown that the phosphoinositide 3-kinase (PI3K) -Akt axis contributes to the differentiation of helper T-cell subsets, the role of the PI3K pathway on Tr1 cell differentiation remains to be elucidated. Here, we demonstrate that suppression of the PI3K-Akt pathway results in impairment of IL-27-induced Tr1 (IL-27-Tr1) cell differentiation in vitro and in vivo. Furthermore, this suppression down-regulates IL-21 receptor expression by Tr1 cells, followed by suppression of IL-10 expression by IL-27-Tr1 cells. These results suggest that the PI3K pathway enhances IL-10 expression by IL-27-Tr1 cells through up-regulation of IL-21 receptors.


Subject(s)
Cell Differentiation/drug effects , Interleukin-27/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , Animals , Cells, Cultured , Female , Forkhead Box Protein O1/immunology , Forkhead Box Protein O1/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Genotype , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-21 Receptor alpha Subunit/immunology , Interleukin-21 Receptor alpha Subunit/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
7.
Am J Pathol ; 185(11): 3102-14, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26363366

ABSTRACT

SJL/J mice exhibit a high incidence of mature B-cell lymphomas that require CD4(+) T cells for their development. We found that their spleens and lymph nodes contained increased numbers of germinal centers and T follicular helper (TFH) cells. Microarray analyses revealed high levels of transcripts encoding IL-21 associated with high levels of serum IL-21. We developed IL-21 receptor (IL21R)-deficient Swiss Jim Lambart (SJL) mice to determine the role of IL-21 in disease. These mice had reduced numbers of TFH cells, lower serum levels of IL-21, and few germinal center B cells, and they did not develop B-cell tumors, suggesting IL-21-dependent B-cell lymphomagenesis. We also noted a series of features common to SJL disease and human angioimmunoblastic T-cell lymphoma (AITL), a malignancy of TFH cells. Gene expression analyses of AITL showed that essentially all cases expressed elevated levels of transcripts for IL21, IL21R, and a series of genes associated with TFH cell development and function. These results identify a mouse model with features of AITL and suggest that patients with the disease might benefit from therapeutic interventions that interrupt IL-21 signaling.


Subject(s)
Immunoblastic Lymphadenopathy/pathology , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, T-Cell/pathology , Signal Transduction , Animals , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/pathology , Cytokines/blood , Disease Models, Animal , Female , Gene Expression Profiling , Germinal Center/pathology , Humans , Immunoblastic Lymphadenopathy/prevention & control , Immunoglobulin G/blood , Interleukin-21 Receptor alpha Subunit/genetics , Interleukins/genetics , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA , Spleen/pathology
8.
Brain Behav Immun ; 57: 193-199, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27006279

ABSTRACT

T helper cells 17 (Th17) are recognized as key participants in the pathogenesis of chronic autoimmune diseases such as multiple sclerosis (MS). Regulation of Th17 differentiation is a valuable strategy for diagnosis and treatment of these complicated immune disorders. Here, by genome-wide expression profiling of microRNAs (miRs), we screened miR-30a, whose level was greatly decreased during Th17 differentiation and the process of demyelination disease, both in MS patients and experimental autoimmune encephalomyelitis (EAE) mice. Enforced constitutive expression of miR-30a in naïve T cells inhibited their differentiation into Th17, and in vivo overexpression of miR-30a resulted in fewer Th17 and alleviative EAE. Moreover, target prediction analysis and dual luciferase report assay revealed that interleukin-21 receptor (IL-21R) was a direct target of miR-30a, a finding consistent with the results that miR-30a downregulated the expression of IL-21R, while overexpression of IL-21R alleviated the inhibitory effect of miR-30a on Th17 differentiation. Taken together, our findings imply that miR-30a inhibits Th17 differentiation and the pathogenesis of MS by targeting IL-21R.


Subject(s)
Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , MicroRNAs/metabolism , Multiple Sclerosis/metabolism , Th17 Cells , Adult , Animals , Humans , Mice , Mice, Inbred C57BL
9.
J Immunol ; 192(4): 1404-14, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24446516

ABSTRACT

The cytokine IL-21 has been shown to influence immune responses through both costimulatory effects on effector T cells and opposing inhibitory effects on T regulatory cells (Tregs). To distinguish the effect of IL-21 on the immune system from that of its effect on Tregs, we analyzed the role of IL-21/IL-21R signaling in mice made genetically deficient in IL-2, which exhibit a deficit in IL-2-dependent Foxp3 regulatory T cells and suffer from a fatal multiorgan inflammatory disease. Our findings demonstrate that in the absence of IL-21/IL-21R signaling, Il2(-/-) mice retained a deficiency in Tregs yet exhibited a reduced and delayed inflammatory disease. The improved health of Il2(-/-)Il21r(-/-) mice was reflected in reduced pancreatitis and hemolytic anemia and this was associated with distinct changes in lymphocyte effector populations, including the reduced expansion of both T follicular helper cells and Th17 cells and a compensatory increase in IL-22 in the absence of IL-21R. IL-21/IL-21R interactions were also important for the expansion of effector and memory CD8(+) T cells, which were critical for the development of pancreatitis in Il2(-/-) mice. These findings demonstrate that IL-21 is a major target of immune system regulation.


Subject(s)
Anemia, Hemolytic/immunology , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Pancreatitis/immunology , T-Lymphocytes, Regulatory/immunology , Anemia, Hemolytic/genetics , Animals , Antibodies/blood , Antibody Formation/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Interleukin-2/genetics , Interleukin-21 Receptor alpha Subunit/genetics , Interleukins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis/genetics , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Interleukin-22
10.
Blood ; 118(2): 446-55, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21596854

ABSTRACT

IL-21 is a proinflammatory cytokine produced by Th17 cells. Abrogation of IL-21 signaling has recently been shown to reduce GVHD while retaining graft-versus-leukemia/lymphoma (GVL) responses. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL remain incompletely understood. In a murine MHC-mismatched BM transplantation model, we observed that IL-21 receptor knockout (IL-21R KO) donor T cells mediate decreased systemic and gastrointestinal GVHD in recipients of a transplant. This reduction in GVHD was associated with expansion of transplanted donor regulatory T cells and with tissue-specific modulation of Th-cell function. IL-21R KO and wild-type donor T cells showed equivalent alloactivation, but IL-21R KO T cells showed decreased infiltration and inflammatory cytokine production within the mesenteric lymph nodes. However, Th-cell cytokine production was maintained peripherally, and IL-21R KO T cells mediated equivalent immunity against A20 and P815 hematopoietic tumors. In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T-cell function and GVL capacity are retained. IL-21 is thus an exciting target for therapeutic intervention and improvement of clinical transplantation outcomes.


Subject(s)
Graft vs Host Disease/genetics , Graft vs Leukemia Effect/genetics , Immunity, Innate/genetics , Interleukins/physiology , T-Lymphocytes/metabolism , Tissue Donors , Animals , Gene Knockdown Techniques , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Humans , Immunity, Innate/physiology , Interleukin-21 Receptor alpha Subunit/genetics , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukin-21 Receptor alpha Subunit/physiology , Interleukins/genetics , Interleukins/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Organ Specificity/genetics , Organ Specificity/immunology , Signal Transduction/genetics , T-Lymphocytes/physiology , Transplantation Immunology
11.
Am J Pathol ; 178(2): 794-802, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21281812

ABSTRACT

IL-17-producing CD4(+) T cells (Th-17) contribute to the pathogenesis of experimental autoimmune encephalomyelitis and are associated with active disease in multiple sclerosis (MS). In addition to IL-17, Th-17 cells can also express IL-21, IL-22, and IL-6 under Th-17-polarizing conditions (IL-6 and transforming growth factor-ß). In this study we investigated IL-21 and IL-21 receptor (IL-21R) expression in MS lesions by in situ hybridization and immunohistochemistry. We detected strongly IL-21(+) infiltrating cells predominantly in acute but also in chronic active white matter MS lesions in which IL-21 expression was restricted to CD4(+) cells. In contrast, IL-21R was much more broadly distributed on CD4(+), CD19(+), and CD8(+) lymphocytes but not major histocompatibility complex class-II(+) macrophages/microglia. Interestingly, in cortical areas we detected both IL-21 and IL-21R expression by neurons. These findings suggest role(s) for IL-21 in both the acute and chronic stages of MS via direct effects on T and B lymphocytes and, demonstrated for the first time, also on neurons.


Subject(s)
Brain/pathology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Multiple Sclerosis/metabolism , Neurons/metabolism , Acute Disease , Antigens, CD19/metabolism , B-Lymphocytes/metabolism , Brain/metabolism , Chronic Disease , Humans , Interleukin-21 Receptor alpha Subunit/genetics , Interleukins/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Neurons/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/genetics
12.
Cell Immunol ; 267(2): 102-8, 2011.
Article in English | MEDLINE | ID: mdl-21227406

ABSTRACT

Interleukin 21 exerts a variety of regulatory effects on both innate and adaptive immune cells. Although the suppressive effect of IL-21 via the induction of IL-10 in mouse model has been defined, the inhibitory effect of IL-21 in humans is not well understood. In the present study, we showed that IL-21 induced IL-10 production by human naive CD4(+) T cells. Most of the IL-10-producing CD4(+) T cells did not co-express IFN-γ. IL-21 increased the expression of IL-21R on activated naïve CD4(+) T cells. Further analysis indicated that IL-21 induced phosphorylation of STAT1, STAT3 and STAT5 in activated naïve CD4(+) T cells. In addition, IL-21 maintained the expression of CD16 on monocytes via the production of IL-10 by human naïve CD4(+) T cells. Taken together, our data indicated that IL-21 had a modulating effect on monocytes at least in part by inducing IL-10 production.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Interleukin-10/metabolism , Interleukins/pharmacology , Monocytes/metabolism , Receptors, IgG/metabolism , Antibodies/immunology , Antibodies/pharmacology , CD28 Antigens/immunology , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Culture Media, Conditioned/pharmacology , Fetal Blood/cytology , GPI-Linked Proteins/metabolism , HLA-DR Antigens/metabolism , Humans , Interferon-gamma/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Monocytes/drug effects , Phosphorylation/drug effects , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism
13.
Mol Ther ; 18(7): 1293-301, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20389285

ABSTRACT

We hypothesized that fusing granulocyte-macrophage colony-stimulation factor (GMCSF) and interleukin (IL)-21 as a single bifunctional cytokine (hereafter GIFT-21) would lead to synergistic anticancer immune effects because of their respective roles in mediating inflammation. Mechanistic analysis of GIFT-21 found that it leads to IL-21Ralpha-dependent STAT3 hyperactivation while also contemporaneously behaving as a dominant-negative inhibitor of GMCSF-driven STAT5 activation. GIFT-21's aberrant interactions with its cognate receptors on macrophages resulted in production of 30-fold greater amounts of IL-6, TNF-alpha, and MCP-1 when compared to controls. Furthermore, GIFT-21 treatment of primary B and T lymphocytes leads to STAT1-dependent apoptosis of IL-21Ralpha(+) lymphocytes. B16 melanoma cells gene-enhanced to produce GIFT-21 were immune rejected by syngeneic C57Bl/6 mice comparable to the effect of IL-21 alone. However, a significant GIFT-21-driven survival advantage was seen when NOD-SCID mice were implanted with GIFT-21-secreting B16 cells, consistent with a meaningful role of macrophages in tumor rejection. Because GIFT-21 leads to apoptosis of IL-21Ralpha(+) lymphocytes, we tested its cytolytic effect on IL-21Ralpha(+) EL-4 lymphoma tumors implanted in C57Bl/6 mice and could demonstrate a significant increase in survival. These data indicate that GIFT-21 is a novel IL-21Ralpha agonist that co-opts IL-21Ralpha-dependent signaling in a manner permissive for targeted cancer immunotherapy.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/physiology , Animals , Apoptosis/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Line , Cells, Cultured , Cytokines/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukins/genetics , Macrophages/drug effects , Macrophages/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
14.
MAbs ; 13(1): 1883239, 2021.
Article in English | MEDLINE | ID: mdl-33557673

ABSTRACT

Despite substantial technological advances in antibody library and display platform development, the number of approved biotherapeutics from displayed libraries remains limited. In vivo, 20-50% of peripheral B cells undergo a process of receptor editing, which modifies the variable and junctional regions of light chains to delete auto-reactive clones. However, in vitro antibody evolution relies primarily on interaction with antigen, with no in-built checkpoints to ensure that the selected antibodies have not acquired additional specificities or biophysical liabilities during the optimization process. We had previously observed an enrichment of positive charge in the complementarity-determining regions of an anti-IL-21 R antibody during affinity optimization, which correlated with more potent IL-21 neutralization, but poor in vivo pharmacokinetics (PK). There is an emerging body of data that has correlated antibody nonspecificity with poor PK in vivo, and established a series of screening assays that are predictive of this behavior. In this study we revisit the challenge of developing an anti-IL-21 R antibody that can effectively compete with IL-21 for its highly negatively charged paratope while maintaining favorable biophysical properties. In vitro deselection methods that included an excess of negatively charged membrane preparations, or deoxyribonucleic acid, during phage selection of optimization libraries were unsuccessful in avoiding enrichment of highly charged, nonspecific antibody variants. However, a combination of structure-guided rational library design, next-generation sequencing of library outputs and application of linear regression models resulted in the identification of an antibody that maintained high affinity for IL-21 R and exhibited a desirable stability and biophysical profile.


Subject(s)
Antibodies, Neutralizing/pharmacology , Drug Design , High-Throughput Nucleotide Sequencing , Interleukin-21 Receptor alpha Subunit/antagonists & inhibitors , Mutagenesis , Protein Engineering , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibody Specificity , Computer-Aided Design , Drug Stability , HEK293 Cells , Humans , Interleukin-21 Receptor alpha Subunit/immunology , Interleukin-21 Receptor alpha Subunit/metabolism , Protein Conformation , Protein Stability , Structure-Activity Relationship
15.
Front Immunol ; 12: 738958, 2021.
Article in English | MEDLINE | ID: mdl-34721405

ABSTRACT

Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Chromobox Protein Homolog 5/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Melanoma, Experimental/metabolism , Neuroblastoma/metabolism , Ovarian Neoplasms/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation , Cell Line, Tumor , Chromobox Protein Homolog 5/genetics , Chromosomal Proteins, Non-Histone/genetics , Coculture Techniques , Female , Gene Expression Regulation, Neoplastic , Immunotherapy, Adoptive , Interleukin-21 Receptor alpha Subunit/genetics , Interleukin-21 Receptor alpha Subunit/metabolism , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoid Enhancer-Binding Factor 1/genetics , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Burden , Tumor Microenvironment
16.
Neurotoxicology ; 77: 1-11, 2020 03.
Article in English | MEDLINE | ID: mdl-31811869

ABSTRACT

Autism spectrum disorder (ASD) comprises a broad range of neurodevelopmental disorders that are associated with deficits in social interaction and communication. The tyrosine kinase inhibitor tyrphostin AG126 represents a promising therapeutic agent for several neuroinflammatory disorders. There are currently no treatments available that can improve ASD and we previously showed that AG126 treatment exerts beneficial effects on BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD; however, the immunological mechanisms and molecular targets associated with this effect were previously unclear. This study was undertaken to delineate the neuroprotective effect of AG126 on BTBR mice. Here, using this mouse model, we investigated the effects of AG126 administration on IL-21R, IL-21, IL-22, TNF-α, NOS2, STAT3, IL-27, and Foxp3 production by CD8+ T cells in the spleen by flow cytometry. We further explored the mRNA and protein expression of IL-21, IL-22, IL-1ß, TNF-α, NOS2, JAK1, STAT3, IL-27, and Foxp3 in brain tissue by RT-PCR, and western blotting. We found that BTBR mice treated with AG126 exhibited significant decreases in IL-21R-, IL-21-, IL-22-, TNF-α-, NOS2-, STAT3-producing, and increases in IL-27- and Foxp3-producing, CD8+ T cells. Our results further demonstrated that AG126 treatment effectively decreased IL-21, IL-22, IL-1ß, TNF-α, NOS2, JAK1, and STAT3, and increased IL-27 and Foxp3 mRNA and protein expression in brain tissues. Our findings suggest that AG126 elicits a neuroprotective response through downregulation of the IL-21/IL-21R and JAK/STAT pathway in BTBR mice, which could represent a promising novel therapeutic target for ASD treatment.


Subject(s)
Autism Spectrum Disorder/metabolism , Enzyme Inhibitors/administration & dosage , Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction , Tyrphostins/administration & dosage , Animals , Disease Models, Animal , Down-Regulation , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Janus Kinases/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/drug effects
17.
Eur J Pharmacol ; 875: 172939, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31978425

ABSTRACT

The mechanisms driving the development and progression of Rheumatoid arthritis (RA) are complex, novel targeted therapies are gaining traction as potential methods to prevent or slow the progression of RA. Nobiletin is a derivative of citrus fruit that has been shown to attenuate the development of osteoarthritis and inhibit the expression of proinflammatory cytokines. However, the exact mechanisms by which nobiletin exerts these chondroprotective effects remain poorly understood. In the present study, we investigated the impact of nobiletin in mediating the effects of interleukin-21 (IL-21) in MH7A fibroblast-like synoviocytes (FLS), the main cell type found in the articular synovium. Firstly, we demonstrate that nobiletin (25 µM and 50 µM) reduced the expression of the IL-21 receptor by 29% and 51%, respectively, in FLS. Additionally, our findings demonstrate that nobiletin potently ameliorated IL-21-induced increased production of reactive oxygen species and 4-hydroxynonenal, increased expression of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and high-mobility group box 1 (HMGB1), and decreased mitochondrial membrane potential. We also demonstrate the ability of nobiletin to attenuate IL-21-induced expression of matrix metalloproteinases 3 and 13 (MMP-3, MMP-13), key degradative enzymes involved in RA-associated cartilage destruction. Finally, we show that the effects of nobiletin are mediated through the JAK1/STAT3 pathway, as nobiletin significantly reduced the phosphorylation of both JAK1 and STAT3. Taken together, our findings indicate that nobiletin may offer a safe and effective treatment against the development and progression of RA induced by the expression of IL-21 and its receptor.


Subject(s)
Antioxidants/pharmacology , Arthritis, Rheumatoid/drug therapy , Flavones/pharmacology , Interleukins/antagonists & inhibitors , Signal Transduction/drug effects , Antioxidants/therapeutic use , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cell Line , Drug Evaluation, Preclinical , Flavones/therapeutic use , Humans , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Janus Kinase 1/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Oxidative Stress/drug effects , Oxidative Stress/immunology , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology , Synovial Membrane/cytology , Synovial Membrane/immunology , Synovial Membrane/pathology , Synoviocytes
18.
AIDS Res Hum Retroviruses ; 35(8): 729-733, 2019 08.
Article in English | MEDLINE | ID: mdl-31044603

ABSTRACT

HIV perturbs the functionality of B cells resulting in defective humoral responses. As efficient humoral immune responses are important in controlling HIV-disease progression, we characterized the memory B cell population for its subsets and their activation (CD38 expression) and functional [interleukin (IL)-21R expression] profile in individuals with nonprogressive [long-term nonprogressors (LTNPs), N = 16] and progressive HIV disease (progressors, N = 16) along with 10 HIV uninfected healthy controls (HCs). The frequencies of total memory B cells were similar in HCs and HIV-infected individuals, whereas the frequencies of unswitched memory B (UMB) cells and CD38+ UMB cells were significantly higher in progressors than LTNPs and HCs (p < .03). LTNPs showed higher frequencies of class-switched memory B (SMB) cells and IL-21R expressing SMB cells than seen in progressors (p = .019), which were similar to that seen in HCs. The %UMB cells correlated inversely (p = .0002, r = -0.6053) and %SMB cells correlated positively (p = .0005, r = 0.5804) with CD4 count. IL-21/IL-21R interaction is required for class switching of B cells and differentiation into antibody-secreting plasma cells. The higher expression of IL-21R on class SMB cells from LTNPs might be resulting in efficient plasma cell differentiation and the functional humoral immune response that might be responsible for mounting efficient antibody response against the encountered infections. The more insights in this area might be required to further understand the role of IL-21R expressing class SMB cells in HIV infection.


Subject(s)
B-Lymphocytes/immunology , HIV Infections/immunology , Immunoglobulin Class Switching/immunology , Interleukin-21 Receptor alpha Subunit/biosynthesis , Antibody Formation/immunology , CD4 Lymphocyte Count , Cell Differentiation/immunology , Disease Progression , HIV-1/immunology , Humans , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism
19.
Article in English | MEDLINE | ID: mdl-31867283

ABSTRACT

Parasitic diseases cause significant morbidity and mortality in the developing and underdeveloped countries. No efficacious vaccines are available against most parasitic diseases and there is a critical need for developing novel vaccine strategies for care. IL-21 is a pleiotropic cytokine whose functions in protection and immunopathology during parasitic diseases have been explored in limited ways. IL-21 and its cognate receptor, IL-21R, are highly expressed in parasitized organs of infected humans as well in murine models of the human parasitic diseases. Prior studies have indicated the ability of the IL-21/IL-21R signaling axis to regulate the effector functions (e.g., cytokine production) of T cell subsets by enhancing the expression of T-bet and STAT4 in human T cells, resulting in an augmented production of IFN-γ. Mice deficient for either IL-21 (Il21-/-) or IL-21R (Il21r-/-) showed significantly reduced inflammatory responses following parasitic infections as compared with their WT counterparts. Targeting the IL-21/IL-21R signaling axis may provide a novel approach for the development of new therapeutic agents for the prevention of parasite-induced immunopathology and tissue destruction.


Subject(s)
Disease Susceptibility , Immunity , Inflammation/etiology , Inflammation/metabolism , Interleukins/metabolism , Parasitic Diseases/etiology , Parasitic Diseases/metabolism , Animals , Gene Expression Regulation , Humans , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/genetics , Parasitic Diseases/parasitology , Signal Transduction
20.
Int J Oncol ; 54(1): 7-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30387833

ABSTRACT

Interleukin-21 receptor (IL-21R) is involved in the immunological regulation of immune cells and tumor progression in multiple malignancies. However, the potential molecular mechanisms through which non-coding RNAs (ncRNAs) modulate IL-21R signaling in gastric cancer (GC) remain elusive. In this study, the expression of IL-21R was detected by RT-qPCR and western blot analysis in GC cell lines. The association between IL-21R expression and clinicopathological characteristics and the prognosis of patients with GC was analyzed by immunohistochemistry and Kaplan-Meier plotter analysis. The biological functions of IL-21R were analyzed by a series of in vitro and in vivo experiments, and its regulation by ncRNAs was predicted by bioinformatics analysis and confirmed by luciferase assays and rescue experiments. As a result, the expression of IL-21R was found to be significantly increased in GC cell lines and tissues as compared with normal tissues, and was associated with tumor size and lymphatic metastasis, acting as an independent prognostic factor of poor survival and recurrence in patients with GC. The knockdown of IL-21R markedly suppressed GC cell proliferation and invasion, and IL-21R expression was further validated to be negatively regulated by miR-125a-3p (miR-125a). The overexpression of IL-21R reversed the tumor suppressive effects of miR-125a in vitro and in vivo. Moreover, lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) acted as a sponge of miR-125a to modulate the IL-21R signaling pathway in GC cells and represented a risk factor for survival and recurrence in patients with GC. Taken together, the findings of this study reveal an oncogenic role for IL-21R in gastric tumorigenesis and verify that its activation is partly due to the dysregulation of the lncRNA MALAT1/miR-125a axis. These findings may provide a potential prognostic marker for patients with GC.


Subject(s)
Interleukin-21 Receptor alpha Subunit/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology , Up-Regulation , 3' Untranslated Regions , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Interleukin-21 Receptor alpha Subunit/metabolism , Male , Mice , Neoplasm Transplantation , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL