Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.040
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 40: 323-348, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35113729

ABSTRACT

The diverse biological activity of interleukin-6 (IL-6) contributes to the maintenance of homeostasis. Emergent infection or tissue injury induces rapid production of IL-6 and activates host defense through augmentation of acute-phase proteins and immune responses. However, excessive IL-6 production and uncontrolled IL-6 receptor signaling are critical to pathogenesis. Over the years, therapeutic agents targeting IL-6 signaling, such as tocilizumab, a humanized anti-IL-6 receptor antibody, have shown remarkable efficacy for rheumatoid arthritis, Castleman disease, and juvenile idiopathic arthritis, and their efficacy in other diseases is continually being reported. Emerging evidence has demonstrated the benefit of tocilizumab for several types of acute inflammatory diseases, including cytokine storms induced by chimeric antigen receptor T cell therapy and coronavirus disease 2019 (COVID-19). Here, we refocus attention on the biology of IL-6 and summarize the distinct pathological roles of IL-6 signaling in several acute and chronic inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Animals , Arthritis, Rheumatoid/therapy , COVID-19/therapy , Humans , Immunotherapy, Adoptive , Interleukin-6/metabolism , Signal Transduction
2.
Nat Immunol ; 25(4): 682-692, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396288

ABSTRACT

Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.


Subject(s)
Arthritis , Immunity, Innate , Humans , Matrix Metalloproteinase 3 , Interleukin-6/metabolism , Lymphocytes/metabolism , Inflammation/metabolism , Fibroblasts/metabolism
3.
Nat Immunol ; 25(5): 755-763, 2024 May.
Article in English | MEDLINE | ID: mdl-38641718

ABSTRACT

T cell infiltration into tumors is a favorable prognostic feature, but most solid tumors lack productive T cell responses. Mechanisms that coordinate T cell exclusion are incompletely understood. Here we identify hepatocyte activation via interleukin-6/STAT3 and secretion of serum amyloid A (SAA) proteins 1 and 2 as important regulators of T cell surveillance of extrahepatic tumors. Loss of STAT3 in hepatocytes or SAA remodeled the tumor microenvironment with infiltration by CD8+ T cells, while interleukin-6 overexpression in hepatocytes and SAA signaling via Toll-like receptor 2 reduced the number of intratumoral dendritic cells and, in doing so, inhibited T cell tumor infiltration. Genetic ablation of SAA enhanced survival after tumor resection in a T cell-dependent manner. Likewise, in individuals with pancreatic ductal adenocarcinoma, long-term survivors after surgery demonstrated lower serum SAA levels than short-term survivors. Taken together, these data define a fundamental link between liver and tumor immunobiology wherein hepatocytes govern productive T cell surveillance in cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatocytes , Interleukin-6 , STAT3 Transcription Factor , Serum Amyloid A Protein , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Hepatocytes/metabolism , Hepatocytes/immunology , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Mice, Knockout , Tumor Escape , Dendritic Cells/immunology , Dendritic Cells/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Signal Transduction , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor
4.
Nat Immunol ; 24(7): 1110-1123, 2023 07.
Article in English | MEDLINE | ID: mdl-37248420

ABSTRACT

Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.


Subject(s)
Monocytes , Stroke , Mice , Humans , Animals , Microglia , Interleukin-6/genetics , Interleukin-6/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stroke/pathology , Brain/metabolism , Mice, Inbred C57BL
5.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32610084

ABSTRACT

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Subject(s)
Adipose Tissue, Brown/metabolism , Interleukin-6/metabolism , Stress, Psychological , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Brain/metabolism , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Gluconeogenesis , Hyperglycemia/metabolism , Hyperglycemia/pathology , Interleukin-6/blood , Interleukin-6/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Adrenergic, beta-3/metabolism , Receptors, Interleukin-6/metabolism , Uncoupling Protein 1/deficiency , Uncoupling Protein 1/genetics
6.
Cell ; 178(4): 919-932.e14, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353219

ABSTRACT

Cutaneous TRPV1+ neurons directly sense noxious stimuli, inflammatory cytokines, and pathogen-associated molecules and are required for innate immunity against some skin pathogens. Important unanswered questions are whether TRPV1+ neuron activation in isolation is sufficient to initiate innate immune responses and what is the biological function for TRPV1+ neuron-initiated immune responses. We used TRPV1-Ai32 optogenetic mice and cutaneous light stimulation to activate cutaneous neurons in the absence of tissue damage or pathogen-associated products. We found that TRPV1+ neuron activation was sufficient to elicit a local type 17 immune response that augmented host defense to C. albicans and S. aureus. Moreover, local neuron activation elicited type 17 responses and augmented host defense at adjacent, unstimulated skin through a nerve reflex arc. These data show the sufficiency of TRPV1+ neuron activation for host defense and demonstrate the existence of functional anticipatory innate immunity at sites adjacent to infection that depends on antidromic neuron activation.


Subject(s)
Immunity, Innate/immunology , Interleukin-23/metabolism , Interleukin-6/metabolism , Sensory Receptor Cells/immunology , Skin/immunology , TRPV Cation Channels/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Candida albicans/immunology , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics/methods , Skin/microbiology , Staphylococcus aureus/immunology , TRPV Cation Channels/genetics
7.
Nat Immunol ; 20(12): 1668-1680, 2019 12.
Article in English | MEDLINE | ID: mdl-31636464

ABSTRACT

Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion-they can also shape the fate and function of CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fibroblasts/physiology , Lymph Nodes/immunology , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Cellular Reprogramming , Chromatin Assembly and Disassembly , Cytotoxicity, Immunologic , Epigenesis, Genetic , Gene Expression Regulation , Immunologic Memory , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism
8.
Nat Immunol ; 20(10): 1348-1359, 2019 10.
Article in English | MEDLINE | ID: mdl-31406382

ABSTRACT

Helper T cells actively communicate with adjacent cells by secreting soluble mediators, yet crosstalk between helper T cells and endothelial cells remains poorly understood. Here we found that placental growth factor (PlGF), a homolog of the vascular endothelial growth factor that enhances an angiogenic switch in disease, was selectively secreted by the TH17 subset of helper T cells and promoted angiogenesis. Interestingly, the 'angio-lymphokine' PlGF, in turn, specifically induced the differentiation of pathogenic TH17 cells by activating the transcription factor STAT3 via binding to its receptors and replaced the activity of interleukin-6 in the production of interleukin-17, whereas it suppressed the generation of regulatory T cells. Moreover, T cell-derived PlGF was required for the progression of autoimmune diseases associated with TH17 differentiation, including experimental autoimmune encephalomyelitis and collagen-induced arthritis, in mice. Collectively, our findings provide insights into the PlGF-dictated links among angiogenesis, TH17 cell development and autoimmunity.


Subject(s)
Arthritis, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Placenta Growth Factor/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Autoimmunity , Cell Differentiation , Cells, Cultured , Interleukin-17/metabolism , Interleukin-6/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Neovascularization, Pathologic , Placenta Growth Factor/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
9.
Immunity ; 54(2): 225-234.e6, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33476547

ABSTRACT

Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.


Subject(s)
Anhedonia/physiology , Corpus Striatum/immunology , Depression/immunology , Microglia/immunology , Neurons/physiology , Animals , Animals, Genetically Modified , Behavior, Animal , Cells, Cultured , Disease Models, Animal , Humans , Inflammation , Interleukin-6/metabolism , Macrophage Activation , Mice , Neurogenic Inflammation , Prostaglandins/metabolism
10.
Immunity ; 54(12): 2740-2755.e6, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34644536

ABSTRACT

T follicular helper (Tfh) cells play essential roles in regulating humoral immunity, especially germinal center reactions. However, how CD4+ T cells integrate the antigenic and costimulatory signals in Tfh cell development is still poorly understood. Here, we found that phorbol 12-myristate 13-acetate (PMA) + ionomycin (P+I) stimulation, together with interleukin-6 (IL-6), potently induce Tfh cell-like transcriptomic programs in vitro. The ERK kinase pathway was attenuated under P+I stimulation; ERK2 inhibition enhanced Tfh cell development in vitro and in vivo. We observed that inducible T cell costimulator (ICOS), but not CD28, lacked the ability to activate ERK, which was important in sustaining Tfh cell development. The transcription factor Zfp831, whose expression was repressed by ERK, promoted Tfh cell differentiation by directly upregulating the expression of the transcription factors Bcl6 and Tcf7. We have hence identified an ERK-Zfp831 axis, regulated by costimulation signaling, in critical regulation of Tfh cell development.


Subject(s)
DNA-Binding Proteins/metabolism , Germinal Center/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , T Follicular Helper Cells/immunology , Animals , Cell Differentiation , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunity, Humoral , Interleukin-6/metabolism , Lymphocyte Activation , MAP Kinase Signaling System , Mice , Mice, Knockout , Transcriptome
11.
Immunity ; 54(3): 499-513.e5, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691135

ABSTRACT

The immune and enteric nervous (ENS) systems monitor the frontier with commensal and pathogenic microbes in the colon. We investigated whether FoxP3+ regulatory T (Treg) cells functionally interact with the ENS. Indeed, microbe-responsive RORγ+ and Helios+ subsets localized in close apposition to nitrergic and peptidergic nerve fibers in the colon lamina propria (LP). Enteric neurons inhibited in vitro Treg (iTreg) differentiation in a cell-contact-independent manner. A screen of neuron-secreted factors revealed a role for interleukin-6 (IL-6) in modulating iTreg formation and their RORγ+ proportion. Colonization of germfree mice with commensals, especially RORγ+ Treg inducers, broadly diminished colon neuronal density. Closing the triangle, conditional ablation of IL-6 in neurons increased total Treg cells but decreased the RORγ+ subset, as did depletion of two ENS neurotransmitters. Our findings suggest a regulatory circuit wherein microbial signals condition neuronal density and activation, thus tuning Treg cell generation and immunological tolerance in the gut.


Subject(s)
Enteric Nervous System/immunology , Interleukin-6/metabolism , Intestines/immunology , Neurons/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Gastrointestinal Microbiome , Interleukin-6/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phenotype
12.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34852217

ABSTRACT

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Helper-Inducer/immunology , mRNA Vaccines/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adjuvants, Immunologic , Animals , HEK293 Cells , Humans , Immunity, Humoral , Interleukin-6/genetics , Interleukin-6/metabolism , Liposomes/administration & dosage , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Protein Subunits/genetics , mRNA Vaccines/genetics
13.
Nature ; 626(7998): 357-366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052228

ABSTRACT

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Subject(s)
Embryonic Development , Germ Layers , Pluripotent Stem Cells , Humans , Cell Differentiation , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Pluripotent Stem Cells/cytology , Interleukin-6/metabolism , Gastrula/cytology , Gastrula/embryology , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
14.
Nat Immunol ; 18(1): 74-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27893700

ABSTRACT

The cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the TH17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic TH17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα+ DCs trans-presented IL-6 to T cells during the process of cognate interaction. While ambient IL-6 was sufficient to suppress the induction of expression of the transcription factor Foxp3 in T cells, trans-presentation of IL-6 by DC-bound IL-6Rα (called 'IL-6 cluster signaling' here) was needed to prevent premature induction of interferon-γ (IFN-γ) expression in T cells and to generate pathogenic TH17 cells in vivo. Our findings should guide therapeutic approaches for the treatment of TH17-cell-mediated autoimmune diseases.


Subject(s)
Central Nervous System/immunology , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-6 Receptor alpha Subunit/genetics , Interleukin-6/metabolism , Th17 Cells/immunology , Animals , Autoimmunity , Cell Differentiation , Cells, Cultured , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
15.
Immunity ; 53(3): 614-626.e4, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32827457

ABSTRACT

RORγt is the lineage-specific transcription factor for T helper 17 (Th17) cells whose upregulation in developing Th17 cells is critically regulated by interleukin-6 (IL-6) and TGF-ß, the molecular mechanisms of which remain largely unknown. Here we identified conserved non-coding sequences (CNSs) 6 and 9 at the Rorc gene, essential for its expression during Th17 cell differentiation but not required for RORγt expression in innate lymphocytes and γδ T cells. Mechanistically, the IL-6-signal transducer and activator of transcription 3 (STAT3) axis appeared to be largely dependent on CNS9 and only partially on CNS6 in controlling RORγt expression and epigenetic activation of the Rorc locus. TGF-ß alone was sufficient to induce RORγt expression in a CNS6- but not CNS9-dependent manner through CNS6 binding by SMAD proteins. Our study reveals an important synergistic mechanism downstream of IL-6 and TGF-ß in regulation of RORγt expression and Th17 cell commitment via distinct cis-regulatory elements.


Subject(s)
Interleukin-6/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Th17 Cells/cytology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression Regulation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/immunology , STAT3 Transcription Factor/metabolism , Th17 Cells/immunology
16.
Cell ; 155(2): 384-96, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120137

ABSTRACT

Hepatocellular carcinoma (HCC) is a slowly developing malignancy postulated to evolve from premalignant lesions in chronically damaged livers. However, it was never established that premalignant lesions actually contain tumor progenitors that give rise to cancer. Here, we describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models. Unlike fully malignant HCC, HcPCs give rise to cancer only when introduced into a liver undergoing chronic damage and compensatory proliferation. Although HcPCs exhibit a similar transcriptomic profile to bipotential hepatobiliary progenitors, the latter do not give rise to tumors. Cells resembling HcPCs reside within dysplastic lesions that appear several months before HCC nodules. Unlike early hepatocarcinogenesis, which depends on paracrine IL-6 production by inflammatory cells, due to upregulation of LIN28 expression, HcPCs had acquired autocrine IL-6 signaling that stimulates their in vivo growth and malignant progression. This may be a general mechanism that drives other IL-6-producing malignancies.


Subject(s)
Autocrine Communication , Gene Expression Regulation, Neoplastic , Interleukin-6/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Disease Progression , Hepacivirus , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatitis C/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL
17.
Nature ; 607(7918): 366-373, 2022 07.
Article in English | MEDLINE | ID: mdl-35705809

ABSTRACT

Chromosomal instability (CIN) drives cancer cell evolution, metastasis and therapy resistance, and is associated with poor prognosis1. CIN leads to micronuclei that release DNA into the cytoplasm after rupture, which triggers activation of inflammatory signalling mediated by cGAS and STING2,3. These two proteins are considered to be tumour suppressors as they promote apoptosis and immunosurveillance. However, cGAS and STING are rarely inactivated in cancer4, and, although they have been implicated in metastasis5, it is not known why loss-of-function mutations do not arise in primary tumours4. Here we show that inactivation of cGAS-STING signalling selectively impairs the survival of triple-negative breast cancer cells that display CIN. CIN triggers IL-6-STAT3-mediated signalling, which depends on the cGAS-STING pathway and the non-canonical NF-κB pathway. Blockade of IL-6 signalling by tocilizumab, a clinically used drug that targets the IL-6 receptor (IL-6R), selectively impairs the growth of cultured triple-negative breast cancer cells that exhibit CIN. Moreover, outgrowth of chromosomally instable tumours is significantly delayed compared with tumours that do not display CIN. Notably, this targetable vulnerability is conserved across cancer types that express high levels of IL-6 and/or IL-6R in vitro and in vivo. Together, our work demonstrates pro-tumorigenic traits of cGAS-STING signalling and explains why the cGAS-STING pathway is rarely inactivated in primary tumours. Repurposing tocilizumab could be a strategy to treat cancers with CIN that overexpress IL-6R.


Subject(s)
Chromosomal Instability , Interleukin-6 , Membrane Proteins , Nucleotidyltransferases , Triple Negative Breast Neoplasms , Antibodies, Monoclonal, Humanized/pharmacology , Cell Survival/drug effects , Chromosomal Instability/genetics , Drug Repositioning , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , NF-kappa B/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
18.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683978

ABSTRACT

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Subject(s)
Brain-Derived Neurotrophic Factor , Exosomes , Muscle, Skeletal , Exosomes/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Brain-Derived Neurotrophic Factor/metabolism , Mice , Fibronectins/metabolism , Motor Neurons/metabolism , Interleukin-6/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Neurons/metabolism , Nerve Growth Factors/metabolism , Myokines
19.
Proc Natl Acad Sci U S A ; 121(29): e2404309121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990948

ABSTRACT

Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.


Subject(s)
B-Cell Activating Factor , B-Cell Activation Factor Receptor , B-Cell Maturation Antigen , Interleukin-6 , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/metabolism , Transmembrane Activator and CAML Interactor Protein/metabolism , Transmembrane Activator and CAML Interactor Protein/genetics , Transmembrane Activator and CAML Interactor Protein/immunology , Interleukin-6/metabolism , Interleukin-6/immunology , Mice , B-Cell Activation Factor Receptor/metabolism , B-Cell Activation Factor Receptor/immunology , B-Cell Activation Factor Receptor/genetics , Plasma Cells/immunology , Plasma Cells/metabolism , Mice, Knockout , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Mice, Inbred C57BL
20.
Nat Immunol ; 15(5): 423-30, 2014 May.
Article in English | MEDLINE | ID: mdl-24681566

ABSTRACT

Obesity and resistance to insulin are closely associated with the development of low-grade inflammation. Interleukin 6 (IL-6) is linked to obesity-associated inflammation; however, its role in this context remains controversial. Here we found that mice with an inactivated gene encoding the IL-6Rα chain of the receptor for IL-6 in myeloid cells (Il6ra(Δmyel) mice) developed exaggerated deterioration of glucose homeostasis during diet-induced obesity, due to enhanced resistance to insulin. Tissues targeted by insulin showed increased inflammation and a shift in macrophage polarization. IL-6 induced expression of the receptor for IL-4 and augmented the response to IL-4 in macrophages in a cell-autonomous manner. Il6ra(Δmyel) mice were resistant to IL-4-mediated alternative polarization of macrophages and exhibited enhanced susceptibility to lipopolysaccharide (LPS)-induced endotoxemia. Our results identify signaling via IL-6 as an important determinant of the alternative activation of macrophages and assign an unexpected homeostatic role to IL-6 in limiting inflammation.


Subject(s)
Endotoxemia/immunology , Insulin Resistance , Interleukin-6/metabolism , Macrophage Activation , Macrophages/immunology , Obesity/immunology , Animals , Cells, Cultured , Humans , Insulin Resistance/genetics , Insulin Resistance/immunology , Interleukin-4/immunology , Interleukin-6/genetics , Lipopolysaccharides/immunology , Macrophage Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Receptors, Interleukin-6/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL