Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.677
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 127-151, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36630598

ABSTRACT

The presence of granulated lymphocytes in the human uterine mucosa, known as decidua during pregnancy, or endometrium otherwise, was first noted in the nineteenth century, but it was not until 1990 that these cells were identified as a type of natural killer (NK) cell. From the outset, uterine NK (uNK) cells were found to be less cytotoxic than their circulating counterparts, peripheral NK (pNK) cells. Recently, unbiased approaches have defined three subpopulations of uNK cells, all of which cluster separately from pNK cells. Here, we review the history of research into uNK cells, including their ability to interact with placental extravillous trophoblast cells and their potential role in regulating placental implantation. We go on to review more recent advances that focus on uNK cell development and heterogeneity and their potential to defend against infection and to mediate memory effects. Finally, we consider how a better understanding of these cells could be leveraged in the future to improve outcomes of pregnancy for mothers and babies.


Subject(s)
Placenta , Uterus , Humans , Pregnancy , Female , Animals , Killer Cells, Natural/metabolism , Mucous Membrane , Decidua
2.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340578

ABSTRACT

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Viruses/immunology , Animals , Biomarkers , Cytokines/metabolism , Humans , Receptors, Natural Killer Cell/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology
3.
Annu Rev Immunol ; 36: 519-548, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29394121

ABSTRACT

Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.


Subject(s)
Genetic Predisposition to Disease , Immunity , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Biological Evolution , Genetic Loci , Genomics/methods , Haplotypes , Humans , Major Histocompatibility Complex/genetics , Receptors, KIR/genetics , Receptors, KIR/metabolism
4.
Cell ; 187(11): 2703-2716.e23, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38657602

ABSTRACT

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.


Subject(s)
Immunity, Innate , Immunotherapy , Killer Cells, Natural , Neoplasms , Animals , Female , Humans , Mice , Antigen Presentation , Cell Line, Tumor , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/therapy
5.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653235

ABSTRACT

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Subject(s)
COVID-19 , Immune Evasion , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , COVID-19/immunology , COVID-19/virology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Animals , Cytotoxicity, Immunologic , Down-Regulation , Lung/immunology , Lung/virology , Lung/pathology
6.
Cell ; 187(16): 4336-4354.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121847

ABSTRACT

Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation Gene 3 Protein , NK Cell Lectin-Like Receptor Subfamily D , Programmed Cell Death 1 Receptor , Animals , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Mice, Inbred C57BL , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Cytotoxicity, Immunologic , Cell Proliferation , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
7.
Cell ; 187(11): 2817-2837.e31, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38701783

ABSTRACT

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Subject(s)
Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BL
8.
Nat Immunol ; 25(2): 240-255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182668

ABSTRACT

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.


Subject(s)
Killer Cells, Natural , Transcription Factor AP-1 , Transcription Factor AP-1/genetics , Killer Cells, Natural/metabolism , Receptors, Interleukin-15 , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism
9.
Nat Immunol ; 25(7): 1172-1182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871999

ABSTRACT

Natural killer (NK) cells traffic through the blood and mount cytolytic and interferon-γ (IFNγ)-focused responses to intracellular pathogens and tumors. Type 1 innate lymphoid cells (ILC1s) also produce type 1 cytokines but reside in tissues and are not cytotoxic. Whether these differences reflect discrete lineages or distinct states of a common cell type is not understood. Using single-cell RNA sequencing and flow cytometry, we focused on populations of TCF7+ cells that contained precursors for NK cells and ILC1s and identified a subset of bone marrow lineage-negative NK receptor-negative cells that expressed the transcription factor Eomes, termed EomeshiNKneg cells. Transfer of EomeshiNKneg cells into Rag2-/-Il2rg-/- recipients generated functional NK cells capable of preventing metastatic disease. By contrast, transfer of PLZF+ ILC precursors generated a mixture of ILC1s, ILC2s and ILC3s that lacked cytotoxic potential. These findings identified EomeshiNKneg cells as the bone marrow precursor to classical NK cells and demonstrated that the NK and ILC1 lineages diverged early during development.


Subject(s)
Killer Cells, Natural , T-Box Domain Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Mice , Mice, Knockout , Cell Lineage/immunology , Mice, Inbred C57BL , Immunity, Innate , Cell Differentiation/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Single-Cell Analysis
10.
Nat Immunol ; 25(5): 778-789, 2024 May.
Article in English | MEDLINE | ID: mdl-38589619

ABSTRACT

Natural killer (NK) cells are a critical first line of defense against viral infection. Rare mutations in a small subset of transcription factors can result in decreased NK cell numbers and function in humans, with an associated increased susceptibility to viral infection. However, our understanding of the specific transcription factors governing mature human NK cell function is limited. Here we use a non-viral CRISPR-Cas9 knockout screen targeting genes encoding 31 transcription factors differentially expressed during human NK cell development. We identify myocyte enhancer factor 2C (MEF2C) as a master regulator of human NK cell functionality ex vivo. MEF2C-haploinsufficient patients and mice displayed defects in NK cell development and effector function, with an increased susceptibility to viral infection. Mechanistically, MEF2C was required for an interleukin (IL)-2- and IL-15-mediated increase in lipid content through regulation of sterol regulatory element-binding protein (SREBP) pathways. Supplementation with oleic acid restored MEF2C-deficient and MEF2C-haploinsufficient patient NK cell cytotoxic function. Therefore, MEF2C is a critical orchestrator of NK cell antiviral immunity by regulating SREBP-mediated lipid metabolism.


Subject(s)
Killer Cells, Natural , Lipid Metabolism , MEF2 Transcription Factors , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Humans , Mice , CRISPR-Cas Systems , Mice, Knockout , Interleukin-15/metabolism , Mice, Inbred C57BL
11.
Nat Immunol ; 25(8): 1445-1459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956379

ABSTRACT

The functional diversity of natural killer (NK) cell repertoires stems from differentiation, homeostatic, receptor-ligand interactions and adaptive-like responses to viral infections. In the present study, we generated a single-cell transcriptional reference map of healthy human blood- and tissue-derived NK cells, with temporal resolution and fate-specific expression of gene-regulatory networks defining NK cell differentiation. Transfer learning facilitated incorporation of tumor-infiltrating NK cell transcriptomes (39 datasets, 7 solid tumors, 427 patients) into the reference map to analyze tumor microenvironment (TME)-induced perturbations. Of the six functionally distinct NK cell states identified, a dysfunctional stressed CD56bright state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant effector CD56dim state were commonly enriched across tumor types, the ratio of which was predictive of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design of new NK cell therapies and can be extended through transfer learning to interrogate new datasets from experimental perturbations or disease conditions.


Subject(s)
Killer Cells, Natural , Lymphocytes, Tumor-Infiltrating , Neoplasms , Transcriptome , Tumor Microenvironment , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Expression Profiling , Single-Cell Analysis , Gene Regulatory Networks , CD56 Antigen/metabolism , Gene Expression Regulation, Neoplastic , Cell Differentiation
12.
Nat Immunol ; 25(8): 1460-1473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956380

ABSTRACT

Group 1 innate lymphoid cells (ILC1s) are cytotoxic and interferon gamma-producing lymphocytes lacking antigen-specific receptors, which include ILC1s and natural killer (NK) cells. In mice, ILC1s differ from NK cells, as they develop independently of the NK-specifying transcription factor EOMES, while requiring the repressor ZFP683 (ZNF683 in humans) for tissue residency. Here we identify highly variable ILC1 subtypes across tissues through investigation of human ILC1 diversity by single-cell RNA sequencing and flow cytometry. The intestinal epithelium contained abundant mature EOMES- ILC1s expressing PRDM1 rather than ZNF683, alongside a few immature TCF7+PRDM1- ILC1s. Other tissues harbored NK cells expressing ZNF683 and EOMES transcripts; however, EOMES protein content was variable. These ZNF683+ NK cells are tissue-imprinted NK cells phenotypically resembling ILC1s. The tissue ILC1-NK spectrum also encompassed conventional NK cells and NK cells distinguished by PTGDS expression. These findings establish a foundation for evaluating phenotypic and functional changes within the NK-ILC1 spectrum in diseases.


Subject(s)
Immunity, Innate , Killer Cells, Natural , Lymphocytes , Positive Regulatory Domain I-Binding Factor 1 , T-Box Domain Proteins , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Lymphocytes/immunology , Lymphocytes/metabolism , Single-Cell Analysis , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Mice , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics
13.
Cell ; 184(7): 1836-1857.e22, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33713619

ABSTRACT

COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease severity and outcome over time, we longitudinally assessed circulating proteins as well as 188 surface protein markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated inflammation but increased fatty acid metabolism in CD56dimCD16hi NK cells linked positively to circulating interleukin (IL)-15. CD8+ T cell activation was apparent without signs of exhaustion. Although cellular inflammation was depressed in severe patients early after hospitalization, it became elevated by days 17-23 post symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein trajectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Gene Expression/immunology , Killer Cells, Natural/metabolism , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , COVID-19/mortality , Case-Control Studies , Dendritic Cells/cytology , Female , Humans , Killer Cells, Natural/cytology , Longitudinal Studies , Male , Middle Aged , Transcriptome/immunology , Young Adult
14.
Cell ; 184(4): 983-999.e24, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606986

ABSTRACT

Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rß1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rß1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rß2/IL-12Rß1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rß1 directly engages the common p40 subunit. We targeted the shared IL-12Rß1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.


Subject(s)
Interleukin-12/chemistry , Interleukin-12/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin/chemistry , Receptors, Interleukin/metabolism , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes/immunology , Female , HEK293 Cells , Humans , Immunity , Interleukin-12/agonists , Interleukin-12 Subunit p40/chemistry , Interleukin-12 Subunit p40/metabolism , Mice, Inbred C57BL , Models, Molecular , Neoplasms/immunology , Neoplasms/pathology , Protein Structure, Quaternary , Receptors, Interleukin/ultrastructure , Receptors, Interleukin-12/metabolism , Signal Transduction , Structure-Activity Relationship
15.
Cell ; 184(21): 5338-5356.e21, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34624222

ABSTRACT

The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.


Subject(s)
Interferon Type I/metabolism , Membrane Proteins/metabolism , Microbiota , Monocytes/metabolism , Tumor Microenvironment , Akkermansia/drug effects , Akkermansia/physiology , Animals , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dietary Fiber/pharmacology , Dinucleoside Phosphates/administration & dosage , Dinucleoside Phosphates/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunomodulation/drug effects , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/metabolism , Melanoma/immunology , Melanoma/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbiota/drug effects , Monocytes/drug effects , Phagocytes/drug effects , Phagocytes/metabolism , Transcription, Genetic/drug effects , Tumor Microenvironment/drug effects
16.
Nat Immunol ; 24(12): 2068-2079, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919524

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.


Subject(s)
COVID-19 , Interferon-gamma , Animals , Interferon-gamma/metabolism , SARS-CoV-2/metabolism , CD8-Positive T-Lymphocytes/metabolism , Macrophages, Alveolar/metabolism , Killer Cells, Natural/metabolism , Lung/metabolism , Macaca/metabolism
17.
Annu Rev Immunol ; 31: 227-58, 2013.
Article in English | MEDLINE | ID: mdl-23516982

ABSTRACT

Understanding how signals are integrated to control natural killer (NK) cell responsiveness in the absence of antigen-specific receptors has been a challenge, but recent work has revealed some underlying principles that govern NK cell responses. NK cells use an array of innate receptors to sense their environment and respond to alterations caused by infections, cellular stress, and transformation. No single activation receptor dominates; instead, synergistic signals from combinations of receptors are integrated to activate natural cytotoxicity and cytokine production. Inhibitory receptors for major histocompatibility complex class I (MHC-I) have a critical role in controlling NK cell responses and, paradoxically, in maintaining NK cells in a state of responsiveness to subsequent activation events, a process referred to as licensing. MHC-I-specific inhibitory receptors both block activation signals and trigger signals to phosphorylate and inactivate the small adaptor Crk. These different facets of inhibitory signaling are incorporated into a revocable license model for the reversible tuning of NK cell responsiveness.


Subject(s)
Cell Communication/immunology , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Signal Transduction/immunology , Animals , Genes, MHC Class I/immunology , Humans , Killer Cells, Natural/metabolism , Receptors, KIR/antagonists & inhibitors , Receptors, KIR/metabolism
18.
Annu Rev Immunol ; 31: 413-41, 2013.
Article in English | MEDLINE | ID: mdl-23298206

ABSTRACT

NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Animals , Humans , Killer Cells, Natural/pathology , Ligands , Mice , NK Cell Lectin-Like Receptor Subfamily K/biosynthesis , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Natural Killer T-Cells/pathology
19.
Cell ; 180(6): 1280-1280.e1, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32200803

ABSTRACT

NK cells are broadly distributed innate lymphoid cells (ILCs) encompassing distinct populations based on CD11b and CD27 expression in mice or CD56 intensity in humans. Involved in anti-viral and anti-tumor immunity thanks to their cytokines and chemokines secretion as well as their cytotoxic capabilities, NK cells have emerged as a promising therapeutic target in several solid tumors and hematological malignancies. To view this Snapshot, open or download the PDF.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/physiology , Animals , Cytokines/metabolism , Humans , Immunity, Innate , Immunotherapy, Active/methods , Mice , Neoplasms/immunology
20.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33296702

ABSTRACT

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Subject(s)
Adaptive Immunity , Immunity, Innate , Interferon-gamma/immunology , Mycobacterium/immunology , T-Box Domain Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cell Lineage , Child, Preschool , Chromatin/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Dendritic Cells/metabolism , Epigenesis, Genetic , Female , Homozygote , Humans , INDEL Mutation/genetics , Infant , Interferon-gamma/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Loss of Function Mutation/genetics , Male , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/microbiology , Pedigree , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL