Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.075
Filter
Add more filters

Publication year range
1.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442406

ABSTRACT

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Subject(s)
Klebsiella Infections/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Immunologic Memory , Interleukin-17/genetics , Interleukin-17/metabolism , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/pathogenicity , Lung/drug effects , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Th17 Cells/cytology , Th17 Cells/metabolism
2.
Cell ; 165(3): 679-89, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27040495

ABSTRACT

Increasing antibiotic resistance among bacterial pathogens has rendered some infections untreatable with available antibiotics. Klebsiella pneumoniae, a bacterial pathogen that has acquired high-level antibiotic resistance, is a common cause of pulmonary infections. Optimal clearance of K. pneumoniae from the host lung requires TNF and IL-17A. Herein, we demonstrate that inflammatory monocytes are rapidly recruited to the lungs of K. pneumoniae-infected mice and produce TNF, which markedly increases the frequency of IL-17-producing innate lymphoid cells. While pulmonary clearance of K. pneumoniae is preserved in neutrophil-depleted mice, monocyte depletion or TNF deficiency impairs IL-17A-dependent resolution of pneumonia. Monocyte-mediated bacterial uptake and killing is enhanced by ILC production of IL-17A, indicating that innate lymphocytes engage in a positive-feedback loop with monocytes that promotes clearance of pneumonia. Innate immune defense against a highly antibiotic-resistant bacterial pathogen depends on crosstalk between inflammatory monocytes and innate lymphocytes that is mediated by TNF and IL-17A.


Subject(s)
Klebsiella Infections/immunology , Klebsiella pneumoniae/physiology , Animals , Inflammation/immunology , Interleukin-17/immunology , Klebsiella Infections/microbiology , Lung/immunology , Lung/microbiology , Lung/pathology , Lymphocytes/immunology , Mice , Monocytes/immunology , Tumor Necrosis Factor-alpha/immunology
3.
Proc Natl Acad Sci U S A ; 121(35): e2400446121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39150777

ABSTRACT

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.


Subject(s)
Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Urinary Tract Infections , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/genetics , Animals , Humans , Klebsiella Infections/microbiology , Urinary Tract Infections/microbiology , Mice , Carbapenems/pharmacology , Male , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Urinary Tract/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
PLoS Pathog ; 20(4): e1011900, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578798

ABSTRACT

In vivo single-cell approaches have transformed our understanding of the immune populations in tissues. Mass cytometry (CyTOF), that combines the resolution of mass spectrometry with the ability to conduct multiplexed measurements of cell molecules at the single cell resolution, has enabled to resolve the diversity of immune cell subsets, and their heterogeneous functionality. Here we assess the feasibility of taking CyTOF one step further to immuno profile cells while tracking their interactions with bacteria, a method we term Bac-CyTOF. We focus on the pathogen Klebsiella pneumoniae interrogating the pneumonia mouse model. Using Bac-CyTOF, we unveil the atlas of immune cells of mice infected with a K. pneumoniae hypervirulent strain. The atlas is characterized by a decrease in the populations of alveolar and monocyte-derived macrophages. Conversely, neutrophils, and inflammatory monocytes are characterized by an increase in the subpopulations expressing markers of less active cells such as the immune checkpoint PD-L1. These are the cells infected. We show that the type VI secretion system (T6SS) contributes to shape the lung immune landscape. The T6SS governs the interaction with monocytes/macrophages by shifting Klebsiella from alveolar macrophages to interstitial macrophages and limiting the infection of inflammatory monocytes. The lack of T6SS results in an increase of cells expressing markers of active cells, and a decrease in the subpopulations expressing PD-L1. By probing Klebsiella, and Acinetobacter baumannii strains with limited ability to survive in vivo, we uncover that a heightened recruitment of neutrophils, and relative high levels of alveolar macrophages and eosinophils and the recruitment of a characteristic subpopulation of neutrophils are features of mice clearing infections. We leverage Bac-CyTOF-generated knowledge platform to investigate the role of the DNA sensor STING in Klebsiella infections. sting-/- infected mice present features consistent with clearing the infection including the reduced levels of PD-L1. STING absence facilitates Klebsiella clearance.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Mice , Animals , Klebsiella pneumoniae/genetics , B7-H1 Antigen , Macrophages, Alveolar , Lung , Macrophages , Klebsiella Infections/microbiology
5.
PLoS Pathog ; 20(5): e1012189, 2024 May.
Article in English | MEDLINE | ID: mdl-38713723

ABSTRACT

Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.


Subject(s)
Ethanolamine , Gastrointestinal Microbiome , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , Mice , Animals , Ethanolamine/metabolism , Gastrointestinal Microbiome/physiology , Klebsiella Infections/microbiology , Klebsiella Infections/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Mice, Inbred C57BL , Female
6.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Article in English | MEDLINE | ID: mdl-38718038

ABSTRACT

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella pneumoniae , RNA, Bacterial , RNA, Small Untranslated , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Gene Expression Regulation, Bacterial , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics
7.
Trends Immunol ; 44(10): 826-844, 2023 10.
Article in English | MEDLINE | ID: mdl-37704549

ABSTRACT

Klebsiella pneumoniae is among the most common antibiotic-resistant pathogens causing nosocomial infections. Additionally, it is a leading cause of neonatal sepsis and childhood mortality across the globe. Despite its clinical importance, we are only beginning to understand how the mammalian adaptive immune system responds to this pathogen. Further, many studies investigating potential K. pneumoniae vaccine candidates or alternative therapies have been launched in recent years. Here, we review the current state of knowledge on the adaptive immune response to K. pneumoniae infections and progress towards developing vaccines and other therapies to combat these infections.


Subject(s)
Klebsiella Infections , Vaccines , Animals , Child , Humans , Infant, Newborn , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/prevention & control , Klebsiella pneumoniae , Mammals
8.
Mol Cell ; 70(1): 83-94.e7, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625040

ABSTRACT

Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/biosynthesis , DNA, Bacterial/genetics , Klebsiella Infections/drug therapy , Ribosome Subunits, Small/drug effects , Xenorhabdus/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Animals , Anti-Bacterial Agents/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Binding Sites , Disease Models, Animal , Female , Hep G2 Cells , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Male , Mice, Inbred ICR , Protein Biosynthesis/drug effects , Ribosome Subunits, Small/genetics , Ribosome Subunits, Small/metabolism
9.
Nucleic Acids Res ; 52(10): 6079-6091, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38661215

ABSTRACT

CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.


Subject(s)
CRISPR-Cas Systems , Klebsiella pneumoniae , RNA, Guide, CRISPR-Cas Systems , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial/genetics , Gene Editing/methods , Humans
10.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428935

ABSTRACT

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/genetics , Lipopolysaccharides , O Antigens , Klebsiella , Blotting, Western , Klebsiella Infections/prevention & control
11.
J Biol Chem ; 300(1): 105493, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000656

ABSTRACT

Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all ß-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.


Subject(s)
Ceftazidime , Drug Resistance, Bacterial , Models, Molecular , Humans , Amino Acids/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , Ceftazidime/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Drug Resistance, Bacterial/genetics , Crystallography, X-Ray , Catalytic Domain/genetics , Protein Structure, Tertiary
12.
Genome Res ; 32(5): 1004-1014, 2022 05.
Article in English | MEDLINE | ID: mdl-35277433

ABSTRACT

The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa that are found in a variety of niches and are an important cause of opportunistic health care-associated infections in humans. Because of increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa. We generated strain-specific genome-scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes on 511 distinct carbon, nitrogen, sulfur, and phosphorus substrates. Models were curated and their accuracy was assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-specific growth capabilities and examined the impact of all possible single gene deletions using growth simulations in 145 core carbon substrates. These analyses revealed multiple strain-specific differences, within and between species, and highlight the importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valuable resource to the Klebsiella research community.


Subject(s)
Klebsiella Infections , Klebsiella , Carbon , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Humans , Klebsiella/genetics , Klebsiella Infections/genetics , Klebsiella pneumoniae/genetics , Virulence/genetics
13.
J Virol ; 98(6): e0027224, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771043

ABSTRACT

Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.


Subject(s)
Bacteriophages , Klebsiella Infections , Klebsiella oxytoca , Klebsiella pneumoniae , Lepidoptera , Phage Therapy , Animals , Bacteriophages/pathogenicity , Bacteriophages/physiology , Disease Models, Animal , In Vitro Techniques , Klebsiella Infections/therapy , Klebsiella Infections/microbiology , Klebsiella oxytoca/virology , Klebsiella pneumoniae/virology , Larva/microbiology , Larva/virology , Lepidoptera/microbiology , Lepidoptera/virology , Microbial Viability , Moths/microbiology , Moths/virology , Phage Therapy/adverse effects , Phage Therapy/methods , Pre-Exposure Prophylaxis , Survival Analysis
14.
PLoS Pathog ; 19(7): e1011233, 2023 07.
Article in English | MEDLINE | ID: mdl-37463183

ABSTRACT

Gram-negative bacteremia is a major cause of global morbidity involving three phases of pathogenesis: initial site infection, dissemination, and survival in the blood and filtering organs. Klebsiella pneumoniae is a leading cause of bacteremia and pneumonia is often the initial infection. In the lung, K. pneumoniae relies on many factors like capsular polysaccharide and branched chain amino acid biosynthesis for virulence and fitness. However, mechanisms directly enabling bloodstream fitness are unclear. Here, we performed transposon insertion sequencing (TnSeq) in a tail-vein injection model of bacteremia and identified 58 K. pneumoniae bloodstream fitness genes. These factors are diverse and represent a variety of cellular processes. In vivo validation revealed tissue-specific mechanisms by which distinct factors support bacteremia. ArnD, involved in Lipid A modification, was required across blood filtering organs and supported resistance to soluble splenic factors. The purine biosynthesis enzyme PurD supported liver fitness in vivo and was required for replication in serum. PdxA, a member of the endogenous vitamin B6 biosynthesis pathway, optimized replication in serum and lung fitness. The stringent response regulator SspA was required for splenic fitness yet was dispensable in the liver. In a bacteremic pneumonia model that incorporates initial site infection and dissemination, splenic fitness defects were enhanced. ArnD, PurD, DsbA, SspA, and PdxA increased fitness across bacteremia phases and each demonstrated unique fitness dynamics within compartments in this model. SspA and PdxA enhanced K. pnuemoniae resistance to oxidative stress. SspA, but not PdxA, specifically resists oxidative stress produced by NADPH oxidase Nox2 in the lung, spleen, and liver, as it was a fitness factor in wild-type but not Nox2-deficient (Cybb-/-) mice. These results identify site-specific fitness factors that act during the progression of Gram-negative bacteremia. Defining K. pneumoniae fitness strategies across bacteremia phases could illuminate therapeutic targets that prevent infection and sepsis.


Subject(s)
Bacteremia , Klebsiella Infections , Pneumonia , Mice , Animals , Klebsiella pneumoniae/genetics , Lung , Bacteremia/genetics , Oxidative Stress , Klebsiella Infections/genetics
15.
PLoS Pathog ; 19(6): e1011139, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37289655

ABSTRACT

Immunosenescence refers to the development of weakened and/or dysfunctional immune responses associated with aging. Several commensal bacteria can be pathogenic in immunosuppressed individuals. Although Klebsiella pneumoniae is a commensal bacterium that colonizes human mucosal surfaces, the gastrointestinal tract, and the oropharynx, it can cause serious infectious diseases, such as pneumonia, urinary tract infections, and liver abscesses, primarily in elderly patients. However, the reason why K. pneumoniae is a more prevalent cause of infection in the elderly population remains unclear. This study aimed to determine how the host's intestinal immune response to K. pneumoniae varies with age. To this end, the study analyzed an in vivo K. pneumoniae infection model using aged mice, as well as an in vitro K. pneumoniae infection model using a Transwell insert co-culture system comprising epithelial cells and macrophages. In this study, we demonstrate that growth arrest-specific 6 (Gas6), released by intestinal macrophages that recognize K. pneumoniae, inhibits bacterial translocation from the gastrointestinal tract by enhancing tight-junction barriers in the intestinal epithelium. However, in aging mice, Gas6 was hardly secreted under K. pneumoniae infection due to decreasing intestinal mucosal macrophages; therefore, K. pneumoniae can easily invade the intestinal epithelium and subsequently translocate to the liver. Moreover, the administration of Gas6 recombinant protein to elderly mice prevented the translocation of K. pneumoniae from the gastrointestinal tract and significantly prolonged their survival. From these findings, we conclude that the age-related decrease in Gas6 secretion in the intestinal mucosa is the reason why K. pneumoniae can be pathogenic in the elderly, thereby indicating that Gas6 could be effective in protecting the elderly against infectious diseases caused by gut pathogens.


Subject(s)
Communicable Diseases , Immunosenescence , Klebsiella Infections , Aged , Animals , Humans , Mice , Communicable Diseases/metabolism , Intestinal Mucosa/microbiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Liver/pathology
16.
PLoS Pathog ; 19(5): e1011367, 2023 05.
Article in English | MEDLINE | ID: mdl-37146068

ABSTRACT

Klebsiella pneumoniae presents as two circulating pathotypes: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp). Classical isolates are considered urgent threats due to their antibiotic resistance profiles, while hvKp isolates have historically been antibiotic susceptible. Recently, however, increased rates of antibiotic resistance have been observed in both hvKp and cKp, further underscoring the need for preventive and effective immunotherapies. Two distinct surface polysaccharides have gained traction as vaccine candidates against K. pneumoniae: capsular polysaccharide and the O-antigen of lipopolysaccharide. While both targets have practical advantages and disadvantages, it remains unclear which of these antigens included in a vaccine would provide superior protection against matched K. pneumoniae strains. Here, we report the production of two bioconjugate vaccines, one targeting the K2 capsular serotype and the other targeting the O1 O-antigen. Using murine models, we investigated whether these vaccines induced specific antibody responses that recognize K2:O1 K. pneumoniae strains. While each vaccine was immunogenic in mice, both cKp and hvKp strains exhibited decreased O-antibody binding in the presence of capsule. Further, O1 antibodies demonstrated decreased killing in serum bactericidal assays with encapsulated strains, suggesting that the presence of K. pneumoniae capsule blocks O1-antibody binding and function. Finally, the K2 vaccine outperformed the O1 vaccine against both cKp and hvKp in two different murine infection models. These data suggest that capsule-based vaccines may be superior to O-antigen vaccines for targeting hvKp and some cKp strains, due to capsule blocking the O-antigen.


Subject(s)
Klebsiella Infections , Vaccines , Mice , Animals , Virulence , O Antigens , Klebsiella pneumoniae , Lipopolysaccharides/metabolism , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/prevention & control
17.
Drug Resist Updat ; 73: 101038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181587

ABSTRACT

AIMS: Although cefiderocol (FDC) is not prescribed in China, FDC-resistant pandrug-resistant hypervirulent Klebsiella pneumoniae (PDR-hvKp) is emerging. In this study, we performed FDC susceptibility testing of clinical Kp isolates to explore the prevalence of FDC-resistant isolates and the mechanism of FDC-resistance. METHODS: We retrospectively selected 151 carbapenem-resistant Kp isolates to assess FDC susceptibility. Seven isolates harboring blaSHV-12 from two patients were enrolled for whole-genome sequencing. The antimicrobial resistance, virulence, blaSHV-12 expression, and fitness costs in different media were examined. The amplification of blaSHV-12 was further investigated by qPCR and long-read sequencing. RESULTS: The 151 isolates showed a low MIC50/MIC90 (1/4 mg/L) of FDC. The seven isolates were ST11 PDR-hvKp, and two represented FDC-resistance (MIC=32 mg/L). The IncR/IncFII plasmids of two FDC-resistant isolates harbored 6 and 15 copies of blaSHV-12, whereas four FDC-susceptible isolates carried one copy and one harbored three copies. These blaSHV-12 genes concatenated together and were located within the same 7.3 kb fragment flanked by IS26, which contributed to the increased expression and FDC resistance without fitness costs. The amplification of blaSHV-12 and FDC resistance could be induced by FDC in vitro and reversed during continuous passage. CONCLUSIONS: The amplification of blaSHV-12 and the consequent dynamic within-host heteroresistance are important concerns for the rational application of antibiotics. Long-read sequencing might be a superior way to detect resistance gene amplification rapidly and accurately.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Cefiderocol , Retrospective Studies , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
18.
Drug Resist Updat ; 74: 101083, 2024 May.
Article in English | MEDLINE | ID: mdl-38593500

ABSTRACT

AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Phylogeny , Humans , China/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/transmission , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Polymorphism, Single Nucleotide , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Molecular Epidemiology , Carbapenems/pharmacology , Microbial Sensitivity Tests , Phylogeography , Serogroup , Genomics/methods
19.
Drug Resist Updat ; 76: 101123, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111133

ABSTRACT

The global dissemination of carbapenemase genes, particularly blaNDM-1, poses a significant threat to public health. While research has mainly focused on strains with phenotypic resistance, the impact of silent resistance genes has been largely overlooked. This study documents the first instance of silent blaNDM-1 in a cluster of clonally related carbapenem-susceptible K. pneumoniae strains from a single patient. Despite initial effectiveness of carbapenem therapy, the patient experienced four recurrent lung infections over five months, indicating persistent K. pneumoniae infection. Genomic sequencing revealed all strains harbored blaNDM-1 on the epidemic IncX3 plasmid. A deletion within the upstream promoter region (PISAba125) of blaNDM-1 hindered its expression, resulting in phenotypic susceptibility to carbapenems. However, in vitro bactericidal assays and a mouse infection model showed that K. pneumoniae strains with silent blaNDM-1 exhibited significant tolerance to carbapenem-mediated killing. These findings demonstrate that silent blaNDM-1 can mediate both phenotypic susceptibility and antibiotic tolerance. In silico analysis of 1986 blaNDM sequences showed that 1956 (98.5%) retained the original promoter PISAba125. Given that previous genomic sequencing typically targets carbapenem-resistant strains, accurately assessing the prevalence of silent blaNDM remains challenging. This study highlights the hidden threat of silent resistance genes to clinical antimicrobial therapy and calls for enhanced clinical awareness and laboratory detection.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , beta-Lactamases/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Humans , Carbapenems/pharmacology , Carbapenems/therapeutic use , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Male , Plasmids/genetics , Promoter Regions, Genetic/genetics
20.
Proc Natl Acad Sci U S A ; 119(38): e2203593119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095213

ABSTRACT

Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae, modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. An analysis of large K. pneumoniae genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine-to-thymine transition at position 25 (25c > t) in ompK36. We show that the 25c > t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates K. pneumoniae in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c > t transition tips the balance toward treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c > t transition mediates an intramolecular messenger RNA (mRNA) interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Klebsiella pneumoniae , Porins , beta-Lactam Resistance , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/classification , Bacterial Proteins/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Disease Models, Animal , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Mice , Microbial Sensitivity Tests , Mutation , Phylogeny , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Porins/classification , Porins/genetics , RNA, Messenger/metabolism , beta-Lactam Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL