Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 378
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 148(3): 434-46, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22304914

ABSTRACT

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.


Subject(s)
Mycobacterium Infections/drug therapy , Mycobacterium Infections/immunology , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/immunology , Animals , Disease Models, Animal , Humans , Inflammation/immunology , Leukotriene A4/genetics , Leukotriene A4/immunology , Leukotriene B4/genetics , Leukotriene B4/immunology , Lipoxins/immunology , Mitochondria/metabolism , Mycobacterium Infections/genetics , Mycobacterium marinum , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Signal Transduction , Transcription, Genetic , Tuberculosis, Meningeal/genetics , Tumor Necrosis Factor-alpha/metabolism , Zebrafish/embryology , Zebrafish/immunology
2.
Proc Natl Acad Sci U S A ; 119(10): e2110647119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238649

ABSTRACT

SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.


Subject(s)
Enzyme Inhibitors/metabolism , Epoxide Hydrolases , Influenza A Virus, H1N1 Subtype/metabolism , Leukotriene A4/metabolism , Orthomyxoviridae Infections/enzymology , Salivary Glands , Salivary Proteins and Peptides/metabolism , Virus Diseases , Animals , Chiroptera , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Mice , Salivary Glands/enzymology , Salivary Glands/virology
3.
Genomics ; 114(5): 110479, 2022 09.
Article in English | MEDLINE | ID: mdl-36070824

ABSTRACT

Orai2 is a component of store-operated Calcium channels (SOCCs) and exerts a pivotal role in immunity. In intestinal macrophages (Mφs), Orai2 deficiency influenced linoleic acid (LA)-arachidonic acid (ARA) derivatives by regulating Pla2g6 and Alox5. 16S rRNA sequencing showed that deleting Orai2 facilitated the prevalence of Akkermansia muciniphila, and untargeted metabolomics confirmed the suppressed level of leukotriene A. Moreover, Orai2 deficiency ameliorated the progression of experimental murine colitis, as shown by attenuated structural collapse of colon and pro-inflammatory cytokine concentrations, and rescued dysbiosis. The administration of a Pla2g6 inhibitor (Bromoenol lactone) not only inhibited the relative abundance of A. muciniphila in the feces of Orai2 knockout (Orai2-/-) mice, but also abolished the increased activity of Calcium-released activated Calcium channel (CRAC) in Orai2-/- intestinal Mφs, corroborating the involvement of Pla2g6 in Orai2 signaling. In conclusion, Orai2 deficiency increases Pla2g6 and hence facilitating A. muciniphila colonization, which might be a potential strategy to combat colitis.


Subject(s)
Calcium , Colitis , Akkermansia , Animals , Arachidonic Acid , Calcium/metabolism , Calcium Channels/genetics , Colitis/genetics , Cytokines , Group VI Phospholipases A2 , Leukotriene A4 , Linoleic Acid , Mice , ORAI2 Protein/genetics , RNA, Ribosomal, 16S
4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108702

ABSTRACT

The 5-lipoxygenase (5-LOX) pathway gives rise to bioactive inflammatory lipid mediators, such as leukotrienes (LTs). 5-LOX carries out the oxygenation of arachidonic acid to the 5-hydroperoxy derivative and then to the leukotriene A4 epoxide which is converted to a chemotactic leukotriene B4 (LTB4) by leukotriene A4 hydrolase (LTA4H). In addition, LTA4H possesses aminopeptidase activity to cleave the N-terminal proline of a pro-inflammatory tripeptide, prolyl-glycyl-proline (PGP). Based on the structural characteristics of LTA4H, it is possible to selectively inhibit the epoxide hydrolase activity while sparing the inactivating, peptidolytic, cleavage of PGP. In the current study, chalcogen-containing compounds, 4-(4-benzylphenyl) thiazol-2-amine (ARM1) and its selenazole (TTSe) and oxazole (TTO) derivatives were characterized regarding their inhibitory and binding properties. All three compounds selectively inhibit the epoxide hydrolase activity of LTA4H at low micromolar concentrations, while sparing the aminopeptidase activity. These inhibitors also block the 5-LOX activity in leukocytes and have distinct inhibition constants with recombinant 5-LOX. Furthermore, high-resolution structures of LTA4H with inhibitors were determined and potential binding sites to 5-LOX were proposed. In conclusion, we present chalcogen-containing inhibitors which differentially target essential steps in the biosynthetic route for LTB4 and can potentially be used as modulators of inflammatory response by the 5-LOX pathway.


Subject(s)
Chalcogens , Epoxide Hydrolases , Leukotriene A4 , Epoxide Hydrolases/metabolism , Arachidonate 5-Lipoxygenase , Aminopeptidases/metabolism
5.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328561

ABSTRACT

LTA4H is a bifunctional zinc metalloenzyme that converts leukotriene A4 (LTA4) into leukotriene B4 (LTB4), one of the most potent chemotactic agents involved in acute and chronic inflammatory diseases. In this reaction, LTA4H acts as an epoxide hydrolase with a unique and fascinating mechanism, which includes the stereoselective attachment of one water molecule to the carbon backbone of LTA4 several methylene units away from the epoxide moiety. By combining Molecular Dynamics simulations and Quantum Mechanics/Molecular Mechanics calculations, we obtained a very detailed molecular picture of the different consecutive steps of that mechanism. By means of a rather unusual 1,7-nucleophilic substitution through a clear SN1 mechanism, the epoxide opens and the triene moiety of the substrate twists in such a way that the bond C6-C7 adopts its cis (Z) configuration, thus exposing the R face of C12 to the addition of a water molecule hydrogen-bonded to ASP375. Thus, the two stereochemical features that are required for the bioactivity of LTB4 appear to be closely related. The noncovalent π-π stacking interactions between the triene moiety and two tyrosines (TYR267 and, especially, TYR378) that wrap the triene system along the whole reaction explain the preference for the cis configuration inside LTA4H.


Subject(s)
Epoxide Hydrolases , Leukotriene B4 , Epoxide Hydrolases/chemistry , Epoxy Compounds , Leukotriene A4/chemistry , Water
6.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4156-4163, 2022 Aug.
Article in Zh | MEDLINE | ID: mdl-36046906

ABSTRACT

Osteoarthritis is a common disease characterized by degenerative lesions of articular cartilage in the elderly.Fufang Duzhong Jiangu Granulues(FDJG), a classical prescription for the treatment of osteoarthritis, has the effects of nourishing liver and kidney, nourishing blood and sinew, and dredging collaterals and relieving pain.In this study, molecular simulation technology was combined with molecular biology methods to explore and verify the potential pharmacodynamic substances and molecular mechanism of FDJG in the treatment of osteoarthritis.Arachidonic acid(AA) metabolic pathway is a typical anti-inflammatory pathway, and secretory phospholipase A2 group ⅡA(sPLA2-ⅡA), 5-lipoxygenase(5-LOX), cyclooxygenase-2(COX-2), and leukotriene A4 hydrolase(LTA4 H) are the key targets of the pathway.Therefore, in this study, based on the pharmacophores and molecular docking models of the four key targets in AA pathway, a total of 1 522 chemical components in 12 medicinals of FDJG were virtually screened, followed by weighted analysis of the screening results in combination with the proportions of the medicinals in the prescription.The results showed that mainly 73 components in the preparation could act on the above four targets, suggesting they might be the potential anti-osteoarthritis components of FDJG.Considering the predicted effectiveness, availability, and compatibility of the medicinals, coniferyl ferulate, olivil, and baicalin were selected for further verification.Specifically, lipopolysaccharide(LPS)-induced RAW264.7 inflammatory cell model was used to verify the anti-inflammatory activity of the three components.The results showed that the three can effectively inhibit the release of NO, supporting the above selection.In addition, targets 5-LOX, COX-2, and LTA4 H had high activity, which suggested that they may be the key anti-osteoarthritis targets of FDJG.The comprehensive activity values of Eucommiae Cortex, Achyranthis Bidentatae Radix, Ginseng Radix et Rhizoma, Lycii Fructus, and Astragali Radix were much higher than that of other medicinals in the prescription, indicating that they may be the main effective medicinals in FDJG acting on the AA pathway.In this study, the potential anti-osteoarthritis components of FDJG were obtained.Moreover, it was clarified that the anti-osteoarthritis mechanism of FDJG was to act on LOX and COX pathway in AA metabolic pathway, which provided a reference for the study of pharmacodynamic substances and molecular mechanism of FDJG.


Subject(s)
Drugs, Chinese Herbal , Osteoarthritis , Aged , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/metabolism , Drugs, Chinese Herbal/therapeutic use , Humans , Leukotriene A4/analysis , Lipopolysaccharides , Molecular Docking Simulation , Osteoarthritis/drug therapy , Rhizome/chemistry
7.
J Biol Chem ; 291(35): 18410-8, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27365393

ABSTRACT

Leukotriene C4 synthase (LTC4S) catalyzes the formation of the proinflammatory lipid mediator leukotriene C4 (LTC4). LTC4 is the parent molecule of the cysteinyl leukotrienes, which are recognized for their pathogenic role in asthma and allergic diseases. Cellular LTC4S activity is suppressed by PKC-mediated phosphorylation, and recently a downstream p70S6k was shown to play an important role in this process. Here, we identified Ser(36) as the major p70S6k phosphorylation site, along with a low frequency site at Thr(40), using an in vitro phosphorylation assay combined with mass spectrometry. The functional consequences of p70S6k phosphorylation were tested with the phosphomimetic mutant S36E, which displayed only about 20% (20 µmol/min/mg) of the activity of WT enzyme (95 µmol/min/mg), whereas the enzyme activity of T40E was not significantly affected. The enzyme activity of S36E increased linearly with increasing LTA4 concentrations during the steady-state kinetics analysis, indicating poor lipid substrate binding. The Ser(36) is located in a loop region close to the entrance of the proposed substrate binding pocket. Comparative molecular dynamics indicated that Ser(36) upon phosphorylation will pull the first luminal loop of LTC4S toward the neighboring subunit of the functional homotrimer, thereby forming hydrogen bonds with Arg(104) in the adjacent subunit. Because Arg(104) is a key catalytic residue responsible for stabilization of the glutathione thiolate anion, this phosphorylation-induced interaction leads to a reduction of the catalytic activity. In addition, the positional shift of the loop and its interaction with the neighboring subunit affect active site access. Thus, our mutational and kinetic data, together with molecular simulations, suggest that phosphorylation of Ser(36) inhibits the catalytic function of LTC4S by interference with the catalytic machinery.


Subject(s)
Glutathione Transferase/chemistry , Amino Acid Substitution , Animals , Binding Sites , Catalysis , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Leukotriene A4/biosynthesis , Leukotriene A4/chemistry , Leukotriene A4/genetics , Mice , Mutation, Missense , Phosphorylation , Protein Structure, Secondary , Ribosomal Protein S6 Kinases, 70-kDa/chemistry , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Serine/chemistry , Serine/genetics , Serine/metabolism
8.
Biochim Biophys Acta ; 1851(4): 377-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25218301

ABSTRACT

The synthesis of oxygenated eicosanoids is the result of the coordinated action of several enzymatic activities, from phospholipase A2 that releases the polyunsaturated fatty acids from membrane phospholipids, to primary oxidative enzymes, such as cyclooxygenases and lipoxygenases, to isomerases, synthases and hydrolases that carry out the final synthesis of the biologically active metabolites. Cells possessing the entire enzymatic machinery have been studied as sources of bioactive eicosanoids, but early on evidence proved that biosynthetic intermediates, albeit unstable, could move from one cell type to another. The biosynthesis of bioactive compounds could therefore be the result of a coordinated effort by multiple cell types that has been named transcellular biosynthesis of the eicosanoids. In several cases cells not capable of carrying out the complete biosynthetic process, due to the lack of key enzymes, have been shown to efficiently contribute to the final production of prostaglandins, leukotrienes and lipoxins. We will review in vitro studies, complex functional models, and in vivo evidences of the transcellular biosynthesis of eicosanoids and the biological relevance of the metabolites resulting from this unique biosynthetic pathway. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Subject(s)
Cell Communication , Eicosanoids/metabolism , Signal Transduction , Animals , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Epoprostenol/metabolism , Humans , Leukotriene A4/metabolism , Lipoxins/metabolism , Thromboxane A2/metabolism
9.
J Immunol ; 192(11): 5059-68, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24771855

ABSTRACT

The leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme with epoxy hydrolase and aminopeptidase activities. We hypothesize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)-induced emphysema by clearing proline-glycine-proline (PGP), a triamino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild-type mice to CS over 5 mo while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bioproduction of leukotriene B4. Emphysematous phenotypes were assessed by premortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the bronchoalveolar lavage fluid and infiltration of neutrophils into the lungs were significantly reduced without affecting the levels of leukotriene B4. This protected murine lungs from CS-induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the leukotriene A4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema.


Subject(s)
Epoxide Hydrolases/immunology , Leukotriene A4/immunology , Lung/immunology , Neutrophils/immunology , Pulmonary Emphysema/immunology , Smoking/adverse effects , Animals , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/genetics , Leukotriene A4/genetics , Leukotriene B4/genetics , Leukotriene B4/immunology , Lung/pathology , Mice , Mice, Knockout , Neutrophil Infiltration , Neutrophils/pathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/genetics , Pulmonary Emphysema/pathology , Smoking/genetics , Smoking/immunology
10.
J Biol Chem ; 289(8): 5199-207, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24366866

ABSTRACT

Leukotriene (LT) C4 synthase (LTC4S) catalyzes the conjugation of the fatty acid LTA4 with the tripeptide GSH to produce LTC4, the parent compound of the cysteinyl leukotrienes, important mediators of asthma. Here we mutated Trp-116 in human LTC4S, a residue proposed to play a key role in substrate binding, into an Ala or Phe. Biochemical and structural characterization of these mutants along with crystal structures of the wild type and mutated enzymes in complex with three product analogs, viz. S-hexyl-, 4-phenyl-butyl-, and 2-hydroxy-4-phenyl-butyl-glutathione, provide new insights to binding of substrates and product, identify a new conformation of the GSH moiety at the active site, and suggest a route for product release, aided by Trp-116.


Subject(s)
Glutathione Transferase/chemistry , Glutathione/analogs & derivatives , Biocatalysis , Crystallography, X-Ray , Glutathione/metabolism , Glutathione Transferase/metabolism , Humans , Kinetics , Leukotriene A4/chemistry , Leukotriene C4/chemistry , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Conformation , Substrate Specificity , Tryptophan/metabolism
11.
J Biol Chem ; 289(51): 35314-25, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25371198

ABSTRACT

Calcium/voltage-gated, large conductance potassium (BK) channels control numerous physiological processes, including myogenic tone. BK channel regulation by direct interaction between lipid and channel protein sites has received increasing attention. Leukotrienes (LTA4, LTB4, LTC4, LTD4, and LTE4) are inflammatory lipid mediators. We performed patch clamp studies in Xenopus oocytes that co-expressed BK channel-forming (cbv1) and accessory ß1 subunits cloned from rat cerebral artery myocytes. Leukotrienes were applied at 0.1 nm-10 µm to either leaflet of cell-free membranes at a wide range of [Ca(2+)]i and voltages. Only LTB4 reversibly increased BK steady-state activity (EC50 = 1 nm; Emax reached at 10 nm), with physiological [Ca(2+)]i and voltages favoring this activation. Homomeric cbv1 or cbv1-ß2 channels were LTB4-resistant. Computational modeling predicted that LTB4 docked onto the cholane steroid-sensing site in the BK ß1 transmembrane domain 2 (TM2). Co-application of LTB4 and cholane steroid did not further increase LTB4-induced activation. LTB4 failed to activate ß1 subunit-containing channels when ß1 carried T169A, A176S, or K179I within the docking site. Co-application of LTB4 with LTA4, LTC4, LTD4, or LTE4 suppressed LTB4-induced activation. Inactive leukotrienes docked onto a portion of the site, probably preventing tight docking of LTB4. In summary, we document the ability of two endogenous lipids from different chemical families to share their site of action on a channel accessory subunit. Thus, cross-talk between leukotrienes and cholane steroids might converge on regulation of smooth muscle contractility via BK ß1. Moreover, the identification of LTB4 as a highly potent ligand for BK channels is critical for the future development of ß1-specific BK channel activators.


Subject(s)
Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Leukotriene B4/metabolism , Animals , Calcium/metabolism , Cerebral Arteries/cytology , Female , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Leukotriene A4/chemistry , Leukotriene A4/metabolism , Leukotriene A4/pharmacology , Leukotriene B4/chemistry , Leukotriene B4/pharmacology , Leukotriene C4/chemistry , Leukotriene C4/metabolism , Leukotriene C4/pharmacology , Leukotriene D4/chemistry , Leukotriene D4/metabolism , Leukotriene D4/pharmacology , Leukotriene E4/chemistry , Leukotriene E4/metabolism , Leukotriene E4/pharmacology , Membrane Potentials/drug effects , Microinjections , Models, Molecular , Molecular Structure , Muscle Cells/cytology , Muscle Cells/metabolism , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Patch-Clamp Techniques , Protein Binding , Protein Structure, Tertiary , RNA, Complementary/administration & dosage , RNA, Complementary/genetics , Rats , Xenopus laevis
12.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1095-101, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26033353

ABSTRACT

The lack of a well-characterized biomarker for the diagnosis of chronic obstructive pulmonary disease (COPD) has increased interest toward finding one, because this would provide potential insight into disease pathogenesis and progression. Since persistent neutrophilia is an important hallmark in COPD Pro-Gly-Pro (PGP), an extracellular matrix-derived neutrophil chemoattractant, has been suggested to be a potential biomarker in COPD. The purpose of this review is to critically examine both biological and clinical data related to the role of PGP in COPD, with particular focus on its role as a clinical biomarker and potential therapeutic target in disease. The data provided in this review will offer insight into the potential use of PGP as end point for future clinical studies in COPD lung disease. Following PGP levels during disease might serve as a guide for the progression of lung disorders.


Subject(s)
Oligopeptides/metabolism , Proline/analogs & derivatives , Pulmonary Disease, Chronic Obstructive/diagnosis , Animals , Biomarkers/metabolism , Chemokines/metabolism , Extracellular Matrix/metabolism , Humans , Leukotriene A4/metabolism , Neutrophils/immunology , Proline/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
13.
Prostaglandins Other Lipid Mediat ; 120: 115-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25839425

ABSTRACT

We evaluated the autocrine activities of cysteinyl leukotrienes (cysteinyl-LTs) in HUVEC and studied the signaling and the pharmacological profile of the CysLT2 receptor (CysLT2R) expressed by ECs, finally assessing the role of the CysLT2R in permeability alterations in a model of isolated brain. Cysteinyl-LTs and their precursor LTA4 contracted HUVEC and increased permeability to macromolecules, increasing the formation of stress fibers through the phosphorylation of myosin light-chain (MLC) following Rho and PKC activation. Accordingly, in an organ model of cerebral vasculature with an intact intima, neutrophils challenge leaded to significant formation of cysteinyl-LTs and edema. Pretreatment with a selective CysLT2R antagonist prevented cytoskeleton rearrangement and HUVEC contraction, along with edema formation in the brain preparation, while leaving the synthesis of cysteinyl-LTs unaffected. We also demonstrate here that the CysLT1R antagonist zafirlukast, pranlukast, pobilukast and iralukast also possess CysLT2R antagonistic activity, which could help in reconsidering previous data on the role of cysteinyl-LTs in the cardiovascular system. The results obtained are further supporting a potential role for CysLT2R in cardiovascular disease.


Subject(s)
Autocrine Communication , Cysteine/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Leukotrienes/metabolism , Receptors, Leukotriene/metabolism , Signal Transduction , Animals , Autocrine Communication/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leukotriene A4/pharmacology , Leukotriene C4/pharmacology , Myosin Light Chains/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Permeability/drug effects , Phosphorylation/drug effects , Protein Kinase C/metabolism , Rats , Signal Transduction/drug effects , Stress Fibers/drug effects , Stress Fibers/metabolism , rho GTP-Binding Proteins/metabolism
14.
Biochemistry ; 53(27): 4407-19, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24893149

ABSTRACT

5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation and epoxidation indicate that a specific step in its molecular mechanism is changed, possibly because of a lowering of the dependence of the rate-limiting step on hydrogen atom abstraction and an increase in the dependency on hydrogen bond rearrangement. Therefore, changes in ATP concentration in the cell could affect the production of 5-LOX products, such as leukotrienes and lipoxins, and thus have wide implications for the regulation of cellular inflammation.


Subject(s)
Adenosine Triphosphate/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Arachidonic Acid/chemistry , Leukotrienes/chemistry , Allosteric Regulation , Calcium/chemistry , Enzyme Activation , Epoxy Compounds/chemistry , Humans , Leukotriene A4/chemistry , Peroxides/chemistry , Stereoisomerism , Viscosity
15.
Eur Respir J ; 44(2): 394-404, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24696116

ABSTRACT

Airway disease in cystic fibrosis (CF) is characterised by impaired mucociliary clearance, persistent bacterial infection and neutrophilic inflammation. Lipoxin A4 (LXA4) initiates the active resolution of inflammation and promotes airway surface hydration in CF models. 15-Lipoxygenase (LO) plays a central role in the "class switch" of eicosanoid mediator biosynthesis from leukotrienes to lipoxins, initiating the active resolution of inflammation. We hypothesised that defective eicosanoid mediator class switching contributes to the failure to resolve inflammation in CF lung disease. Using bronchoalveolar lavage (BAL) samples from 46 children with CF and 19 paediatric controls we demonstrate that the ratio of LXA4 to leukotriene B4 (LTB4) is depressed in CF BAL (p<0.01), even in the absence of infection (p<0.001). Furthermore, 15-LO2 transcripts were significantly less abundant in CF BAL samples (p<0.05). In control BAL, there were positive relationships between 15-LO2 transcript abundance and LXA4/LTB4 ratio (p=0.01, r=0.66) and with percentage macrophage composition of the BAL fluid (p<0.001, r=0.82), which were absent in CF. Impoverished 15-LO2 expression and depression of the LXA4/LTB4 ratio are observed in paediatric CF BAL. These observations provide mechanistic insights into the failure to resolve inflammation in the CF lung.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Cystic Fibrosis/blood , Leukotriene B4/chemistry , Lipoxins/chemistry , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage Fluid/chemistry , Child , Child, Preschool , Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Female , Humans , Inflammation , Leukotriene A4/chemistry , Longitudinal Studies , Lung/immunology , Lung/pathology , Lung Diseases/microbiology , Macrophages, Alveolar/metabolism , Male , Neutrophils/cytology , Neutrophils/metabolism
16.
J Lipid Res ; 54(3): 754-761, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23242647

ABSTRACT

Leukotriene (LT)A4 and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA4 is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A4. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA4 and converts 5R-HPETE to the cis epoxide 5-epi-LTA4, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations.


Subject(s)
Epoxy Compounds/chemistry , Leukotriene A4/chemistry , Leukotriene A4/metabolism , Magnetic Resonance Spectroscopy/methods , Epoxy Compounds/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Hydroxyeicosatetraenoic Acids/chemistry , Hydroxyeicosatetraenoic Acids/metabolism , Lipoxygenase/metabolism , Stereoisomerism
17.
J Phys Chem B ; 127(48): 10338-10350, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38010510

ABSTRACT

Leukotriene A4 hydrolase (LTA4H) functions as a mono-zinc bifunctional enzyme with aminopeptidase and epoxidase activities. While the aminopeptidase mechanism is well understood, the epoxidase mechanism remains less clear. In continuation of our prior research, we undertook an in-depth exploration of the LTA4H catalytic role as an epoxidase, employing a combined SCC-DFTB/CHARMM method. In the current work, we found that the conversion of LTA4 to leukotriene B4 (LTB4) involves three successive steps: epoxy ring opening (RO), nucleophilic attack (NA), and proton transfer (PT) reactions at the epoxy oxygen atom. Among these steps, the RO and NA stages constitute the potential rate-limiting step within the entire epoxidase mechanism. Notably, the NA step implicates D375 as the general base catalyst, while the PT step engages protonated E271 as the general acid catalyst. Additionally, we delved into the mechanism behind the formation of the isomer product, Δ6-trans-Δ8-cis-LTB4. Our findings debunked the feasibility of a direct LTB4 to iso-LTB4 conversion. Instead, we highlight the possibility of isomerization from LTA4 to its isomeric conjugate (iso-LTA4), showing comparable energy barriers of 5.1 and 5.5 kcal/mol in aqueous and enzymatic environments, respectively. The ensuing dynamics of iso-LTA4 hydrolysis subsequently yield iso-LTB4 via a mechanism akin to LTA4 hydrolysis, albeit with a heightened barrier. Our computations firmly support the notion that substrate isomerization exclusively takes place prior to or during the initial substrate-binding phase, while LTA4 remains the dominant conformer. Notably, our simulations suggest that irrespective of the active site's constrained L-shape, isomerization from LTA4 to its isomeric conjugate remains plausible. The mechanistic insights garnered from our simulations furnish a valuable understanding of LTA4H's role as an epoxidase, thereby facilitating potential advancements in inhibitor design.


Subject(s)
Epoxide Hydrolases , Leukotriene B4 , Leukotriene B4/chemistry , Leukotriene A4 , Epoxide Hydrolases/chemistry , Aminopeptidases
18.
Biochemistry ; 51(4): 848-56, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22217203

ABSTRACT

Human leukotriene C4 synthase (hLTC4S) is an integral membrane protein that catalyzes the committed step in the biosynthesis of cysteinyl-leukotrienes, i.e., formation of leukotriene C4 (LTC4). This molecule, together with its metabolites LTD4 and LTE4, induces inflammatory responses, particularly in asthma, and thus, the enzyme is an attractive drug target. During the catalytic cycle, glutathione (GSH) is activated by hLTC4S that forms a nucleophilic thiolate anion that will attack LTA4, presumably according to an S(N)2 reaction to form LTC4. We observed that GSH thiolate anion formation is rapid and occurs at all three monomers of the homotrimer and is concomitant with stoichiometric release of protons to the medium. The pK(a) (5.9) for enzyme-bound GSH thiol and the rate of thiolate formation were determined (k(obs) = 200 s⁻¹). Taking advantage of a strong competitive inhibitor, glutathionesulfonic acid, shown here by crystallography to bind in the same location as GSH, we determined the overall dissociation constant (K(d((GS) = 14.3 µM). The release of the thiolate was assessed using a GSH release experiment (1.3 s⁻¹). Taken together, these data establish that thiolate anion formation in hLTC4S is not the rate-limiting step for the overall reaction of LTC4 production (k(cat) = 26 s⁻¹), and compared to the related microsomal glutathione transferase 1, which displays very slow GSH thiolate anion formation and one-third of the sites reactivity, hLTC4S has evolved a different catalytic mechanism.


Subject(s)
Glutathione Transferase/metabolism , Glutathione/analogs & derivatives , Leukotriene C4/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arginine/chemistry , Binding, Competitive , Biocatalysis , Catalytic Domain/drug effects , Cysteine/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Glutathione/chemistry , Glutathione/metabolism , Glutathione/pharmacology , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Humans , Hydrogen-Ion Concentration , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Leukotriene A4/metabolism , Molecular Targeted Therapy , Protein Conformation/drug effects , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
19.
Am J Gastroenterol ; 107(10): 1503-11, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22777338

ABSTRACT

OBJECTIVES: Features of eosinophilic esophagitis (EoE) and gastroesophageal reflux disease (GERD) overlap. We aimed to determine whether staining for tissue biomarkers would differentiate EoE from GERD, suggesting utility for diagnosis of EoE. METHODS: In this case-control study, EoE patients defined by consensus guidelines were compared to GERD patients with eosinophils on esophageal biopsy. Immunohistochemistry was performed for major basic protein (MBP), eotaxin-3, leukotriene A4 hydrolase (LTA4H), and leukotriene C4 synthase (LTC4S). After masking, the maximum staining density (cells per mm(2)) was quantified for each marker and compared between groups. Receiver operator characteristic curves were constructed, and the area under the curve (AUC) calculated to assess the diagnostic utility of each of the biomarkers alone and in combination with eosinophil counts. RESULTS: There were 51 EoE cases (mean age 24; mean 143 eosinophils per high-power field (eos per h.p.f.)) and 54 GERD controls (mean age 34; mean 20 eos per h.p.f.). The MBP density was higher in EoE than in GERD (1479 vs. 59 cells per mm(2); P<0.001), as was the eotaxin-3 density (2219 vs. 479; P<0.001). There were no differences for LTA4H and LTC4S. MBP density and eosinophil count correlated (R=0.81; P<0.001); correlation with eotaxin-3 was weaker (R=0.25; P=0.01). The AUC for diagnosis of EoE was 0.96 for MBP, 0.87 for eotaxin-3, 0.58 for LTA4H, 0.66 for LTC4S, and 0.99 for the combination of MBP, eotaxin-3, and eosinophil count. CONCLUSIONS: Patients with EoE had substantially higher levels of MBP and eotaxin-3 staining than GERD patients. These markers may have utility as a diagnostic assay for EoE.


Subject(s)
Chemokines, CC/metabolism , Eosinophil Major Basic Protein/metabolism , Eosinophilic Esophagitis/diagnosis , Eosinophilic Esophagitis/metabolism , Eosinophils , Leukotrienes/metabolism , Adult , Area Under Curve , Biomarkers/metabolism , Case-Control Studies , Chemokine CCL26 , Diagnosis, Differential , Eosinophils/metabolism , Female , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/metabolism , Humans , Immunohistochemistry , Immunologic Factors/metabolism , Leukocyte Count , Leukotriene A4/metabolism , Leukotriene C4/metabolism , Male , Predictive Value of Tests , ROC Curve
20.
FASEB J ; 25(10): 3519-28, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21753081

ABSTRACT

The purpose of this study was to characterize enzyme, receptor, and signaling involved in the synthesis and the activity of cysteinyl leukotrienes (cys-LTs) in human umbilical vein endothelial cells (HUVECs). We used primary cultures of HUVECs and evaluated the formation of cys-LTs by RP-HPLC. Suicide inactivation and subcellular localization of the enzyme responsible for the conversion of leukotriene (LT) A(4) into LTC(4) were studied by repeated incubations with LTA(4) and immunogold electron microscopy. The CysLT(2) receptor in HUVECs was characterized by equilibrium binding studies, Western blot analysis, and immunohistochemistry. Concentration-response curves in HUVECs and in transfected COS-7 cells were used to characterize a novel specific CysLT(2) receptor antagonist (pA(2) of 8.33 and 6.79 against CysLT(2) and CysLT(1) receptors, respectively). The results obtained provide evidence that the mGST-II synthesizing LTC(4) in HUVECs is pharmacologically distinguishable from the LTC(4)-synthase (IC(50) of MK886 <5 µM for LTC(4)-synthase and >30 µM for mGST-II), is not suicide-inactivated and is strategically located on endothelial transport vesicles. The CysLT(2) receptor is responsible for the increase in intracellular Ca(2+) following exposure of HUVECs to cys-LTs and is coupled to a pertussis toxin-insensitive G(q) protein. The synthesis of cys-LTs from LTA(4) by endothelial cells is directly associated with the activation of the CysLT(2) receptor (EC(50) 0.64 µM) in a typical autocrine fashion.


Subject(s)
Autocrine Communication/physiology , Endothelial Cells/metabolism , Leukotriene C4/biosynthesis , Receptors, Leukotriene/metabolism , Animals , Biological Transport/physiology , Blood Platelets/metabolism , COS Cells , Calcium Signaling/physiology , Chlorocebus aethiops , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Expression Regulation/physiology , Humans , Leukotriene A4/metabolism , Receptors, Leukotriene/genetics
SELECTION OF CITATIONS
SEARCH DETAIL