Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257343

ABSTRACT

Fatty acid analysis is an essential step in evaluating the potential of macroalgae for biodiesel production. An extraction method was developed to simultaneously analyze up to five types of biodiesel-fuel-related fatty acids (myristic acid, palmitic acid, cis-palmitvaccenic acid, stearic acid, and oleic acid) in macroalgae using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Lypophilization and solid-phase extraction (SPE) techniques were applied to improve the extraction efficiency and effectively purify samples. The optimal conditions for SPE were set by comparing the recoveries according to the various solvent conditions for each step (loading, washing, and elution). In addition, the introduction of trimethylaminoethyl (TMAE) derivatives to the hydroxyl group of the target analyte increased the ionization efficiency and sensitivity. The derivatized samples were analyzed using the LC-MS/MS method with electrospray ionization in the positive and multiple-reaction monitoring modes. The target analytes were separated and detected within 13.5 min using a CAPCELL PAK C18 MGII S3 column. Gradient elution was performed using distilled water and acetonitrile containing 5 mM ammonium acetate. This method offers a reliable and sensitive tool for the analysis of macroalgae samples for their potential use in biodiesel production. To the best of our knowledge, this is the first report on the simultaneous determination of fatty acids in macroalgae using LC-MS/MS with TMAE derivatization.


Subject(s)
Biofuels , Fatty Acids , Lomustine/analogs & derivatives , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry
2.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203687

ABSTRACT

Ganoderma is a genus of wood-degrading mushrooms with medicinal importance. Most Ganoderma species have been studied extensively for their secondary metabolites, biological activities, and ecological value. In this study, the biological activities of the extracts of G. adspersum growing wild on Morus alba trees in the region of Western Thrace (Greece) were evaluated, and the petroleum ether, dichloromethanolic, and methanolic extracts were studied further for their secondary metabolites. Six substances were isolated by chromatographic (Clumn Chromatography (C.C.), High Performance Liquid Chromatography (HPLC)) and spectroscopic methods (Nuclear Magnetic Resonance (NMR)), which were classified in the following categories: (a) unsaturated fatty acids: cis-oleic acid (1); (b) sterols: ergosta-7,22-dien-3-one (2), ergosta-7,22-dien-3-ol (3), and ergosta-5,7,22-trien-3-ol (4); and (c) lanostane-type triterpenoids: applanoxidic acid G (5) and applanoxidic acid A (6). Finally, the biological activities of the extracts were estimated for their antioxidant, antimicrobial, and cytotoxic potential. The methanolic extract of G. adspersum showed the highest total antioxidant activity. The results of the antimicrobial activities indicated that all of the extracts had a minimum inhibitory concentration (MIC) ranging between 39.1 and 312.5 µg/mL. The evaluation of the cytotoxic activity of the samples showed once again that the methanolic extract was the most potent among the examined extracts, with half-maximal inhibitory concentration (IC50) values of 19.22 µg/mL (Hep2c cells), 32.9 µg/mL (RD cells), and 8.94 µg/mL (L2OB cells). Moreover, the bioactivity scores of the isolated secondary metabolites were calculated using the online computer software program Molinspiration. The compounds showed promising bioactivity scores for drug targets.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Ganoderma , Lomustine/analogs & derivatives , Polyporaceae , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Methanol
3.
Food Res Int ; 184: 114258, 2024 May.
Article in English | MEDLINE | ID: mdl-38609236

ABSTRACT

The study aimed to determine the chemical structures of octadecatrienoic acid isomers produced by probiotics through the bioconversion of α-linolenic acid and to assess their antioxidant capacities. The chemical structures were identified using nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), while the antioxidant capacities were evaluated in vitro and in cellular. The NMR signals obtained allowed for definitive characterization, with the main ion fragments detected being m/z 58.0062, 59.0140, 71.0141, 113.0616, 127.0777, and 181.5833. Compounds at concentrations below 40 µM maintained the antioxidant capacity of HepG2 cells by protecting endogenous antioxidative enzymes and mitochondrial membrane potential. However, doses higher than 40 µM increase oxidative damage and mitochondrial dysfunction. These results confirmed the structure of the probiotic-derived compound as trans9, trans11, cis15-conjugated linolenic acid. Additionally, appropriate doses of CLNA can alleviate oxidative stress induced by AAPH, while high doses aggravate cellular damage. These findings provide foundational information for the further exploration of probiotic-derived edible lipids.


Subject(s)
Antioxidants , Lomustine/analogs & derivatives , Probiotics , Antioxidants/pharmacology , alpha-Linolenic Acid , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL