Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.044
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941603

ABSTRACT

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Subject(s)
COVID-19 , Dendritic Cells , Immunity, Innate , Lupus Erythematosus, Systemic , SARS-CoV-2 , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , COVID-19/immunology , Animals , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptors/metabolism , Cell Differentiation , Cell Lineage
2.
Annu Rev Immunol ; 35: 313-336, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28142323

ABSTRACT

Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. The existence of these sensors raises fundamental questions about self/nonself discrimination because of the abundance of self-DNA and self-RNA that occupy these same compartments. Recent advances have revealed that enzymes that metabolize or modify endogenous nucleic acids are essential for preventing inappropriate activation of the innate antiviral response. In this review, we discuss rare human diseases caused by dysregulated nucleic acid sensing, focusing primarily on intracellular sensors of nucleic acids. We summarize lessons learned from these disorders, we rationalize the existence of these diseases in the context of evolution, and we propose that this framework may also apply to a number of more common autoimmune diseases for which the underlying genetics and mechanisms are not yet fully understood.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , Autoimmunity , Lupus Erythematosus, Systemic/immunology , Nervous System Malformations/immunology , Nucleic Acids/immunology , Virus Diseases/immunology , Animals , Humans , Immunity, Innate , Interferon Type I/metabolism , Toll-Like Receptors/metabolism
3.
Nat Immunol ; 25(8): 1332-1343, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009839

ABSTRACT

Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Erythematosus, Systemic/immunology , Humans , Animals , Precision Medicine , Genetic Predisposition to Disease
4.
Nat Immunol ; 25(5): 873-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38553615

ABSTRACT

Metabolic programming is important for B cell fate, but the bioenergetic requirement for regulatory B (Breg) cell differentiation and function is unknown. Here we show that Breg cell differentiation, unlike non-Breg cells, relies on mitochondrial electron transport and homeostatic levels of reactive oxygen species (ROS). Single-cell RNA sequencing analysis revealed that TXN, encoding the metabolic redox protein thioredoxin (Trx), is highly expressed by Breg cells, unlike Trx inhibitor TXNIP which was downregulated. Pharmacological inhibition or gene silencing of TXN resulted in mitochondrial membrane depolarization and increased ROS levels, selectively suppressing Breg cell differentiation and function while favoring pro-inflammatory B cell differentiation. Patients with systemic lupus erythematosus (SLE), characterized by Breg cell deficiencies, present with B cell mitochondrial membrane depolarization, elevated ROS and fewer Trx+ B cells. Exogenous Trx stimulation restored Breg cells and mitochondrial membrane polarization in SLE B cells to healthy B cell levels, indicating Trx insufficiency underlies Breg cell impairment in patients with SLE.


Subject(s)
Carrier Proteins , Cell Differentiation , Lupus Erythematosus, Systemic , Mitochondria , Reactive Oxygen Species , Thioredoxins , Thioredoxins/metabolism , Thioredoxins/genetics , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Female , Animals , Mice , Membrane Potential, Mitochondrial , Male , Adult , Oxidation-Reduction
5.
Cell ; 184(7): 1790-1803.e17, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33735607

ABSTRACT

The long non-coding RNA (lncRNA) XIST establishes X chromosome inactivation (XCI) in female cells in early development and thereafter is thought to be largely dispensable. Here, we show XIST is continually required in adult human B cells to silence a subset of X-linked immune genes such as TLR7. XIST-dependent genes lack promoter DNA methylation and require continual XIST-dependent histone deacetylation. XIST RNA-directed proteomics and CRISPRi screen reveal distinctive somatic cell-type-specific XIST complexes and identify TRIM28 that mediates Pol II pausing at promoters of X-linked genes in B cells. Single-cell transcriptome data of female patients with either systemic lupus erythematosus or COVID-19 infection revealed XIST dysregulation, reflected by escape of XIST-dependent genes, in CD11c+ atypical memory B cells (ABCs). XIST inactivation with TLR7 agonism suffices to promote isotype-switched ABCs. These results indicate cell-type-specific diversification and function for lncRNA-protein complexes and suggest expanded roles for XIST in sex-differences in biology and medicine.


Subject(s)
B-Lymphocytes/immunology , COVID-19 , Lupus Erythematosus, Systemic , RNA, Long Noncoding/physiology , Toll-Like Receptor 7/immunology , X Chromosome Inactivation , COVID-19/genetics , COVID-19/immunology , Cell Line , DNA Methylation , Female , Gene Silencing , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology
6.
Nat Immunol ; 22(9): 1107-1117, 2021 09.
Article in English | MEDLINE | ID: mdl-34385713

ABSTRACT

The linkage between neutrophil death and the development of autoimmunity has not been thoroughly explored. Here, we show that neutrophils from either lupus-prone mice or patients with systemic lupus erythematosus (SLE) undergo ferroptosis. Mechanistically, autoantibodies and interferon-α present in the serum induce neutrophil ferroptosis through enhanced binding of the transcriptional repressor CREMα to the glutathione peroxidase 4 (Gpx4, the key ferroptosis regulator) promoter, which leads to suppressed expression of Gpx4 and subsequent elevation of lipid-reactive oxygen species. Moreover, the findings that mice with neutrophil-specific Gpx4 haploinsufficiency recapitulate key clinical features of human SLE, including autoantibodies, neutropenia, skin lesions and proteinuria, and that the treatment with a specific ferroptosis inhibitor significantly ameliorates disease severity in lupus-prone mice reveal the role of neutrophil ferroptosis in lupus pathogenesis. Together, our data demonstrate that neutrophil ferroptosis is an important driver of neutropenia in SLE and heavily contributes to disease manifestations.


Subject(s)
Ferroptosis/physiology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Neutropenia/pathology , Neutrophils/immunology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Autoantibodies/immunology , Autoimmunity/immunology , Cyclic AMP Response Element Modulator/metabolism , Humans , Interferon-alpha/immunology , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolism
7.
Annu Rev Immunol ; 29: 665-705, 2011.
Article in English | MEDLINE | ID: mdl-21219180

ABSTRACT

The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.


Subject(s)
Antigens, CD/immunology , Intracellular Signaling Peptides and Proteins/immunology , Animals , Antigens, CD/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/physiopathology , Mutation
8.
Immunity ; 57(7): 1603-1617.e7, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38761804

ABSTRACT

Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.


Subject(s)
Adaptor Proteins, Signal Transducing , Inducible T-Cell Co-Stimulator Protein , Lupus Erythematosus, Systemic , Mice, Knockout , Proto-Oncogene Proteins c-bcl-6 , Proto-Oncogene Proteins c-cbl , T Follicular Helper Cells , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Autophagy/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Mice, Inbred C57BL , Proteolysis , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/deficiency , Signal Transduction/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , Ubiquitination
9.
Immunity ; 57(8): 1796-1811.e8, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38908373

ABSTRACT

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.


Subject(s)
Autoimmunity , Cytokines , Lupus Erythematosus, Systemic , Signal Transduction , Spermine , Animals , Spermine/metabolism , Spermine/pharmacology , Humans , Signal Transduction/drug effects , Mice , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Cytokines/metabolism , Macrophages/immunology , Macrophages/metabolism , Janus Kinase 1/metabolism , Phosphorylation , Interferon Type I/metabolism , Interferon Type I/immunology , Psoriasis/immunology , Psoriasis/metabolism , Mice, Inbred C57BL , Janus Kinases/metabolism , Female , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism
10.
Nat Immunol ; 21(8): 868-879, 2020 08.
Article in English | MEDLINE | ID: mdl-32690950

ABSTRACT

STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PtdIns(3)P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP, leading to increased ER PtdIns(3)P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.


Subject(s)
Endoplasmic Reticulum/metabolism , Gene Expression Regulation/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Animals , Endoplasmic Reticulum/immunology , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Membrane Proteins/immunology , Mice , Nerve Tissue Proteins/immunology , Nuclear Proteins , Protein Transport/physiology
11.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38917796

ABSTRACT

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Subject(s)
Interferon Regulatory Factor-3 , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Ubiquitination , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Phosphorylation , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Animals , HEK293 Cells , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/virology , Immunity, Innate , Host-Pathogen Interactions , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Feedback, Physiological , Mice, Inbred C57BL , Exodeoxyribonucleases , Phosphoproteins
13.
Nat Immunol ; 20(8): 1071-1082, 2019 08.
Article in English | MEDLINE | ID: mdl-31263277

ABSTRACT

Systemic lupus erythematosus (SLE) is characterized by the expansion of extrafollicular pathogenic B cells derived from newly activated naive cells. Although these cells express distinct markers, their epigenetic architecture and how it contributes to SLE remain poorly understood. To address this, we determined the DNA methylomes, chromatin accessibility profiles and transcriptomes from five human B cell subsets, including a newly defined effector B cell subset, from subjects with SLE and healthy controls. Our data define a differentiation hierarchy for the subsets and elucidate the epigenetic and transcriptional differences between effector and memory B cells. Importantly, an SLE molecular signature was already established in resting naive cells and was dominated by enrichment of accessible chromatin in motifs for AP-1 and EGR transcription factors. Together, these factors acted in synergy with T-BET to shape the epigenome of expanded SLE effector B cell subsets. Thus, our data define the molecular foundation of pathogenic B cell dysfunction in SLE.


Subject(s)
B-Lymphocyte Subsets/pathology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Lupus Erythematosus, Systemic/genetics , B-Lymphocyte Subsets/immunology , Chromatin Assembly and Disassembly/physiology , Early Growth Response Transcription Factors/genetics , Humans , Lupus Erythematosus, Systemic/immunology , Transcription Factor AP-1/genetics , Transcriptome/genetics
14.
Cell ; 166(4): 799-801, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27518559

ABSTRACT

Immune complex-mediated diseases, such as systemic lupus erythematosus, commonly affect the kidney and determine disease prognosis. Stamatiades et al. now propose a kidney-specific mechanism for trans-endothelial transport of small immune complexes that activate strategically positioned tissue resident macrophages.


Subject(s)
Kidney/immunology , Lupus Erythematosus, Systemic/immunology , Antigen-Antibody Complex , Humans , Macrophages/immunology
15.
Cell ; 165(3): 551-65, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27040498

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using mixed models accounting for repeated measurements, demographics, treatment, disease activity (DA), and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil transcripts during progression to active nephritis and distinct signatures in response to treatment in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered individual correlates of disease activity that enabled patient stratification into seven groups, supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and provides an explanation for the failure of clinical trials. This approach may improve trial design and implementation of tailored therapies in genetically and clinically complex autoimmune diseases. PAPERCLIP.


Subject(s)
Lupus Erythematosus, Systemic/genetics , Adolescent , Child , Female , Humans , Longitudinal Studies , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/therapy , Lupus Nephritis/genetics , Lupus Nephritis/immunology , Neutrophils/immunology , Polymorphism, Single Nucleotide , Precision Medicine , Transcriptome
16.
Cell ; 166(1): 88-101, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27293190

ABSTRACT

Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.


Subject(s)
Autoantibodies/immunology , Cell-Derived Microparticles/chemistry , Chromatin/immunology , DNA/immunology , Endodeoxyribonucleases/genetics , Lupus Erythematosus, Systemic/immunology , Animals , Cell-Derived Microparticles/metabolism , Disease Models, Animal , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/metabolism , Humans , Jurkat Cells , Lupus Erythematosus, Systemic/enzymology , Lupus Erythematosus, Systemic/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout
17.
Nat Immunol ; 19(6): 583-593, 2018 06.
Article in English | MEDLINE | ID: mdl-29713015

ABSTRACT

The incidence of atherosclerosis is higher among patients with systemic lupus erythematosus (SLE); however, the mechanism by which an atherogenic environment affects autoimmunity remains unclear. We found that reconstitution of atherosclerosis-prone Apoe-/- and Ldlr-/- mice with bone marrow from lupus-prone BXD2 mice resulted in increased autoantibody production and glomerulonephritis. This enhanced disease was associated with an increase in CXCR3+ follicular helper T cells (TFH cells). TFH cells isolated from Apoe-/- mice had higher expression of genes associated with inflammatory responses and SLE and were more potent in inducing production of the immunoglobulin IgG2c. Mechanistically, the atherogenic environment induced the cytokine IL-27 from dendritic cells in a Toll-like receptor 4 (TLR4)-dependent manner, which in turn triggered the differentiation of CXCR3+ TFH cells while inhibiting the differentiation of follicular regulatory T cells. Blockade of IL-27 signals diminished the increased TFH cell responses in atherogenic mice. Thus, atherogenic dyslipidemia augments autoimmune TFH cell responses and subsequent IgG2c production in a TLR4- and IL-27-dependent manner.


Subject(s)
Atherosclerosis/immunology , Dyslipidemias/immunology , Interleukins/immunology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Autoimmunity/immunology , Cell Differentiation/immunology , Dendritic Cells/immunology , Mice , Mice, Knockout , Toll-Like Receptor 4/immunology
18.
Nat Immunol ; 19(6): 571-582, 2018 06.
Article in English | MEDLINE | ID: mdl-29760532

ABSTRACT

The transcription factor AhR modulates immunity at multiple levels. Here we report that phagocytes exposed to apoptotic cells exhibited rapid activation of AhR, which drove production of the cytokine IL-10. Activation of AhR was dependent on interactions between apoptotic-cell DNA and the pattern-recognition receptor TLR9 that was required for the prevention of immune responses to DNA and histones in vivo. Moreover, disease progression in mouse systemic lupus erythematosus (SLE) correlated with strength of the AhR signal, and the disease course could be altered by modulation of AhR activity. Deletion of AhR in the myeloid lineage caused systemic autoimmunity in mice, and an enhanced AhR transcriptional signature correlated with disease in patients with SLE. Thus, AhR activity induced by apoptotic cell phagocytes maintains peripheral tolerance.


Subject(s)
Apoptosis/immunology , Immune Tolerance/immunology , Lupus Erythematosus, Systemic/immunology , Macrophages/immunology , Receptors, Aryl Hydrocarbon/immunology , Animals , Humans , Mice , Signal Transduction/immunology , Toll-Like Receptor 9/immunology
19.
Nat Immunol ; 19(4): 407-419, 2018 04.
Article in English | MEDLINE | ID: mdl-29483597

ABSTRACT

Age-associated B cells (ABCs) are a subset of B cells dependent on the transcription factor T-bet that accumulate prematurely in autoimmune settings. The pathways that regulate ABCs in autoimmunity are largely unknown. SWAP-70 and DEF6 (also known as IBP or SLAT) are the only two members of the SWEF family, a unique family of Rho GTPase-regulatory proteins that control both cytoskeletal dynamics and the activity of the transcription factor IRF4. Notably, DEF6 is a newly identified human risk variant for systemic lupus erythematosus. Here we found that the lupus syndrome that developed in SWEF-deficient mice was accompanied by the accumulation of ABCs that produced autoantibodies after stimulation. ABCs from SWEF-deficient mice exhibited a distinctive transcriptome and a unique chromatin landscape characterized by enrichment for motifs bound by transcription factors of the IRF and AP-1 families and the transcription factor T-bet. Enhanced ABC formation in SWEF-deficient mice was controlled by the cytokine IL-21 and IRF5, whose variants are strongly associated with lupus. The lack of SWEF proteins led to dysregulated activity of IRF5 in response to stimulation with IL-21. These studies thus elucidate a previously unknown signaling pathway that controls ABCs in autoimmunity.


Subject(s)
Autoimmunity/immunology , B-Lymphocyte Subsets/immunology , Interferon Regulatory Factors/immunology , Lupus Erythematosus, Systemic/immunology , Animals , B-Lymphocyte Subsets/pathology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/immunology , Female , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/immunology , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/immunology , Nuclear Proteins/deficiency , Nuclear Proteins/immunology
20.
Nat Immunol ; 19(1): 63-75, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29203862

ABSTRACT

Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Gene Expression/immunology , Immunity, Innate/immunology , Adaptive Immunity/immunology , B7-1 Antigen/immunology , B7-1 Antigen/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/ultrastructure , Gene Expression Profiling/methods , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/immunology , Microscopy, Electron, Transmission , Orthomyxoviridae/immunology , Psoriasis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL