Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.238
Filter
Add more filters

Publication year range
1.
Nat Chem Biol ; 20(2): 201-210, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012344

ABSTRACT

Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.


Subject(s)
Bacteria , Metabolic Engineering , Workflow , Lycopene , Biopolymers
2.
Plant J ; 115(4): 986-1003, 2023 08.
Article in English | MEDLINE | ID: mdl-37158657

ABSTRACT

The accumulation of carotenoids, such as xanthophylls, lycopene, and carotenes, is responsible for the color of carrot (Daucus carota subsp. sativus) fleshy roots. The potential role of DcLCYE, encoding a lycopene ε-cyclase associated with carrot root color, was investigated using cultivars with orange and red roots. The expression of DcLCYE in red carrot varieties was significantly lower than that in orange carrots at the mature stage. Furthermore, red carrots accumulated larger amounts of lycopene and lower levels of α-carotene. Sequence comparison and prokaryotic expression analysis revealed that amino acid differences in red carrots did not affect the cyclization function of DcLCYE. Analysis of the catalytic activity of DcLCYE revealed that it mainly formed ε-carotene, while a side activity on α-carotene and γ-carotene was also observed. Comparative analysis of the promoter region sequences indicated that differences in the promoter region may affect the transcription of DcLCYE. DcLCYE was overexpressed in the red carrot 'Benhongjinshi' under the control of the CaMV35S promoter. Lycopene in transgenic carrot roots was cyclized, resulting in the accumulation of higher levels of α-carotene and xanthophylls, while the ß-carotene content was significantly decreased. The expression levels of other genes in the carotenoid pathway were simultaneously upregulated. Knockout of DcLCYE in the orange carrot 'Kurodagosun' by CRISPR/Cas9 technology resulted in a decrease in the α-carotene and xanthophyll contents. The relative expression levels of DcPSY1, DcPSY2, and DcCHXE were sharply increased in DcLCYE knockout mutants. The results of this study provide insights into the function of DcLCYE in carrots, which could serve as a basis for creating colorful carrot germplasms.


Subject(s)
Daucus carota , beta Carotene , beta Carotene/metabolism , Daucus carota/genetics , Lycopene/metabolism , Carotenoids/metabolism , Xanthophylls/metabolism
3.
BMC Plant Biol ; 24(1): 128, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383291

ABSTRACT

Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes. The experiment was completely randomized in design with three replicates each. This study revealed that increased salinity significantly reduced the shoot length, root length, and leaf number across all varieties, with maximum adverse effects observed at a 300mM NaCl concentration. Among the tested varieties, ICS-BR-1351 demonstrated superior performance in most growth parameters, suggesting potential salt tolerance. Biochemically, salinity decreased chlorophyll content across all varieties, with the sharpest decline observed at the highest salt concentration. V4 (HBR-334-D) showed a 57% decrease in chlorophyll followed by V3 (HBR-314-E) at 56%, V2 (HBR-313-D) at 54%, and V1 (ICS-BR-1351) at 33% decrease at maximum salt levels as compared to control. Conversely, carotenoid content increased up to -42.11% in V3 followed by V2 at -81.48%, V4 at -94.11%, and - 233% in V1 at 300mM NaCl stress as compared to respective controls. V3 (HBR-314-E) has the maximum value for carotenoids while V1 has the lowest value for carotenoids as compared to the other three brinjal varieties. In addition to pigments, the study indicated a salinity-induced decrease in total proteins and total soluble sugar, whereas total amino acids and flavonoids increased. Total proteins showed a decrease in V2 (49.46%) followed by V3 (36.44%), V4 (53.42%), and V1 (53.79%) at maximum salt concentration as compared to plants treated with tap water only. Whereas, total soluble sugars showed a decrease of 52.07% in V3, 41.53% in V2, 19.49% in V1, and 18.99% in V4 at the highest salt level. While discussing total amino acid, plants showed a -9.64% increase in V1 as compared to V4 (-31.10%), V2 (-36.62%), and V3 (-22.61%) with high salt levels in comparison with controls. Plant flavonoid content increased in V3 (-15.61%), V2 (-19.03%), V4 (-18.27%) and V1 (-27.85%) at 300mM salt concentration. Notably, salinity elevated the content of anthocyanin, lycopene, malondialdehyde (MDA), and hydrogen peroxide (H2O2) across all varieties. Antioxidant enzymes like peroxidase, catalase, and superoxide dismutase also increased under salt stress, suggesting an adaptive response to combat oxidative damage. However, V3 (HBR-314-E) has shown an increase in anthocyanin at -80.00%, lycopene at -24.81%, MDA at -168.04%, hydrogen peroxide at -24.22%, POD at -10.71%, CAT as-36.63 and SOD as -99.14% at 300mM NaCl stress as compared to control and other varieties. The enhanced accumulation of antioxidants and other protective compounds suggests an adaptive mechanism in brinjal to combat salt-induced oxidative stress. The salt tolerance of different brinjal varieties was assessed by principal component analysis (PCA), and the order of salt tolerance was V1 (ICS-BR-1351) > V4 (HBR-334-D), > V2 (HBR-313-D) > V3 (HBR-314-E). Among the varieties studied, ICS-BR-1351 demonstrated resilience against saline conditions, potentially offering a promising candidate for saline-prone agricultural areas.


Subject(s)
Antioxidants , Solanum melongena , Anthocyanins , Antioxidants/metabolism , Carotenoids , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Lycopene , Salinity , Salt Tolerance , Sodium Chloride/adverse effects , Solanum melongena/metabolism
4.
Planta ; 260(4): 80, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192071

ABSTRACT

MAIN CONCLUSION: Mutation at A126 in lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards ß-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A126 in stigma-specific lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards ß-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of ß-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced ß-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA4/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.


Subject(s)
Biomass , Carotenoids , Crocus , Mutation , Stress, Physiological , Crocus/genetics , Crocus/physiology , Crocus/enzymology , Carotenoids/metabolism , Stress, Physiological/genetics , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , Plants, Genetically Modified , beta Carotene/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Cyclohexenes/metabolism , Terpenes/metabolism , Lycopene/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cyclohexane Monoterpenes , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Gene Expression Regulation, Plant , Glucosides
5.
Metab Eng ; 81: 249-261, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159902

ABSTRACT

Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis. Genome insertion of regulators was conducted for the purpose of gene cluster stabilization and regulatory plasmid simplification. Additionally, dynamic ranges of the multiple inducible systems were tuned by promoter sequence mutations to achieve diverse scopes for high-resolution gene expression control. The multiple inducible system was successfully employed to precisely control chromoprotein expression, lycopene and poly-3-hydroxybutyrate (PHB) biosynthesis, resulting in colorful bacterial pictures, optimized cell growth, lycopene and PHB accumulation. This study demonstrates a desirable approach for fine-tuning of rational and efficient gene expressions, displaying the significance for metabolic pathway optimization.


Subject(s)
Halomonas , Polyesters , Polyesters/metabolism , Halomonas/genetics , Halomonas/metabolism , Lycopene/metabolism , Biotechnology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metabolic Engineering/methods
6.
Plant Physiol ; 192(3): 2067-2080, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36891812

ABSTRACT

ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in ß-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-ß-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling ß-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.


Subject(s)
Solanum lycopersicum , beta Carotene , beta Carotene/metabolism , Lycopene/metabolism , Solanum lycopersicum/genetics , Ascorbic Acid/metabolism , Galactose/metabolism , Ethylenes/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Photosynth Res ; 159(2-3): 291-301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315423

ABSTRACT

Measurement of photosensitized luminescence of singlet oxygen has been applied to studies of singlet oxygen generation and quenching by C40 carotenoids (neurosporene, lycopene, rhodopin, and spirilloxanthin) with long chain of conjugated double bonds (CDB) using hexafluorobenzene as a solvent. It has been found that neurosporene, lycopene, and rhodopin are capable of the low efficient singlet oxygen generation in aerated solutions upon photoexcitation in the spectral region of their main absorption maxima. The quantum yield of this process was estimated to be (1.5-3.0) × 10-2. This value is near the singlet oxygen yields in solutions of ζ-carotene (7 CDB) and phytoene (3 CDB) and many-fold smaller than in solutions of phytofluene (5 CDB) (Ashikhmin et al. Biochemistry (Mosc) 85:773-780, https://doi.org/10.1134/S0006297920070056 , 2020, Biochemistry (Mosc) 87:1169-1178, 2022, https://doi.org/10.1134/S00062979221001082022 ). Photogeneration of singlet oxygen was not observed in spirilloxanthin solutions. A correlation was found between the singlet oxygen yields and the quantum yields and lifetimes of the fluorescence of the carotenoid molecules. All carotenoids were shown to be strong physical quenchers of singlet oxygen. The rate constants of 1O2 quenching by the carotenoids with long chain of CDB (9-13) were close to the rate constant of the diffusion-limited reactions ≈1010 M-1 s-1, being many-fold greater than the rate constants of 1O2 quenching by the carotenoids with the short chain of CDB (3-7) phytoene, phytofluene, and ζ-carotene studied in prior papers of our group (Ashikhmin et al. 2020, 2022). To our knowledge, the quenching rate constants of rhodopin and spirilloxanthin have been obtained in this paper for the first time. The mechanisms of 1O2 photogeneration by carotenoids in solution and in the LH2 complexes of photosynthetic cells, as well as the efficiencies of their protective action are discussed.


Subject(s)
Singlet Oxygen , zeta Carotene , Lycopene , Carotenoids/chemistry , Oxygen , Bacteria , Xanthophylls
8.
J Nutr ; 154(7): 1985-1993, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797482

ABSTRACT

BACKGROUND: Carotenoids are fat-soluble phytochemicals with biological roles, including ultraviolet protective functions in skin. Spectroscopic skin carotenoid measurements can also serve as a noninvasive biomarker for carotenoid consumption. Single-nucleotide polymorphisms (SNPs) in metabolic genes are associated with human plasma carotenoid concentrations; however, their relationships with skin carotenoid concentrations are unknown. OBJECTIVES: The objective of this study was to determine the relationship between 13 candidate SNPs with skin and plasma carotenoid concentrations before and after a carotenoid-rich tomato juice intervention. METHODS: In this randomized, controlled trial, participants (n = 80) were provided with lycopene-rich vegetable juice providing low (13.1 mg), medium (23.9 mg), and high (31.0 mg) daily total carotenoid doses for 8 wk. Plasma carotenoid concentrations were measured by high-pressure liquid chromatography, and skin carotenoid score was assessed by reflection spectroscopy (Veggie Meter) at baseline and the end-of-study time point. Thirteen candidate SNPs in 5 genes (BCO1, CD36, SCARB1, SETD7, and ABCA1) were genotyped from blood using PCR-based assays. Mixed models tested the effects of the intervention, study time point, interaction between intervention and study time point, and SNP genotype on skin and plasma carotenoids throughout the study. Baseline carotenoid intake, body mass index, gender, and age are covariates in all models. RESULTS: The genotype of CD36 rs1527479 (P = 0.0490) was significantly associated with skin carotenoid concentrations when baseline and the final week of the intervention were evaluated. Genotypes for BCO1 rs7500996 (P = 0.0067) and CD36 rs1527479 (P = 0.0018) were significant predictors of skin carotenoid concentrations in a combined SNP model. CONCLUSIONS: These novel associations between SNPs and skin carotenoid concentrations expand on the understanding of how genetic variation affects interindividual variation in skin carotenoid phenotypes in humans. This trial was registered at clinicaltrials.gov as NCT03202043.


Subject(s)
Carotenoids , Fruit and Vegetable Juices , Genotype , Lycopene , Polymorphism, Single Nucleotide , Skin , Humans , Carotenoids/blood , Carotenoids/metabolism , Male , Female , Skin/metabolism , Skin/chemistry , Adult , Middle Aged , Fruit and Vegetable Juices/analysis , Solanum lycopersicum/genetics , Solanum lycopersicum/chemistry , Young Adult , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , CD36 Antigens/genetics , CD36 Antigens/metabolism , beta-Carotene 15,15'-Monooxygenase
9.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727833

ABSTRACT

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Subject(s)
Chromosome Mapping , Citrullus , Fruit , Phenotype , Pigmentation , Plant Proteins , Citrullus/genetics , Citrullus/metabolism , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Genes, Plant , Carotenoids/metabolism , Genes, Recessive , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics , Lycopene/metabolism
10.
Arch Microbiol ; 206(6): 249, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713385

ABSTRACT

Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 µmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 µmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1ß and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 µmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lycopene , Macrophages , Signal Transduction , Animals , Cattle , Female , Mice , Cell Line , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Lycopene/pharmacology , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Mastitis, Bovine/microbiology , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
11.
Nutr Cancer ; 76(10): 974-984, 2024.
Article in English | MEDLINE | ID: mdl-39033400

ABSTRACT

This study aimed to explore the association between dietary intake of tomatoes and lycopene with all-cause and cancer mortality among US adults with diabetes. We hypothesized that a higher intake of tomato and lycopene is related to a reduced risk of all-cause and cancer mortality among adults with diabetes. This prospective study was conducted among 9213 US adults with diabetes using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016. Data on dietary intake of tomatoes and lycopene were obtained from two 24-h dietary recalls. Multivariate Cox proportional hazard models determined the associations between tomato/lycopene intake and mortality. A higher intake of tomatoes and lycopene was significantly associated with a lower risk of all-cause mortality (tomato: Q5 vs. Q1: HR = 0.68, 95% CI = 0.54-0.86, p = 0.001, p for trend = 0.001; lycopene: Q5 vs. Q1: HR = 0.78, 95% CI = 0.64-0.95, p = 0.013, p for trend = 0.006) after adjusting for all covariates. Compared with the lowest quintile of tomato and lycopene intake, the highest quintile was associated with a lower risk of cancer mortality (tomato: HR = 0.58, 95% CI = 0.35-0.96, p = 0.035; lycopene: HR = 0.63, 95% CI = 0.40-0.98, p = 0.043). Our study demonstrated that dietary intake of tomatoes and lycopene was significantly associated with a lower risk of all-cause mortality in US adults with diabetes. High consumption of tomatoes and lycopene was also related to reduced cancer mortality in US adults with diabetes.


Subject(s)
Diabetes Mellitus , Diet , Lycopene , Neoplasms , Nutrition Surveys , Solanum lycopersicum , Humans , Lycopene/administration & dosage , Lycopene/pharmacology , Male , Female , Neoplasms/mortality , Middle Aged , United States/epidemiology , Diabetes Mellitus/mortality , Adult , Prospective Studies , Diet/methods , Aged , Proportional Hazards Models , Cohort Studies
12.
Br J Nutr ; 132(1): 50-66, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-38639131

ABSTRACT

Carotenoids are generally associated with health-beneficial effects; however, their intake patterns related to the metabolic syndrome (MetS) and its components remain controversial. This cross-sectional study investigated associations between dietary intakes of individual carotenoids, fruits and vegetables, and the MetS and its components. Dietary intakes of 1346 participants of the Observation des Risques et de la Santé Cardio-Vasculaire au Luxembourg (ORISCAV-LUX-2) study were investigated by a 174-item FFQ, and carotenoid intake was determined by linking findings using mainly the USDA food databases. Components of MetS and complementary variables, including anthropometric (BMI, waist circumferences and waist:hip ratio) and biological parameters (TAG, HDL-cholesterol, fasting blood glucose and blood pressure), were measured. Logistic (for MetS) and linear multivariable regression models (including assessing MetS as scores) adjusted for various confounders were created. α-and ß-Carotene, as well as lutein + zeaxanthin, were inversely associated with MetS (also when it was measured on a continuous scale), reducing the odds for MetS by up to 48 %. However, lycopene, phytoene and phytofluene were rather positively associated with MetS scores and its components, though these adverse effects disappeared, at least for lycopene, when controlling for intakes of tomato-based convenience foods, in line with indicating a rather unhealthy/westernised diet. All these associations remained significant when including fruits and vegetables as confounders, suggesting that carotenoids were related to MetS independently from effects within fruits and vegetables. Thus, a high intake of carotenoids was bidirectionally associated with MetS, its severity, risk and its components, depending on the type of carotenoid. Future investigations are warranted to explore the inverse role that tomato-based carotenoids appear to suggest in relation to the MetS.


Subject(s)
Carotenoids , Diet , Fruit , Lutein , Lycopene , Metabolic Syndrome , Vegetables , Zeaxanthins , Humans , Carotenoids/administration & dosage , Male , Female , Cross-Sectional Studies , Middle Aged , Lycopene/administration & dosage , Lutein/administration & dosage , Lutein/blood , Zeaxanthins/administration & dosage , Zeaxanthins/blood , Luxembourg , beta Carotene/administration & dosage , Aged , Adult , Risk Factors , Waist Circumference , Body Mass Index
13.
BMC Gastroenterol ; 24(1): 51, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287248

ABSTRACT

BACKGROUND: Gastric cancer is characterized by high invasiveness, heterogeneity, and late diagnosis, leading to high incidence and mortality rates. It is a significant public health concern globally. Early prevention is crucial in reducing the occurrence of gastric cancer, and dietary prevention, particularly focusing on carotenoids, has been considered a convenient and effective approach. However, the association between carotenoid intake and gastric cancer incidence remains controversial. METHODS: A systematic search was conducted in PubMed, Ovid Embase, Web of Science, and Cochrane databases from inception to January 5, 2023. Two reviewers independently screened search results, extracted relevant data, and evaluated study quality. Statistical analysis was performed using the "metan" command in STATA 16 software. Random-effects or fixed-effects models were chosen based on the magnitude of heterogeneity among studies. RESULTS: This study included a total of 35 publications, consisting of 23 case-control studies and 12 cohort studies. Meta-analysis of case-control studies showed that alpha-carotene (OR = 0.71, 95% CI: 0.55-0.92), beta-carotene (OR = 0.62, 95% CI: 0.53-0.72), and lutein (OR = 0.82, 95% CI: 0.69-0.97) significantly reduced the risk of gastric cancer, while beta-cryptoxanthin (OR = 0.88, 95% CI: 0.75-1.04) and lycopene (OR = 0.86, 95% CI: 0.73-1.00) showed no significant correlation. Meta-analysis of cohort studies indicated no significant associations between any of the five carotenoids and gastric cancer incidence (alpha-carotene: RR = 0.81, 95% CI: 0.54-1.23; beta-carotene: RR = 0.86, 95% CI: 0.64-1.16; beta-cryptoxanthin: RR = 0.86, 95% CI: 0.64-1.16; lutein: RR = 0.94, 95% CI: 0.69-1.29; lycopene: RR = 0.89, 95% CI: 0.69-1.14). CONCLUSIONS: The relationship between carotenoids and gastric cancer incidence may vary depending on the type of study conducted. Considering that evidence from cohort studies is generally considered stronger than evidence from case-control studies, and high-quality randomized controlled trials show no significant association between carotenoids and gastric cancer incidence, current evidence does not support the supplementation of carotenoids for gastric cancer prevention. Further targeted research is needed to explore the association between the two.


Subject(s)
Stomach Neoplasms , beta Carotene , Humans , beta Carotene/therapeutic use , Lycopene , Lutein/therapeutic use , Stomach Neoplasms/epidemiology , Stomach Neoplasms/prevention & control , Beta-Cryptoxanthin , Risk Factors , Carotenoids/therapeutic use
14.
J Oral Pathol Med ; 53(1): 31-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38155549

ABSTRACT

INTRODUCTION: Oral submucous fibrosis (OSMF) is a well-known precancerous oral lesion, characterized by scarring, tissue fibrosis, and premalignant lesions. The goal of clinical treatment is to reduce inflammation and improve patients' quality of life by enhancing mouth opening among others. Antioxidant treatment has shown promising results in inducing regression of lesions and preventing OSMF in high-risk individuals. This study investigates the effectiveness of various antioxidant agents against OSMF. MATERIALS AND METHODS: The study followed PRISMA guidelines and searched three scientific databases: PubMed, Web of Science, and Scopus, using specific algorithms related to "antioxidant treatment," "burning sensation," and "mouth opening." The quality assessment of controlled clinical studies adhered to Cochrane guidelines. RESULTS: The analysis included 19 clinical trials comparing different treatments, including various antioxidants. Aloe vera, curcumin, and lycopene, among others, showed positive outcomes in treating OSMF by improving burning sensation, mouth opening, tongue protrusion, and cheek flexibility. CONCLUSION: Antioxidant therapies are found to be effective in treating OSMF, even when compared to conventional treatments such as corticosteroids. The study highlights the need for further research and standardization of clinical protocols.


Subject(s)
Antioxidants , Oral Submucous Fibrosis , Humans , Antioxidants/therapeutic use , Oral Submucous Fibrosis/drug therapy , Quality of Life , Lycopene/therapeutic use , Adrenal Cortex Hormones/therapeutic use
15.
J Biochem Mol Toxicol ; 38(3): e23678, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444079

ABSTRACT

This study aims to investigate the effects of lycopene on apoptotic, autophagic, and necrotic pathways, oxidative status, and DNA damage in diabetic nephropathy at the molecular level. The sample of the study includes seven groups: lycopene (L), high glucose (G), high glucose + lycopene (GL), and control (C) groups tested at 12 and 24 h. The expression levels of genes in oxidative, apoptotic, autophagic, and necrotic cell death pathways are determined by reverse transcription-quantitative polymerase chain reaction analysis. The comet assay method is used for the analysis of DNA damage. It is observed that adding lycopene to high glucose for protective purposes reduces the expression of genes related to apoptosis, autophagy, and necrosis, as well as the DNA damage index, compared to cells given high glucose alone. Lycopene can be a safe and effective alternative agent.


Subject(s)
Autophagy , DNA Damage , Humans , Lycopene/pharmacology , Cell Death , Necrosis , Glucose/pharmacology
16.
J Epidemiol ; 34(3): 144-153, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-37150608

ABSTRACT

BACKGROUND: Many epidemiological studies have investigated dietary intake of antioxidant vitamins in relation to prostate cancer risk in Western countries, but the results are inconsistent. However, few studies have reported this relationship in Asian countries. METHODS: We investigated the association between intake of vitamins, including lycopene, α-carotene, ß-carotene, vitamin C, vitamin E, with prostate cancer risk in the Japan Public Health Center-based Prospective (JPHC) study. 40,720 men without history of cancer finished the food frequency questionnaire (FFQ) and were included in the study. Hazard ratios (HRs) and 95% confidence intervals (CIs) of prostate cancer risk were calculated according to the quintiles of energy-adjusted intake of vitamins using Cox models. RESULTS: After an average of 15.2 years (617,599 person-years in total) of follow-up, 1,386 cases of prostate cancer were identified, including 944 localized cases and 340 advanced cases. No associations were observed in consumption of antioxidant vitamins, including α-carotene, ß-carotene, vitamin C, and vitamin E, and prostate cancer risk. Although higher lycopene intake was associated with increased risk of prostate cancer (highest vs lowest quintile, HR 1.24; 95% CI, 1.04-1.47; P for trend = 0.01), there was a null association of lycopene intake with risk of prostate cancer detected by subjective symptoms (HR 1.12; 95% CI, 0.79-1.58; P for trend = 0.11). CONCLUSION: Our study suggested no association between antioxidant intake of vitamins and prostate cancer risk.


Subject(s)
Antioxidants , Carotenoids , Prostatic Neoplasms , Male , Humans , Vitamins , Prospective Studies , Japan/epidemiology , beta Carotene , Lycopene , Public Health , Cohort Studies , Risk Factors , Vitamin A , Ascorbic Acid , Vitamin E , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/etiology , Vitamin K
17.
Nutr Metab Cardiovasc Dis ; 34(10): 2315-2324, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39003130

ABSTRACT

BACKGROUND AND AIMS: The associations between serum carotenoids and mortality are contradictory in various metabolic-associated diseases. This study aimed to examine the associations of five major serum carotenoids with mortality among adults with metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS AND RESULTS: This analysis included 3040 individuals with MAFLD from the Third National Health and Nutrition Examination Survey (NHANES III). All-cause and cardiovascular mortality were ascertained by linkage to the National Death Index through December 31, 2019. Cox proportional hazards regression models were employed to estimate hazard ratios (HRs) and 95% confidence intervals (CIs), and restricted cubic spline (RCS) analyses were performed to assess the linearity of the associations. During a follow-up period of 826,547 person-years, 1325 all-cause and 429 cardiovascular deaths occurred. For all-cause mortality, compared with those in the lowest quartiles, the multivariable-adjusted HRs (95% CIs) in the highest quartiles were 0.63 (0.49-0.81) for α-carotene; 0.65 (0.52-0.80) for ß-carotene; 0.64 (0.51-0.81) for ß-cryptoxanthin; 0.73 (0.56-0.95) for lycopene; and 0.69 (0.52-0.91) for lutein/zeaxanthin. For cardiovascular mortality, the multivariable-adjusted HRs (95% CIs) in the highest quartiles were 0.51 (0.33-0.78) for α-carotene; 0.54 (0.35-0.82) for ß-carotene; 0.52 (0.34-0.80) for ß-cryptoxanthin; 0.63 (0.44-0.90) for lycopene; and 0.62 (0.39-0.99) for lutein/zeaxanthin. Besides, serum α-carotene, ß-cryptoxanthin, and lycopene exhibited linear correlations with all-cause mortality in MAFLD adults, and four serum carotenoids, except ß-carotene, were linearly correlated with cardiovascular mortality. CONCLUSIONS: Lower serum α-carotene, ß-carotene, ß-cryptoxanthin, lycopene, and lutein/zeaxanthin concentrations were associated with higher risk of all-cause and cardiovascular mortality in US adults with MAFLD.


Subject(s)
Biomarkers , Cardiovascular Diseases , Carotenoids , Cause of Death , Nutrition Surveys , Humans , Male , Female , Middle Aged , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Carotenoids/blood , Adult , Biomarkers/blood , Risk Assessment , United States/epidemiology , Time Factors , Lycopene/blood , Lutein/blood , beta Carotene/blood , Beta-Cryptoxanthin/blood , Zeaxanthins/blood , Aged , Prognosis , Risk Factors , Cross-Sectional Studies
18.
Appl Microbiol Biotechnol ; 108(1): 197, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324086

ABSTRACT

Komagataella phaffii, a nonconventional yeast, is increasingly attractive to researchers owing to its posttranslational modification ability, strict methanol regulatory mechanism, and lack of Crabtree effect. Although CRISPR-based gene editing systems have been established in K. phaffii, there are still some inadequacies compared to the model organism Saccharomyces cerevisiae. In this study, a redesigned gRNA plasmid carrying red and green fluorescent proteins facilitated plasmid construction and marker recycling, respectively, making marker recycling more convenient and reliable. Subsequently, based on the knockdown of Ku70 and DNA ligase IV, we experimented with integrating multiple DNA fragments at a single locus. A 26.5-kb-long DNA fragment divided into 11 expression cassettes for lycopene synthesis could be successfully integrated into a single locus at one time with a success rate of 57%. A 27-kb-long DNA fragment could also be precisely knocked out with a 50% positive rate in K. phaffii by introducing two DSBs simultaneously. Finally, to explore the feasibility of rapidly balancing the expression intensity of multiple genes in a metabolic pathway, a yeast combinatorial library was successfully constructed in K. phaffii using lycopene as an indicator, and an optimal combination of the metabolic pathway was identified by screening, with a yield titer of up to 182.73 mg/L in shake flask fermentation. KEY POINTS: • Rapid marker recycling based on the visualization of a green fluorescent protein • One-step multifragment integration and large fragment knockout in the genome • A random assembly of multiple DNA elements to create yeast libraries in K. phaffii.


Subject(s)
CRISPR-Cas Systems , Saccharomycetales , DNA , Green Fluorescent Proteins , Lycopene , RNA, Guide, CRISPR-Cas Systems
19.
Article in English | MEDLINE | ID: mdl-38621758

ABSTRACT

Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux toward the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7 mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae. ONE-SENTENCE SUMMARY: In this research, lycopene production in yeast was markedly enhanced by integrating a multi-modular approach, acetate signaling-based down-regulation of competitive pathways, and an efflux optimization strategy.


Subject(s)
Acetyl Coenzyme A , Carotenoids , Lycopene , Metabolic Engineering , Saccharomyces cerevisiae , Lycopene/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Acetyl Coenzyme A/metabolism , Mevalonic Acid/metabolism , Biosynthetic Pathways , Promoter Regions, Genetic , NADP/metabolism , Metabolic Networks and Pathways/genetics , Acetates/metabolism
20.
An Acad Bras Cienc ; 96(3): e20230347, 2024.
Article in English | MEDLINE | ID: mdl-39046019

ABSTRACT

Oxidative stress is involved in the pathogenesis of malaria, causing anemia, respiratory complications, and cerebral malaria. To mitigate oxidative stress, we investigated the effect of nutritional supplementation whit lycopene (LYC) on the evolution of parasitemia and survival rate in mice infected with Plasmodium berghei ANKA (Pb), comparing to the effects promoted by N-acetylcysteine (NAC). Therefore, 175 mice were randomly distributed into 4 groups; Sham: untreated and uninfected animals; Pb: animals infected with Pb; LYC+Pb: animals treated with LYC and infected with Pb; NAC+Pb: animals treated with NAC and infected with Pb. The animals were followed for 12 days after infection, and survival and parasitemia rates were evaluated. There was a 40.1% increase in parasitemia in the animals of the Pb group on the 12th day, and a survival rate of 45%. LYC supplementation slowed the development of parasitemia to 19% and promoted a significative increase in the survival rate of 80% on the 12th day after infection, compared to the Pb group, effects superior to those promoted by NAC, providing strong evidence of the beneficial effect of LYC on in vivo malaria and stressing the importance of antioxidant supplementation in the treatment of this disease.


Subject(s)
Acetylcysteine , Antioxidants , Dietary Supplements , Lycopene , Malaria , Parasitemia , Plasmodium berghei , Animals , Lycopene/therapeutic use , Lycopene/administration & dosage , Lycopene/pharmacology , Parasitemia/drug therapy , Mice , Malaria/drug therapy , Acetylcysteine/administration & dosage , Acetylcysteine/therapeutic use , Acetylcysteine/pharmacology , Plasmodium berghei/drug effects , Antioxidants/therapeutic use , Antioxidants/administration & dosage , Oxidative Stress/drug effects , Carotenoids/therapeutic use , Carotenoids/administration & dosage , Male , Disease Models, Animal , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL