Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.776
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 31: 345-85, 2013.
Article in English | MEDLINE | ID: mdl-23516983

ABSTRACT

Autoimmune diseases currently affect 5-7% of the world's population; in most diseases there are circulating autoantibodies. Brain-reactive antibodies are present in approximately 2-3% of the general population but do not usually contribute to brain pathology. These antibodies penetrate brain tissue only early in development or under pathologic conditions. This restriction on their pathogenicity and the lack of correlation between serum titers and brain pathology have, no doubt, contributed to a delayed appreciation of the contribution of autoantibodies in diseases of the central nervous system. Nonetheless, it is increasingly clear that antibodies can cause damage in the brain and likely initiate or aggravate multiple neurologic conditions; brain-reactive antibodies contribute to symptomatology in autoimmune disease, infectious disease, and malignancy.


Subject(s)
Autoantibodies/metabolism , Brain/immunology , Brain/pathology , Hypoxia-Ischemia, Brain/immunology , Hypoxia-Ischemia, Brain/pathology , Animals , Antigen-Antibody Reactions/immunology , Brain/metabolism , Cells, Cultured , Disease Models, Animal , Humans , Hypoxia-Ischemia, Brain/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology
2.
Cell ; 179(4): 829-845.e20, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31675496

ABSTRACT

The immune microenvironment of hepatocellular carcinoma (HCC) is poorly characterized. Combining two single-cell RNA sequencing technologies, we produced transcriptomes of CD45+ immune cells for HCC patients from five immune-relevant sites: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites. A cluster of LAMP3+ dendritic cells (DCs) appeared to be the mature form of conventional DCs and possessed the potential to migrate from tumors to LNs. LAMP3+ DCs also expressed diverse immune-relevant ligands and exhibited potential to regulate multiple subtypes of lymphocytes. Of the macrophages in tumors that exhibited distinct transcriptional states, tumor-associated macrophages (TAMs) were associated with poor prognosis, and we established the inflammatory role of SLC40A1 and GPNMB in these cells. Further, myeloid and lymphoid cells in ascites were predominantly linked to tumor and blood origins, respectively. The dynamic properties of diverse CD45+ cell types revealed by this study add new dimensions to the immune landscape of HCC.


Subject(s)
Carcinoma, Hepatocellular/immunology , Cation Transport Proteins/genetics , Inflammation/immunology , Liver Neoplasms/immunology , Membrane Glycoproteins/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Communication/genetics , Cell Communication/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Inflammation/genetics , Inflammation/pathology , Leukocyte Common Antigens/immunology , Liver/immunology , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocytes/immunology , Lymphocytes/pathology , Lysosomal Membrane Proteins/genetics , Macrophages/immunology , Macrophages/pathology , Myeloid Cells/immunology , Myeloid Cells/pathology , Neoplasm Proteins/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
3.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36044899

ABSTRACT

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Subject(s)
Mite Infestations , Mites , Animals , Cytokines , Hair Follicle/pathology , Humans , Immunity, Innate , Inflammation , Interleukin-13 , Lymphocytes/pathology , Mice , Mite Infestations/complications , Mite Infestations/parasitology , Mite Infestations/pathology , Symbiosis
4.
Nature ; 608(7924): 724-732, 2022 08.
Article in English | MEDLINE | ID: mdl-35948631

ABSTRACT

The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.


Subject(s)
Lymphocytes , Mutation , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Differentiation , Cell Proliferation , Cellular Microenvironment , DNA Damage/genetics , DNA Damage/radiation effects , Germinal Center/cytology , Germinal Center/immunology , Humans , Immunologic Memory/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Neoplasms/genetics , Neoplasms/pathology
5.
Immunity ; 49(1): 19-32, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30021143

ABSTRACT

Cell-culture studies are our main source of knowledge of the various forms of programmed cell death. Yet genetic perturbations of death-protein function in animal models are almost the only source of our knowledge of the physiological roles of these programs. Shortcomings in the state of knowledge acquired by these two experimental approaches are exemplified in this Perspective by reference to research on the contribution of apoptosis to lymphocyte development, a subject on which there is already much knowledge, and on the role of necroptosis in inflammation, about which information is just beginning to emerge. To address these shortcomings, there is need to find ways to verify the notions obtained through the current experimental approaches by directly monitoring death programs within specific cells in vivo.


Subject(s)
Apoptosis/immunology , Cell Death , Inflammation/pathology , Lymphocytes/pathology , Signal Transduction/immunology , Animals , Humans , Inflammation/immunology , Lymphocytes/immunology , Models, Biological , Necrosis/immunology
6.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343433

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Subject(s)
Colitis/metabolism , Lymphocytes/metabolism , Lymphoid Tissue/metabolism , Oxysterols/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Movement/genetics , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/pathology , Cytokines/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Ligands , Lymphocytes/pathology , Lymphoid Tissue/pathology , Mice , Real-Time Polymerase Chain Reaction , Signal Transduction
7.
Nature ; 592(7852): 128-132, 2021 04.
Article in English | MEDLINE | ID: mdl-33536623

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphocytes/pathology , Psoriasis/immunology , Psoriasis/pathology , Skin/immunology , Skin/pathology , Animals , Cell Differentiation , Cell Lineage , Chromatin/genetics , Disease Models, Animal , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-23/immunology , Latent Class Analysis , Lymphocytes/classification , Male , Mice , Psoriasis/genetics , RNA, Small Cytoplasmic/genetics , Reproducibility of Results , Time Factors
8.
Nature ; 597(7878): 709-714, 2021 09.
Article in English | MEDLINE | ID: mdl-34497421

ABSTRACT

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Subject(s)
Astrocytes/pathology , Lymphocytes/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Animals , Brain/pathology , Complement C1q/antagonists & inhibitors , Complement C1q/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Inflammation/pathology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Sclerosis/diagnostic imaging , RNA-Seq , Transcriptome , White Matter/pathology
9.
PLoS Pathog ; 20(3): e1012071, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457461

ABSTRACT

BACKGROUND: Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS: Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS: ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY: Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.


Subject(s)
Asthma , Filariasis , Filarioidea , Pulmonary Eosinophilia , Humans , Animals , Mice , Microfilariae , Immunity, Innate , Filariasis/parasitology , Interleukin-33 , Lymphocytes/pathology , Filarioidea/physiology , Eosinophils , Mice, Inbred BALB C
10.
Blood ; 143(12): 1091-1100, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37992212

ABSTRACT

ABSTRACT: There are 2 mandatory features added sequentially en route to classical follicular lymphoma (FL): first, the t(14;18) translocation, which upregulates BCL2, and second, the introduction of sequence motifs into the antigen-binding sites of the B-cell receptor (BCR), to which oligomannose-type glycan is added. Further processing of the glycan is blocked by complementarity-determining region-specific steric hindrance, leading to exposure of mannosylated immunoglobulin (Ig) to the microenvironment. This allows for interaction with the local lectin, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), expressed by tissue macrophages and follicular dendritic cells. The major function of DC-SIGN is to engage pathogens, but this is subverted by FL cells. DC-SIGN induces tumor-specific low-level BCR signaling in FL cells and promotes membrane changes with increased adhesion to VCAM-1 via proximal kinases and actin regulators but, in contrast to engagement by anti-Ig, avoids endocytosis and apoptosis. These interactions appear mandatory for the early development of FL, before the acquisition of other accelerating mutations. BCR-associated mannosylation can be found in a subset of germinal center B-cell-like diffuse large B-cell lymphoma with t(14;18), tracking these cases back to FL. This category was associated with more aggressive behavior: both FL and transformed cases and, potentially, a significant number of cases of Burkitt lymphoma, which also has sites for N-glycan addition, could benefit from antibody-mediated blockade of the interaction with DC-SIGN.


Subject(s)
Lymphoma, Follicular , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphocytes/pathology , Receptors, Antigen, B-Cell/genetics , Polysaccharides , Binding Sites , Tumor Microenvironment
11.
Semin Immunol ; 61-64: 101668, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36370673

ABSTRACT

Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Immunity, Innate , Lymphocytes/pathology , Tumor Microenvironment
12.
Semin Immunol ; 61-64: 101670, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36372017

ABSTRACT

Group 1 innate lymphoid cells (ILC) comprise two major IFN-γ producing populations, namely Natural Killer (NK) cells, and ILC1s. Recent studies have revealed a complex and diverse composition of group 1 ILC subsets infiltrating different tumors. In this review, we will outline the commonalities and differences between group 1 ILC subsets in both mice and humans, discuss how the tissue and tumor microenvironment shapes their phenotype and functions, as well as describe their contrasting roles in the response to different cancers.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Mice , Animals , Immunity, Innate , Lymphocytes/pathology , Killer Cells, Natural , Neoplasms/pathology
13.
Am J Pathol ; 194(1): 165-178, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37923249

ABSTRACT

Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare and relatively indolent B-cell lymphoma. Characteristically, the [lymphocyte-predominant (LP)] tumor cells are embedded in a microenvironment enriched in lymphocytes. More aggressive variants of mature B-cell and peripheral T-cell lymphomas exhibit nuclear expression of the polo-like kinase 1 (PLK1) protein, stabilizing MYC (alias c-myc) and associated with worse clinical outcomes. This study demonstrated expression of PLK1 in the LP cells in 100% of NLPHL cases (n = 76). In contrast, <5% of classic Hodgkin lymphoma cases (n = 70) showed PLK1 expression within the tumor cells. Loss-of-function approaches demonstrated that the expression of PLK1 promoted cell proliferation and increased MYC stability in NLPHL cell lines. Correlation with clinical parameters revealed that the increased expression of PLK1 was associated with advanced-stage disease in patients with NLPHL. A multiplex immunofluorescence panel coupled with artificial intelligence algorithms was used to correlate the composition of the tumor microenvironment with the proliferative stage of LP cells. The results showed that LP cells with PLK1 (high) expression were associated with increased numbers of cytotoxic and T-regulatory T cells. Overall, the findings demonstrate that PLK1 signaling increases NLPHL proliferation and constitutes a potential vulnerability that can be targeted with PLK1 inhibitors. An active immune surveillance program in NLPHL may be a critical mechanism limiting PLK1-dependent tumor growth.


Subject(s)
Hodgkin Disease , Lymphoma, B-Cell , Humans , Artificial Intelligence , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Lymphocytes/pathology , Lymphoma, B-Cell/pathology , Polo-Like Kinase 1 , Tumor Microenvironment
14.
J Immunol ; 211(12): 1823-1834, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37902285

ABSTRACT

Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.


Subject(s)
Enterobacteriaceae Infections , Immunity, Innate , Child , Humans , Animals , Mice , Citrobacter rodentium/physiology , Ligases , Lymphocytes/pathology , Colon/pathology , Inflammation/pathology , Diarrhea/pathology , Ubiquitins , Mice, Inbred C57BL
15.
Breast Cancer Res ; 26(1): 9, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212845

ABSTRACT

PURPOSE: This study aimed to evaluate the prognostic role of the baseline neutrophil/lymphocyte ratio (NLR) in HER2-positive metastatic breast cancer (MBC) patients treated with trastuzumab/pertuzumab. EXPERIMENTAL DESIGN: Data from 780 patients from the CLEOPATRA trial and 248 local patients were collected. Patients were divided into the low and high NLR subgroups by the NLR cutoff value. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) methods were used to control bias. Associations between the NLR and progression-free survival (PFS) and overall survival (OS) were analyzed. RESULTS: The baseline characteristics of the subgroups were well balanced after PSM and IPTW. A low baseline NLR was associated with better PFS and OS in the trastuzumab and docetaxel (TH) group in the unadjusted, PSM and IPTW models. After IPTW, a low NLR, versus a high NLR, was associated with improved PFS (HR 1.35, 95% CI 1.07-1.70, P = 0.012) and OS (HR 1.47, 95% CI 1.12-1.94, P = 0.006) in the TH group. In patients undergoing treatment with trastuzumab and pertuzumab and docetaxel (THP), a low baseline NLR was also correlated with better PFS but not OS across the three models. After IPTW, a low NLR was associated with better PFS (HR 1.52, 95% CI 1.20-1.93, P = 0.001) than a high NLR in the THP group. Multivariate analyses showed that a low baseline NLR was a predictor for PFS and OS in the TH group and for PFS in the THP group in all three models. In the real-world setting, a low baseline NLR was a predictor of better PFS among patients treated with docetaxel plus trastuzumab without or with pertuzumab in the multivariate model (P = 0.015 and 0.008, respectively). CONCLUSIONS: A low baseline NLR is associated with better survival outcomes among HER2-positive MBC patients receiving docetaxel plus trastuzumab/pertuzumab as first-line therapy.


Subject(s)
Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Docetaxel , Lymphocytes/pathology , Neutrophils/pathology , Prognosis , Receptor, ErbB-2 , Trastuzumab/therapeutic use
16.
Breast Cancer Res ; 26(1): 115, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978071

ABSTRACT

Various histopathological, clinical and imaging parameters have been evaluated to identify a subset of women diagnosed with lesions with uncertain malignant potential (B3 or BIRADS 3/4A lesions) who could safely be observed rather than being treated with surgical excision, with little impact on clinical practice. The primary reason for surgery is to rule out an upgrade to either ductal carcinoma in situ or invasive breast cancer, which occurs in up to 30% of patients. We hypothesised that the stromal immune microenvironment could indicate the presence of carcinoma associated with a ductal B3 lesion and that this could be detected in biopsies by counting lymphocytes as a predictive biomarker for upgrade. A higher number of lymphocytes in the surrounding specialised stroma was observed in upgraded ductal and papillary B3 lesions than non-upgraded (p < 0.01, negative binomial model, n = 307). We developed a model using lymphocytes combined with age and the type of lesion, which was predictive of upgrade with an area under the curve of 0.82 [95% confidence interval 0.77-0.87]. The model can identify some patients at risk of upgrade with high sensitivity, but with limited specificity. Assessing the tumour microenvironment including stromal lymphocytes may contribute to reducing unnecessary surgeries in the clinic, but additional predictive features are needed.


Subject(s)
Breast Neoplasms , Lymphocytes , Stromal Cells , Tumor Microenvironment , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Middle Aged , Aged , Lymphocytes/immunology , Lymphocytes/pathology , Stromal Cells/pathology , Adult , Neoplasm Grading , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Intraductal, Noninfiltrating/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/immunology , Biomarkers, Tumor
17.
Prostate ; 84(13): 1244-1250, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38926140

ABSTRACT

BACKGROUND: The diagnostic accuracy of suspicious lesions that are classified as PI-RADS 3 in multiparametric prostate magnetic-resonance imaging (mpMRI) is controversial. This study aims to assess the predictive capacity of hematological inflammatory markers such as neutrophil-lymphocyte ratio (NLR), pan-immune-inflammation value (PIV), and systemic immune-response index (SIRI) in detecting prostate cancer in PI-RADS 3 lesions. METHODS: 276 patients who underwent mpMRI and subsequent prostate biopsy after PI-RADS 3 lesion detection were included in the study. According to the biopsy results, the patients were distributed to two groups as prostate cancer (PCa) and no cancer (non-PCa). Data concerning age, PSA, prostate volume, PSA density, PI-RADS 3 lesion size, prostate biopsy results, monocyte counts (109/L), lymphocyte counts (109/L), platelet counts (109/L), neutrophils count (109/L) were recorded from the complete blood count. From these data; PIV value is obtained by monocyte × neutrophil × platelet/lymphocyte, NLR by neutrophil/lymphocyte, and SIRI by monocyte number × NLR. RESULTS: Significant variations in neutrophil, lymphocyte, and monocyte levels between PCa and non-PCa patient groups were detected (p = 0.009, p = 0.001, p = 0.005 respectively, p < 0.05). NLR, PIV, and SIRI exhibited significant differences, with higher values in PCa patients (p = 0.004, p = 0.001, p < 0.001 respectively, p < 0.05). The area under curve of SIRI was 0.729, with a cut-off value of 1.20 and with a sensitivity 57.70%, and a specificity of 68.70%. CONCLUSION: SIRI outperformed NLR and PIV in detecting PCa in PI-RADS 3 lesions, showcasing its potential as a valuable biomarker. Implementation of this parameter to possible future nomograms has the potential to individualize and risk-stratify the patients in prostate biopsy decision.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Neutrophils , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods , Aged , Middle Aged , Neutrophils/pathology , Inflammation/blood , Inflammation/diagnostic imaging , Inflammation/pathology , Predictive Value of Tests , Lymphocytes/pathology , Prostate/pathology , Prostate/diagnostic imaging , Biopsy , Retrospective Studies
18.
Biochem Cell Biol ; 102(3): 262-274, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567768

ABSTRACT

Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.


Subject(s)
Asthma , Cell Communication , Inflammation , Asthma/metabolism , Asthma/pathology , Animals , Mice , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred BALB C , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Disease Models, Animal , Humans , Signal Transduction , Disease Progression
19.
Am J Hum Genet ; 108(10): 1823-1835, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34469753

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite overlap between genetic risk loci for ALL and hematologic traits, the etiological relevance of dysregulated blood-cell homeostasis remains unclear. We investigated this question in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. We identified 3,000 blood-cell-trait-associated (p < 5.0 × 10-8) variants, explaining 4.0% to 23.9% of trait variation and including 115 loci associated with blood-cell ratios (LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio). ALL susceptibility was genetically correlated with lymphocyte counts (rg = 0.088, p = 4.0 × 10-4) and PLR (rg = -0.072, p = 0.0017). In Mendelian randomization analyses, genetically predicted increase in lymphocyte counts was associated with increased ALL risk (odds ratio [OR] = 1.16, p = 0.031) and strengthened after accounting for other cell types (OR = 1.43, p = 8.8 × 10-4). We observed positive associations with increasing LMR (OR = 1.22, p = 0.0017) and inverse effects for NLR (OR = 0.67, p = 3.1 × 10-4) and PLR (OR = 0.80, p = 0.002). Our study shows that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL.


Subject(s)
Biomarkers, Tumor/genetics , Blood Platelets/pathology , Lymphocytes/pathology , Monocytes/pathology , Neutrophils/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Quantitative Trait Loci , Adult , Aged , Case-Control Studies , Child , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Prospective Studies , United Kingdom/epidemiology
20.
Oncologist ; 29(3): e319-e329, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-37971418

ABSTRACT

BACKGROUND: Established prognostic factors for treatment response to cyclin-dependent kinases 4 and 6 inhibitors are currently lacking. We aimed to investigate the relationship of pretreatment neutrophil-to-lymphocyte ratio (NLR) and absolute lymphocyte count (ALC) to abemaciclib outcomes. PATIENTS AND METHODS: This was a post hoc analysis of data from MONARCH 2, a phase III study of abemaciclib or placebo plus fulvestrant in hormone-receptor positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer that progressed on endocrine therapy. Patients were divided into high and low categories based on baseline NLR (cutoff: 2.5) and ALC (cutoff: 1.5 × 109/L). The association of baseline NLR and ALC with progression-free survival (PFS) and overall survival (OS) was explored using Cox models and Kaplan-Meier estimates. Tumor response and safety were also examined. RESULTS: NLR and ALC data were available for 645 patients (abemaciclib: N = 426; placebo: N = 219). Low-baseline NLR or high-baseline ALC was consistently associated with positive PFS and OS trends; low-baseline NLR subgroups also showed trends for better response. The abemaciclib treatment effect against placebo was observed regardless of baseline NLR or ALC. Univariate analyses showed baseline NLR and ALC were prognostic of PFS and OS. Baseline NLR remained significant in the multivariate model (P < .0001). No unexpected differences in safety were observed by baseline NLR or ALC. CONCLUSION: Baseline NLR was independently prognostic of PFS and OS. Low-baseline NLR was associated with numerically better efficacy outcomes, but the benefit of adding abemaciclib to fulvestrant was similar irrespective of baseline NLR status.


Subject(s)
Aminopyridines , Benzimidazoles , Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Neutrophils/pathology , Fulvestrant/therapeutic use , Lymphocytes/pathology , Lymphocyte Count
SELECTION OF CITATIONS
SEARCH DETAIL