Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.749
Filter
Add more filters

Publication year range
1.
Immunol Rev ; 322(1): 113-137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009321

ABSTRACT

Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.


Subject(s)
Measles , Rubella , Humans , Rubella virus/genetics , Chronic Disease , Phenotype , Carcinogenesis
2.
Nature ; 589(7842): 415-419, 2021 01.
Article in English | MEDLINE | ID: mdl-33328634

ABSTRACT

The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1-4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5-8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2 pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children.


Subject(s)
Developed Countries/statistics & numerical data , Geographic Mapping , Measles/epidemiology , Measles/prevention & control , Vaccination/statistics & numerical data , Child , Child, Preschool , Healthcare Disparities/statistics & numerical data , Humans , Internationality , Measles/immunology , Rural Health/statistics & numerical data , Uncertainty , Urban Health/statistics & numerical data , Vaccination Refusal/statistics & numerical data
3.
Semin Immunol ; 70: 101842, 2023 11.
Article in English | MEDLINE | ID: mdl-37717525

ABSTRACT

Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults.


Subject(s)
COVID-19 , Measles , Vaccines , Humans , Aged , Measles/prevention & control , Vaccination , COVID-19/prevention & control
5.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37796985

ABSTRACT

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Subject(s)
COVID-19 , Measles , Mumps , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Measles-Mumps-Rubella Vaccine , Antibodies, Viral , Broadly Neutralizing Antibodies , Immunoglobulin G , Mesocricetus , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
6.
Lancet ; 403(10439): 1879-1892, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38697170

ABSTRACT

BACKGROUND: Microneedle patches (MNPs) have been ranked as the highest global priority innovation for overcoming immunisation barriers in low-income and middle-income countries. This trial aimed to provide the first data on the tolerability, safety, and immunogenicity of a measles and rubella vaccine (MRV)-MNP in children. METHODS: This single-centre, phase 1/2, double-blind, double-dummy, randomised, active-controlled, age de-escalation trial was conducted in The Gambia. To be eligible, all participants had to be healthy according to prespecified criteria, aged 18-40 years for the adult cohort, 15-18 months for toddlers, or 9-10 months for infants, and to be available for visits throughout the follow-up period. The three age cohorts were randomly assigned in a 2:1 ratio (adults) or 1:1 ratio (toddlers and infants) to receive either an MRV-MNP (Micron Biomedical, Atlanta, GA, USA) and a placebo (0·9% sodium chloride) subcutaneous injection, or a placebo-MNP and an MRV subcutaneous injection (MRV-SC; Serum Institute of India, Pune, India). Unmasked staff ransomly assigned the participants using an online application, and they prepared visually identical preparations of the MRV-MNP or placebo-MNP and MRV-SC or placebo-SC, but were not involved in collecting endpoint data. Staff administering the study interventions, participants, parents, and study staff assessing trial endpoints were masked to treatment allocation. The safety population consists of all vaccinated participants, and analysis was conducted according to route of MRV administration, irrespective of subsequent protocol deviations. The immunogenicity population consisted of all vaccinated participants who had a baseline and day 42 visit result available, and who had no protocol deviations considered to substantially affect the immunogenicity endpoints. Solicited local and systemic adverse events were collected for 14 days following vaccination. Unsolicited adverse events were collected to day 180. Age de-escalation between cohorts was based on the review of the safety data to day 14 by an independent data monitoring committee. Serum neutralising antibodies to measles and rubella were measured at baseline, day 42, and day 180. Analysis was descriptive and included safety events, seroprotection and seroconversion rates, and geometric mean antibody concentrations. The trial was registered with the Pan African Clinical Trials Registry PACTR202008836432905, and is complete. FINDINGS: Recruitment took place between May 18, 2021, and May 27, 2022. 45 adults, 120 toddlers, and 120 infants were randomly allocated and vaccinated. There were no safety concerns in the first 14 days following vaccination in either adults or toddlers, and age de-escalation proceeded accordingly. In infants, 93% (52/56; 95% CI 83·0-97·2) seroconverted to measles and 100% (58/58; 93·8-100) seroconverted to rubella following MRV-MNP administration, while 90% (52/58; 79·2-95·2) and 100% (59/59; 93·9-100) seroconverted to measles and rubella respectively, following MRV-SC. Induration at the MRV-MNP application site was the most frequent local reaction occurring in 46 (77%) of 60 toddlers and 39 (65%) of 60 infants. Related unsolicited adverse events, most commonly discolouration at the application site, were reported in 35 (58%) of 60 toddlers and 57 (95%) of 60 infants that had received the MRV-MNP. All local reactions were mild. There were no related severe or serious adverse events. INTERPRETATION: The safety and immunogenicity data support the accelerated development of the MRV-MNP. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Measles Vaccine , Rubella Vaccine , Rubella , Humans , Double-Blind Method , Gambia , Female , Male , Rubella Vaccine/administration & dosage , Rubella Vaccine/immunology , Rubella Vaccine/adverse effects , Infant , Measles Vaccine/administration & dosage , Measles Vaccine/immunology , Adult , Adolescent , Rubella/prevention & control , Young Adult , Measles/prevention & control , Needles , Antibodies, Viral/blood
7.
J Virol ; 98(3): e0185023, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38415596

ABSTRACT

Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.


Subject(s)
Disease Models, Animal , Distemper Virus, Canine , Ferrets , Measles , Morbillivirus Infections , Animals , Dogs , Humans , Distemper/virology , Distemper Virus, Canine/genetics , Measles/pathology , Measles virus/genetics , Morbillivirus/genetics , Morbillivirus Infections/pathology , Primates , Viremia
8.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38329336

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Subject(s)
Adenosine Monophosphate , Alanine , Measles virus , Measles , Subacute Sclerosing Panencephalitis , Viral Proteins , Child, Preschool , Humans , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Autopsy , Brain/metabolism , Brain/pathology , Brain/virology , Disease Progression , Fatal Outcome , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Measles/complications , Measles/drug therapy , Measles/virology , Measles virus/drug effects , Measles virus/genetics , Measles virus/metabolism , Mutant Proteins/analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Quality of Life , RNA, Viral/analysis , RNA, Viral/genetics , Subacute Sclerosing Panencephalitis/drug therapy , Subacute Sclerosing Panencephalitis/etiology , Subacute Sclerosing Panencephalitis/virology , Viral Proteins/analysis , Viral Proteins/genetics , Viral Proteins/metabolism
9.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Article in English | MEDLINE | ID: mdl-37494386

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Subject(s)
Measles , Neurodegenerative Diseases , Subacute Sclerosing Panencephalitis , Humans , Measles virus/genetics , SSPE Virus/genetics , SSPE Virus/metabolism , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology , Viral Replicase Complex Proteins/metabolism , Persistent Infection , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Measles/genetics , Measles/metabolism
10.
PLoS Pathog ; 19(12): e1011817, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127684

ABSTRACT

It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.


Subject(s)
Measles , Subacute Sclerosing Panencephalitis , Animals , Humans , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology , Measles virus/genetics , Measles virus/metabolism , Measles/genetics , Measles/metabolism , Brain/pathology , Tropism/genetics
11.
Emerg Infect Dis ; 30(5): 926-933, 2024 May.
Article in English | MEDLINE | ID: mdl-38579738

ABSTRACT

We investigated clinically suspected measles cases that had discrepant real-time reverse transcription PCR (rRT-PCR) and measles-specific IgM test results to determine diagnoses. We performed rRT-PCR and measles-specific IgM testing on samples from 541 suspected measles cases. Of the 24 IgM-positive and rRT-PCR--negative cases, 20 were among children who received a measles-containing vaccine within the previous 6 months; most had low IgG relative avidity indexes (RAIs). The other 4 cases were among adults who had an unknown previous measles history, unknown vaccination status, and high RAIs. We detected viral nucleic acid for viruses other than measles in 15 (62.5%) of the 24 cases with discrepant rRT-PCR and IgM test results. Measles vaccination, measles history, and contact history should be considered in suspected measles cases with discrepant rRT-PCR and IgM test results. If in doubt, measles IgG avidity and PCR testing for other febrile exanthematous viruses can help confirm or refute the diagnosis.


Subject(s)
Antibodies, Viral , Immunoglobulin M , Measles virus , Measles , Humans , Immunoglobulin M/blood , Measles/diagnosis , Measles/epidemiology , Measles/virology , Measles/immunology , Antibodies, Viral/blood , Japan/epidemiology , Child , Child, Preschool , Measles virus/immunology , Measles virus/genetics , Male , Adult , Female , Infant , Adolescent , Immunoglobulin G/blood , Reverse Transcriptase Polymerase Chain Reaction/methods , Measles Vaccine/immunology , Young Adult , Real-Time Polymerase Chain Reaction/methods
12.
Lancet ; 401(10384): 1267-1276, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36934733

ABSTRACT

BACKGROUND: Lassa fever is a substantial health burden in west Africa. We evaluated the safety, tolerability, and immunogenicity of a recombinant, live-attenuated, measles-vectored Lassa fever vaccine candidate (MV-LASV). METHODS: This first-in-human phase 1 trial-consisting of an open-label dose-escalation stage and an observer-blinded, randomised, placebo-controlled treatment stage-was conducted at a single site at the University of Antwerp, Antwerp, Belgium, and involved healthy adults aged 18-55 years. Participants in the dose-escalation stage were sequentially assigned to a low-dose group (two intramuscular doses of MV-LASV at 2 × 104 times the median tissue culture infectious dose) or a high-dose group (two doses at 1 × 105 times the median tissue culture infectious dose). Participants in the double-blinded treatment stage were randomly assigned in a 2:2:1 ratio to receive low dose, high dose, or placebo. The primary endpoint was the rate of solicited and unsolicited adverse events up to study day 56 and was assessed in all participants who received at least one dose of investigational product. The trial is registered with ClinicalTrials.gov, NCT04055454, and the European Union Drug Regulating Authorities Clinical Trials Database, 2018-003647-40, and is complete. FINDINGS: Between Sept 26, 2019, and Jan 20, 2020, 60 participants were enrolled and assigned to receive placebo (n=12) or MV-LASV (n=48). All 60 participants received at least one study treatment. Most adverse events occurred during the treatment phase, and frequencies of total solicited or unsolicited adverse events were similar between treatment groups, with 96% of participants in the low-dose group, 100% of those in the high-dose group, and 92% of those in the placebo group having any solicited adverse event (p=0·6751) and 76% of those in the low-dose group, 70% of those in the high-dose group, and 100% of those in the placebo group having any unsolicited adverse event (p=0·1047). The only significant difference related to local solicited adverse events, with higher frequencies observed in groups receiving MV-LASV (24 [96%] of 25 participants in the low-dose group; all 23 [100%] participants in the high-dose group) than in the placebo group (6 [50%] of 12 participants; p=0·0001, Fisher-Freeman-Halton test). Adverse events were mostly of mild or moderate severity, and no serious adverse events were observed. MV-LASV also induced substantial concentrations of LASV-specific IgG (geometric mean titre 62·9 EU/ml in the low-dose group and 145·9 EU/ml in the high-dose group on day 42). INTERPRETATION: MV-LASV showed an acceptable safety and tolerability profile, and immunogenicity seemed to be unaffected by pre-existing immunity against the vector. MV-LASV is therefore a promising candidate for further development. FUNDING: Coalition for Epidemic Preparedness Innovations.


Subject(s)
Lassa Fever , Measles , Adult , Humans , Measles Vaccine , Vaccines, Synthetic , Vaccines, Attenuated , Double-Blind Method , Antibodies, Viral
13.
J Clin Microbiol ; 62(2): e0133923, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38275299

ABSTRACT

Measles and rubella serological diagnoses are done by IgM detection. The World Health Organization Global Measles and Rubella Laboratory Network previously endorsed Siemens Enzygnost enzyme-linked immunosorbant assay kits, which have been discontinued. A recommended replacement has not been determined. We aimed to search for suitable replacements by conducting a systematic review and meta-analysis of IgM detection methods that are currently available for measles and rubella. A systematic literature search was performed in Medline, Embase, Global Health, Cochrane Central, and Scopus on March 22 and on 27 September 2023. Studies reporting measles and/or rubella IgM detection with terms around diagnostic accuracy were included. Risk of bias was assessed using QUADAS tools. Meta-DiSc and R were used for statistical analysis. Clinical samples totalling 5,579 from 28 index tests were included in the measles meta-analysis. Sensitivity and specificity of the individual measles studies ranged from 0.50 to 1.00 and 0.53 to 1.00, respectively. Pooled sensitivity and specificity of all measles IgM detection methods were 0.94 (CI: 0.90-0.97) and 0.94 (CI: 0.91-0.97), respectively. Clinical samples totalling 4,983 from 15 index tests were included in the rubella meta-analysis. Sensitivity and specificity of the individual rubella studies ranged from 0.78 to 1.00 and 0.52 to 1.00, respectively. Pooled sensitivity and specificity of all rubella IgM detection methods were 0.97 (CI: 0.93-0.98) and 0.96 (CI: 0.93-0.98), respectively. Although more studies would be ideal, our results may provide valuable information when selecting IgM detection methods for measles and/or rubella.


Subject(s)
Antibodies, Viral , Immunoglobulin M , Measles virus , Measles , Rubella virus , Rubella , Sensitivity and Specificity , Serologic Tests , Humans , Rubella/diagnosis , Measles/diagnosis , Rubella virus/immunology , Measles virus/immunology , Measles virus/isolation & purification , Immunoglobulin M/blood , Antibodies, Viral/blood , Serologic Tests/methods , Serologic Tests/standards , Reagent Kits, Diagnostic/standards
14.
J Virol ; 97(10): e0105123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37732787

ABSTRACT

IMPORTANCE: For many years, measles virus (MeV) was assumed to first enter the host via the apical surface of airway epithelial cells and subsequently spread systemically. We and others reported that MeV has an overwhelming preference for entry at the basolateral surface of airway epithelial cells, which led to a fundamental new understanding of how MeV enters a human host. This unexpected observation using well-differentiated primary cultures of airway epithelia from human donors contradicted previous studies using immortalized cultured cells. Here, we show that appropriate differentiation and cell morphology of primary human airway epithelial cells are critical to recapitulate MeV infection patterns and pathogenesis of the in vivo airways. By simply culturing primary cells in media containing serum or passaging primary cultures, erroneous results quickly emerge. These results have broad implications for data interpretation related to respiratory virus infection, spread, and release from human airway epithelial cells.


Subject(s)
Cells, Cultured , Epithelial Cells , Measles virus , Measles , Respiratory System , Humans , Epithelial Cells/virology , Epithelium , Measles/virology , Respiratory System/cytology
15.
J Virol ; 97(5): e0034023, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37166307

ABSTRACT

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Subject(s)
Measles , Neurodegenerative Diseases , Subacute Sclerosing Panencephalitis , Cricetinae , Humans , Mice , Animals , Measles virus/physiology , Subacute Sclerosing Panencephalitis/genetics , Hemagglutinins/metabolism , Neurodegenerative Diseases/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Recombinant Proteins/metabolism , Neurons , Cell Adhesion Molecule-1/metabolism
16.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367508

ABSTRACT

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Subject(s)
Measles virus , Measles , Humans , Measles virus/genetics , Antibodies, Neutralizing , Neutralization Tests , Measles Vaccine/genetics , Measles/prevention & control , Antibodies, Viral , Epitopes/genetics , Hemagglutinins, Viral/genetics , Antibodies, Monoclonal
17.
Int J Med Microbiol ; 314: 151608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335886

ABSTRACT

Measles and rubella are targeted for elimination in the WHO region Europe. To reach the elimination goal, vaccination coverage of 95% must be achieved and sustained, the genotype information has to be provided for 80% of all outbreaks and transmission chains of a certain variant must not be detected for >12 months. The latter information is collected at Germany's National Reference Center Measles, Mumps, Rubella (NRC MMR). We describe here an outbreak of measles occurring in Hildesheim. The outbreak comprised 43 cases and lasted 14 weeks. Surprisingly, a high number of vaccination failures was observed since 11 cases had received two doses of the MMR vaccine and 4 additional cases were vaccinated once. A 33-year-old woman passed away during the outbreak. She was the mother of 5 children between 4 and 16 years of age. Two schoolchildren contracted measles and passed it on to the rest of the family. Due to delivery bottlenecks, the vaccination of the mother was delayed. She developed measles-like symptoms 3 days after vaccination and was found dead on the morning of day 8 after vaccination. A post-mortem examination was done to identify the cause of death. Moreover, molecular characterization of the virus was performed to analyze whether she was infected by the wildtype virus circulating at that time in Hildesheim or whether the vaccine may have been a concomitant and aggravating feature of her death. The result showed that the samples taken from her at the time of death and during necropsy contained the wildtype measles virus variant corresponding to MVs/Gir Somnath.IND/42.16 (WHO Seq-ID D8-4683) that fueled the Hildesheim outbreak and circulated in Germany from March 2018 to March 2020. The vaccine virus was not detected. Moreover, two aspects uncovered by the post-mortem examination were remarkable; the woman died from giant cell pneumonia, which is a complication seen in immune-suppressed individuals and she was actively using cannabis. THC is known to influence the immune system, but literature reports describing the effects are limited.


Subject(s)
Measles , Mumps , Rubella , Humans , Child , Female , Infant , Adult , Measles/prevention & control , Measles/diagnosis , Measles/epidemiology , Rubella/epidemiology , Rubella/prevention & control , Measles-Mumps-Rubella Vaccine , Vaccination , Mumps/epidemiology , Mumps/prevention & control , Disease Outbreaks , Germany/epidemiology
18.
J Med Virol ; 96(4): e29583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576266

ABSTRACT

The measles virus, also known as the morbillivirus, or MV, is a virus that infects humans. The goal of this research is to assess to adult cases of measles. Eleven patients thought to be confirmed cases of measles were enrolled in the investigation. Following the identification of symptoms of tiredness, fever, and rash in one soldier, the results of 10 more troops from the pertinent military group were assessed. The diagnosis was made based on the presence of serum immunoglobulin M (IgM) and positive polymerase chain reaction (PCR) results. When the control IgM, immunoglobulin G, and PCR findings were evaluated a fortnight after hospitalization, a cluster of 11 incidents was found. It is now necessary to address the issue of the cautious stance towards vaccination or the anti-vaccination sentiment that has grown increasingly popular, particularly in light of the COVID-19 pandemic, for both our nation and the entire world.


Subject(s)
Measles , Pandemics , Adult , Humans , Infant , Antibodies, Viral , Measles/diagnosis , Measles/epidemiology , Measles/prevention & control , Measles virus/genetics , Disease Outbreaks , Hospitalization , Hospitals , Immunoglobulin M , Measles Vaccine
19.
J Med Virol ; 96(2): e29437, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305059

ABSTRACT

Covid-19 in West Africa masked outbreaks of vaccine-preventable diseases such as the measles epidemic in children in Guinea in 2021-2022 characterized by a lack of confirmation of suspected clinical cases. During weeks 13-22 of 2022, saliva samples were collected from 213 children (3-60 months old) with measles-like symptoms within the St Gabriel dispensary in Conakry. Samples were processed in Virus Transport Medium (VTM) and tested on the same day by triplex reverse transcriptase -real-time polymerase chain reaction for Measles, Rubella and RNaseP. Samples were also tested for HHV6 and Parvovirus B19, viruses causing clinical signs similar to measles. We confirmed 146 (68.5%) measles cases, 27 (12.7%) rubella, 5 (2.3%) double-positive measles-rubella, 35 (16.4%) HHV-6 and 8 (3.75%) Parvovirus B19. To test the assay's robustness, 27 samples were kept at 26-30°C. Measles and rubella were still detected after 7 days at 26-30°C, and after 21 days measles and rubella were still detectable in all samples but one. Sequencing indicated the circulation of the B3 measles genotype, as expected in West Africa. This study highlights the robustness of the measles/rubella diagnostic test on saliva samples stored in VTM. The high level of rubella detection questioned the single valence measles vaccination strategy.


Subject(s)
COVID-19 , Exanthema , Herpesvirus 6, Human , Measles , Parvovirus B19, Human , Rubella , Child , Humans , Infant , Child, Preschool , Papua New Guinea , Antibodies, Viral , Immunoglobulin M , COVID-19/epidemiology , COVID-19/complications , Guinea , Measles virus/genetics , Parvovirus B19, Human/genetics
20.
Bull World Health Organ ; 102(4): 276-287, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38562199

ABSTRACT

Objective: To quantify the association between reduction in child mortality and routine immunization across 204 countries and territories from 1990 to 2019. Methods: We used child mortality and vaccine coverage data from the Global Burden of Disease Study. We used a modified child survival framework and applied a mixed-effects regression model to estimate the reduction in deaths in children younger than 5 years associated with eight vaccines. Findings: Between 1990 and 2019, the diphtheria-tetanus-pertussis (DTP), measles, rotavirus and Haemophilus influenzae type b vaccines were significantly associated with an estimated 86.9 (95% confidence interval, CI: 57.2 to 132.4) million fewer deaths in children younger than 5 years worldwide. This decrease represented a 24.2% (95% CI: 19.8 to 28.9) reduction in deaths relative to a scenario without vaccines. The DTP and measles vaccines averted 46.7 (95% CI: 30.0 to 72.7) million and 37.9 (95% CI: 25.4 to 56.8) million deaths, respectively. Of the total reduction in child mortality associated with vaccines, 84.2% (95% CI: 83.0 to 85.1) occurred in 73 countries supported by Gavi, the Vaccine Alliance, with an estimated 45.4 (95% CI: 29.8 to 69.2) million fewer deaths from 2000 to 2019. The largest reductions in deaths associated with these four vaccines were in India, China, Ethiopia, Pakistan and Bangladesh (in order of the size of reduction). Conclusion: Vaccines continue to reduce childhood mortality significantly, especially in Gavi-supported countries, emphasizing the need for increased investment in routine immunization programmes.


Subject(s)
Measles , Whooping Cough , Child , Humans , Infant , Immunization Programs , Vaccination , Measles Vaccine/therapeutic use , Child Mortality , Measles/epidemiology , Measles/prevention & control , Diphtheria-Tetanus-Pertussis Vaccine
SELECTION OF CITATIONS
SEARCH DETAIL