Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.270
Filter
Add more filters

Publication year range
1.
BMC Genomics ; 25(1): 575, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849728

ABSTRACT

BACKGROUND: Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS: The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS: Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.


Subject(s)
Bacteriocins , Genome, Bacterial , Staphylococcus , Staphylococcus/genetics , Staphylococcus/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Fermentation , Genomics/methods , Secondary Metabolism/genetics , Meat/microbiology , Multigene Family , Phylogeny
2.
Appl Environ Microbiol ; 90(5): e0029624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38647295

ABSTRACT

The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.


Subject(s)
Abattoirs , Arcobacter , Chickens , Arcobacter/isolation & purification , Arcobacter/genetics , Arcobacter/classification , Animals , Chickens/microbiology , Food Microbiology , RNA, Ribosomal, 16S/genetics , Poultry/microbiology , Microbiota , Meat/microbiology , Food Contamination/analysis
3.
BMC Microbiol ; 24(1): 142, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664612

ABSTRACT

BACKGROUND: The genomic information available for Pediococcus pentosaceus is primarily derived from fermented fruits and vegetables, with less information available from fermented meat. P. pentosaceus LL-07, a strain isolated from fermented meat, has the capability of producing exopolysaccharides (EPS). To assess the probiotic attributes of P. pentosaceus LL-07, we conducted whole-genome sequencing (WGS) using the PacBio SequelIIe and Illumina MiSeq platforms, followed by in vitro experiments to explore its probiotic potential. RESULTS: The genome size of P. pentosaceus LL-07 is 1,782,685 bp, comprising a circular chromosome and a circular plasmid. Our investigation revealed the absence of a CRISPR/Cas system. Sugar fermentation experiments demonstrated the characteristics of carbohydrate metabolism. P. pentosaceus LL-07 contains an EPS synthesis gene cluster consisting of 13 genes, which is different from the currently known gene cluster structure. NO genes associated with hemolysis or toxin synthesis were detected. Additionally, eighty-six genes related to antibiotic resistance were identified but not present in the prophage, transposon or plasmid. In vitro experiments demonstrated that P. pentosaceus LL-07 was comparable to the reference strain P. pentosaceus ATCC25745 in terms of tolerance to artificial digestive juice and bile, autoaggregation and antioxidation, and provided corresponding genomic evidence. CONCLUSION: This study confirmed the safety and probiotic properties of P. pentosaceus LL-07 via complete genome and phenotype analysis, supporting its characterization as a potential probiotic candidate.


Subject(s)
Fermentation , Genome, Bacterial , Pediococcus pentosaceus , Polysaccharides, Bacterial , Probiotics , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Whole Genome Sequencing , Fermented Foods/microbiology , Meat/microbiology , Multigene Family , Genomics/methods , Humans , Plasmids/genetics , Food Microbiology
4.
Food Microbiol ; 119: 104448, 2024 May.
Article in English | MEDLINE | ID: mdl-38225050

ABSTRACT

We aimed to evaluate the bacterial growth and diversity in vacuum-packed beef bags stored at different temperatures and to monitor blown-pack spoilage. We used culture-based methods and high-throughput sequencing to study the development of the main bacterial groups naturally present in beef stored at 4 and 15 °C for 28 days. The growth of sulfite-reducing clostridium (SRC) was impaired in beef bags stored at 4 °C; significant differences among SRC counts were observed in beef bags stored at 4 and 15 °C on days 14, 21, and 28 (P = 0.001). Blown pack was observed in most beef bags stored at 15 °C, from day 14 to day 28, but not in beef bags stored at 4 °C. A storage temperature of 4 °C was able to maintain a stable bacterial microbiota (most prevalent: Photobacterium, Hafnia-Obesumbacterium, and Lactococcus). Remarkable changes in microbial abundance occurred at 15 °C from day 14 to day 28, with a predominance of strict anaerobes (Bacteroides) and the presence of Clostridium spp. The relative frequencies of strict anaerobes and Clostridium were statistically higher in the beef bags stored at 15 °C (P < 0.001 and P = 0.004, respectively). The temperature influenced the microbial counts and relative abundance of spoilage bacteria, leading to blown pack spoilage.


Subject(s)
Food Packaging , Microbiota , Animals , Cattle , Food Packaging/methods , Meat/microbiology , Temperature , Vacuum , Bacteria/genetics , Clostridium , Food Microbiology
5.
Food Microbiol ; 120: 104466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431318

ABSTRACT

In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.


Subject(s)
Meat , Peptide Hydrolases , Pseudomonas , Animals , Cattle , Reactive Oxygen Species , Meat/microbiology , Ferritins/genetics , Peptides
6.
Food Microbiol ; 122: 104559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839223

ABSTRACT

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Subject(s)
Camelus , Cheese , Food Storage , Gelatin , Listeria monocytogenes , Nanocomposites , Zinc Oxide , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Cheese/microbiology , Gelatin/chemistry , Gelatin/pharmacology , Animals , Nanocomposites/chemistry , Food Preservation/methods , Meat/microbiology , Food Microbiology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pomegranate/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Rosmarinus/chemistry , Refrigeration , Plant Extracts/pharmacology , Plant Extracts/chemistry
7.
PLoS Genet ; 17(10): e1009436, 2021 10.
Article in English | MEDLINE | ID: mdl-34662334

ABSTRACT

Campylobacteriosis is among the world's most common foodborne illnesses, caused predominantly by the bacterium Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as transmission occurs via multiple sources such as contaminated meat, poultry, and drinking water. Strain variation has allowed source tracking based upon allelic variation in multi-locus sequence typing (MLST) genes allowing isolates from infected individuals to be attributed to specific animal or environmental reservoirs. However, the accuracy of probabilistic attribution models has been limited by the ability to differentiate isolates based upon just 7 MLST genes. Here, we broaden the input data spectrum to include core genome MLST (cgMLST) and whole genome sequences (WGS), and implement multiple machine learning algorithms, allowing more accurate source attribution. We increase attribution accuracy from 64% using the standard iSource population genetic approach to 71% for MLST, 85% for cgMLST and 78% for kmerized WGS data using the classifier we named aiSource. To gain insight beyond the source model prediction, we use Bayesian inference to analyse the relative affinity of C. jejuni strains to infect humans and identified potential differences, in source-human transmission ability among clonally related isolates in the most common disease causing lineage (ST-21 clonal complex). Providing generalizable computationally efficient methods, based upon machine learning and population genetics, we provide a scalable approach to global disease surveillance that can continuously incorporate novel samples for source attribution and identify fine-scale variation in transmission potential.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Gastroenteritis/microbiology , Animals , Bayes Theorem , Chickens/microbiology , Genetics, Population/methods , Humans , Machine Learning , Meat/microbiology , Multilocus Sequence Typing/methods , Whole Genome Sequencing/methods
8.
Euro Surveill ; 29(18)2024 May.
Article in English | MEDLINE | ID: mdl-38699902

ABSTRACT

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Meat , Salmonella , Animals , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/drug effects , Humans , Portugal , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Dogs , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Pets/microbiology , Whole Genome Sequencing , Food Microbiology , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Colistin/pharmacology , Animal Feed/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology
9.
Foodborne Pathog Dis ; 21(5): 331-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38346315

ABSTRACT

Staphylococcus aureus causes various toxigenic and invasive diseases in humans worldwide. This study examined the prevalence, virulence genes, and antibiotic resistance of S. aureus isolates collected from 894 retail food samples in Ardabil, Iran. Staphylococcal cassette chromosome mec (SCCmec), spa, and multilocus sequence typing methods were employed to further investigate the molecular characteristics of methicillin-resistant S. aureus (MRSA) isolates. The results revealed that 11.18% (n = 100) of food samples exhibited contamination with S. aureus (10.50% methicillin-sensitive S. aureus [MSSA] and 0.67% MRSA). Notably, raw minced meat (29.41%), Faloodeh (25%), and Olivier salad (21.42%) emerged as the most frequently contaminated food items. Among the 100 isolates of S. aureus, 94% were characterized as MSSA, with the remaining 6% identified as MRSA. The highest resistance was observed for penicillin (12%). MRSA isolates exhibited significantly higher resistance rates. Seventy-nine percent of the isolates were positive for sea, 14% for seb, 8% for a sec, and 0% for sed enterotoxin-encoding genes. Sixteen percent of isolates harbored two or more staphylococcal enterotoxin genes, simultaneously. Moreover, 97%, 94%, 24%, and 22% of isolates were positive for hla, hld, tst, and pvl virulence-encoding genes, respectively. No isolate was positive for the exfoliative toxins encoding eta and etb genes. MRSA isolates belonged to CC8 (n = 4) and CC22 (n = 2). Isolates in CC8 belonged to lineage ST239-MRSA-III and spa type t030; the isolates in CC22 belonged to ST22-MRSA-IV and spa types t310 and t223. In conclusion, a relatively high proportion of our retail food samples were contaminated with S. aureus. The high incidence of isolates with toxigenic genes raises serious health concerns. Furthermore, the presence of MRSA lineages linked to humans suggests that retail foods may be contaminated with human origin.


Subject(s)
Enterotoxins , Food Contamination , Food Microbiology , Methicillin-Resistant Staphylococcus aureus , Multilocus Sequence Typing , Staphylococcus aureus , Iran/epidemiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Food Contamination/analysis , Enterotoxins/genetics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Microbial Sensitivity Tests , Meat/microbiology , Humans , Salads/microbiology
10.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931722

ABSTRACT

This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform's efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform's sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance.


Subject(s)
Ammonia , Colorimetry , Food Packaging , Red Meat , Colorimetry/methods , Food Packaging/methods , Ammonia/chemistry , Ammonia/analysis , Cattle , Red Meat/analysis , Red Meat/microbiology , Animals , Nanofibers/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Polyesters/chemistry , Anthocyanins/chemistry , Meat/analysis , Meat/microbiology
11.
Int J Environ Health Res ; 34(3): 1751-1762, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37535931

ABSTRACT

Three hundred samples, including meat from the slaughtered carcass and water, air samples, and swabs from the floor, wall, and employees' hands, were collected from five municipal abattoirs spread across several Egyptian provinces. The Escherichia coli was isolated from floor swabs, meat, air, wall, hand, and water samples. Serotyping of the recovered isolates clarified the presence of various serotypes, including enterohemorrhagic serotypes (O111: H4, O128: H2, and O127: H6) and enterotoxigenic serotypes (O44: H18 and O125: H21). The isolates were resistant to cefotaxime (100%), amoxiclav (80%), then rifampin (66.7%). The stx1 gene, stx2 gene, eaeA gene, blaCMY2 gene and iss gene were detected in 10-80 % of the isolates. Nanosilver (AgNPs) showed that 12.5 ppm was the lowest concentration that prevented bacterial growth. It was observed that 12% of workers wore a clean white coat, only 24% washed their hands between activities during work, only 14% used soap for hand washing, and 42% utilized the same knife for meat and its offal.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Escherichia coli/genetics , Egypt , Abattoirs , Meat/microbiology , Water , Escherichia coli Proteins/genetics
12.
J Sci Food Agric ; 104(9): 5577-5587, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372374

ABSTRACT

BACKGROUND: Bacterial cellulose (BC) is a fiber substance produced by microbial fermentation. It is widely used in the food preservation industry because of its extremely pure texture, high crystallinity and high biocompatibility. In the present study, bacterial cellulose/thyme essential oil (BC/TEO-E) with antibacterial and fresh-keeping functions was prepared by ultrasonic treatment of modified bacterial cellulose for encapsulation of thyme essential oil, which effectively inhibited the spoilage of chilled chicken. RESULTS: The purified BC, produced by Acetobacter xylinum ATCC 53524, was ultrasonically treated wih different times (0, 30, 60 and 90 min). Transmission electron microscopy, scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and zeta potential were used to characterize the structure of BC after ultrasound, showing that BC, treated for 30 min, had the optimal fiber structure, crystallinity (85.8%), thermal stability (347.77 °C) and solution stability (-26.63 ± 1.96 mV). BC/TEO-E was prepared by a homogenizer for the preservation of chilled chicken. Optical microscopy indicated that the BC/TEO-E prepared by 0.5% BC had optimal dispersion and stability, and even no delamination was observed in the emulsion. Compared with other groups (control, 0.5% BC and Tween-E), the total number of colonies and coliforms in chilled chicken treated with 0.5% BC/TEO-E was the lowest during the whole storage period (12 days), indicating that it can effectively inhibit bacterial growth. In addition, total volatile base nitrogen (TVB-N), thiobarbituric acid reactive substances, pH and drip loss results showed that 0.5% BC/TEO-E could effectively inhibit the spoilage of chilled chicken compared to the other treatment groups. CONCLUSION: All of the results acquired in the present study indicate that BC/TEO-E has a potential application in chilled chicken preservation. © 2024 Society of Chemical Industry.


Subject(s)
Cellulose , Chickens , Food Preservation , Food Storage , Oils, Volatile , Thymus Plant , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Food Preservation/methods , Thymus Plant/chemistry , Emulsions/chemistry , Emulsions/pharmacology , Meat/analysis , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gluconacetobacter xylinus/chemistry , Gluconacetobacter xylinus/metabolism
13.
J Sci Food Agric ; 104(9): 5231-5243, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38415797

ABSTRACT

BACKGROUND: Vacuum packaging has the ability to reduce oxidative deterioration and microbial-induced spoilage of meat. However, in an oxygen-free environment, it can lead to the development of an unappealing purplish-red color and a decrease in the water-holding capacity of meat, thereby impacting the overall meat quality. Portulaca oleracea L. (POL) is a homology of medicine and food known for its exceptional antioxidant and antimicrobial properties. RESULTS: The aim of our present study was to investigate the antioxidant and antimicrobial ability of n-butanol phase extract of POL and the effect of POL extract incorporation on the quality (water-holding capacity, shear force, color, and texture) and physicochemical (pH, total volatile base nitrogen, and total viable counts) attributes of vacuum-packed seasoned steaks at 4 °C over a 15-day period. Results showed that the POL extract had excellent antioxidant and antimicrobial capacity. Furthermore, the addition of POL extract significantly inhibited protein oxidation and microbial growth of steaks (P < 0.05), and improved the water-holding capacity, color properties, and tenderness (P < 0.05). Moreover, there were no significant differences (P > 0.05) in the color, water-holding capacity, or tenderness between the 0.5 and 1 g kg-1 POL extract treatment groups compared to the sodium nitrite control group. CONCLUSION: These results indicate that POL extract had the potential to replace sodium nitrite due to its ability to hinder protein oxidation and microbial growth of vacuum-packed seasoned steaks, while enhancing the color, water-holding capacity, and tenderness of seasoned steaks. © 2024 Society of Chemical Industry.


Subject(s)
Antioxidants , Food Packaging , Food Preservation , Food Storage , Plant Extracts , Portulaca , Portulaca/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Food Packaging/instrumentation , Vacuum , Animals , Food Preservation/methods , Antioxidants/pharmacology , Antioxidants/chemistry , Cattle , Meat/analysis , Meat/microbiology , Color , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
14.
Compr Rev Food Sci Food Saf ; 23(4): e13392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865212

ABSTRACT

Cultured meat, which involves growing meat in a laboratory rather than breeding animals, offers potential benefits in terms of sustainability, health, and animal welfare compared to conventional meat production. However, the cultured meat production process involves several stages, each with potential hazards requiring careful monitoring and control. Microbial contamination risks exist in the initial cell collection from source animals and the surrounding environment. During cell proliferation, hazards may include chemical residues from media components such as antibiotics and growth factors, as well as microbial issues from improper bioreactor sterilization. In the differentiation stage where cells become muscle tissue, potential hazards include residues from scaffolding materials, microcarriers, and media components. Final maturation and harvesting stages risk environmental contamination from nonsterile conditions, equipment, or worker handling if proper aseptic conditions are not maintained. This review examines the key microbiological and chemical hazards that must be monitored and controlled during the manufacturing process for cultured meats. It describes some conventional and emerging novel techniques that could be applied for the detection of microbial and chemical hazards in cultured meat. The review also outlines the current evolving regulatory landscape around cultured meat and explains how thorough detection and characterization of microbiological and chemical hazards through advanced analytical techniques can provide crucial data to help develop robust, evidence-based food safety regulations specifically tailored for the cultured meat industry. Implementing new digital food safety methods is recommended for further research on the sensitive and effective detection of microbiological and chemical hazards in cultured meat.


Subject(s)
Meat , Animals , Meat/microbiology , Meat/analysis , Food Contamination/analysis , Food Microbiology/methods , Food Safety/methods , In Vitro Meat
15.
BMC Microbiol ; 23(1): 403, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114898

ABSTRACT

Contaminated meat has been implicated in many cases of foodborne illness and poses serious challenges in developing countries. This study aimed to assess the quality and safety of raw beef meat in Assosa Town. The finding showed that the mean of Aerobic mesophilic bacteria (AMB) and S. aureus at retail outlets was 5.04 log10cfu/g and 3.84 log10cfu/g; 4.03 log10cfu/g and 3.5 log10cfu/g at slaughterhouse, respectively. The microbial load range of AMB at the butcher shop was 2.49-5.16 log10 cfu/g, while at the abattoir it was 2.75-7.52 log10 cfu/g out of 70 raw beef meat analyzed samples. Similar to this, the butcher shop and abattoir had S. aureus microbiological load ranges of 2.74 - 4.84 log10 cfu/g and 2.71-4.72 log10 cfu/g, respectively. In contrast, 25.7% and 34.3% of the samples in the abattoir and retail shop, respectively, were contaminated with Salmonella sp. For S. aureus, just 38.71% and 17.14%, respectively, of the samples at the retail and butcher shops were satisfactory. AMB found that 80% of the examined samples from butcher shops and 57.7% from abattoirs were satisfactory. Due to poor handling and environmental hygiene procedures by Assosa Town butchers, 77.1% of the meat contact surface and 82.9% of the carcass were exposed to flies. On the other hand, only 5.7%, 28.6%, and 22.9% of the butchers kept the carcass in the refrigerator, and wore gowns and hairnets, respectively. In slaughterhouses, the majority of respondents (87.5%) concur that there were certain challenges in achieving slaughtering in the working environment.


Subject(s)
Abattoirs , Foodborne Diseases , Animals , Cattle , Ethiopia , Staphylococcus aureus , Meat/microbiology , Food Microbiology
16.
BMC Microbiol ; 23(1): 168, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322421

ABSTRACT

Salmonellosis, a zoonotic disease, is one of the leading causes of foodborne illness worldwide. It is responsible for most infections caused by consumption of contaminated food. In recent years, a significant increase in the resistance of these bacteria to common antibiotics has been observed, posing a serious threat to global public health. The aim of this study was to investigate the prevalence of virulent antibiotic-resistant Salmonella spp. strains in Iranian poultry markets. A total of 440 chicken meat samples were randomly selected from meat supply and distribution facilities in Shahrekord and tested for bacteriological contamination. After culturing and isolating the strains, identification was performed using the classical bacteriological method and PCR. To determine antibiotic resistance, a disc diffusion test was performed according to the recommendations of the French Society of Microbiology. PCR was used to detect resistance and virulence genes. Only 9% of the samples were positive for Salmonella. These were Salmonella typhimurium isolates. All Salmonella typhimurium serotypes tested positive for the rfbJ, fljB, invA and fliC genes. Resistance to TET, cotrimoxazole, NA, NIT, piperacillin/tazobactam and other antibiotics was found in 26 (72.2%), 24 (66.7%), 22 (61.1%) and 21 (58.3%) isolates, respectively. The sul1, sul2 and sul3 genes were present in 20, 12 and 4 of 24 cotrimoxazole-resistant bacteria, respectively. Chloramphenicol resistance was found in six isolates, but more isolates tested positive for the floR and cat two genes. In contrast, 2 (33%) of the cat three genes, 3 (50%) of the cmlA genes and 2 (34%) of the cmlB genes were all positive. The results of this investigation showed that Salmonella typhimurium is the most common serotype of the bacterium. This means that most of the antibiotics commonly used in the livestock and poultry industries are ineffective against most Salmonella isolates, which is important for public health.


Subject(s)
Salmonella enteritidis , Salmonella typhimurium , Animals , Salmonella typhimurium/genetics , Salmonella enteritidis/genetics , Poultry , Virulence/genetics , Trimethoprim, Sulfamethoxazole Drug Combination , Prevalence , Iran , Drug Resistance, Multiple, Bacterial/genetics , Meat/microbiology , Anti-Bacterial Agents/pharmacology
17.
BMC Microbiol ; 23(1): 212, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550643

ABSTRACT

BACKGROUND: The spread of extended-spectrum ß-lactamases (ESBL) producing E. coli from food animals and the environment to humans has become a significant public health concern. The objectives of this study were to determine the occurrence, pathotypes, virulotypes, genotypes, and antimicrobial resistance patterns of ESBL-producing E. coli in retail meat samples and workers in retail meat shops in Egypt and to evaluate the bactericidal efficacy of silver nanoparticles (AgNPs-H2O2) against multidrug resistant (MDR) ESBL-producing E. coli. RESULTS: A total of 250 retail meat samples and 100 human worker samples (hand swabs and stool) were examined for the presence of ESBL- producing E. coli. Duck meat and workers' hand swabs were the highest proportion of ESBL- producing E. coli isolates (81.1%), followed by camel meat (61.5%). Pathotyping revealed that the isolates belonged to groups A and B1. Virulotyping showed that the most prevalent virulence gene was Shiga toxin 2 (stx2) associated gene (36.9%), while none of the isolates harbored stx1 gene. Genotyping of the identified isolates from human and meat sources by REP-PCR showed 100% similarity within the same cluster between human and meat isolates. All isolates were classified as MDR with an average multiple antibiotic resistance (MAR) index of 0.7. AgNPs-H2O2 at concentrations of 0.625, 1.25, 2.5 and 5 µg/mL showed complete bacterial growth inhibition. CONCLUSIONS: Virulent MDR ESBL-producing E. coli were identified in retail meat products in Egypt, posing significant public health threats. Regular monitoring of ESBL-producing E. coli frequency and antimicrobial resistance profile in retail meat products is crucial to enhance their safety. AgNPs-H2O2 is a promising alternative for treating MDR ESBL-producing E. coli infections and reducing antimicrobial resistance risks.


Subject(s)
Escherichia coli , Meat , Metal Nanoparticles , Silver , Silver/pharmacology , Meat/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Food Contamination , Humans , Egypt , beta-Lactamases , Genotyping Techniques , Drug Resistance, Bacterial
18.
Microb Pathog ; 176: 106000, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36709849

ABSTRACT

This study is about the combined antimicrobial effect of essential oils (EOs), namely Mediterranean (MN) EO, German thyme (GT) EO, Cinnamon (CN) EO, Indian (IN) EO, Asian (AN) EO, and citrus extract (CE) against spoilage bacteria (Lactobacillus sakei, Lactobacillus curvatus, Leuconostoc mesenteroides, Carnobacterium divergens, Brochothrix thermosphacta, and Pseudomonas aeruginosa) and selected pathogenic bacteria (E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes). Firstly, each EO and CE were screened for antibacterial activity by microdilution assay, and the most efficient antimicrobial extracts were selected based on the lowest MIC values to perform the combination assays. Afterward, a simplex-centroid mixture design was used to develop optimal antimicrobial mixtures capable of protecting meat from spoilage and pathogenic bacteria. The optimization tool allowed us to postulate models and validate them statistically as well as to create a prediction profile of the experiment. Thus, the optimal mixtures named active formulation 1 (AF1) containing MN EO/GT EO/VC EO/CE with a ratio of 1:2:2:1 and active formulation 2 (AF2) containing IN EO/AN EO/CE/VC EO with a ratio of 2:2:1:2, were developed based on the demonstration of their synergistic effect against tested bacteria. The obtained formulations at organoleptically acceptable concentrations could be applied in the preservation of meat and meat products.


Subject(s)
Anti-Infective Agents , Escherichia coli O157 , Listeria monocytogenes , Oils, Volatile , Food Microbiology , Anti-Infective Agents/pharmacology , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Microbial Sensitivity Tests
19.
Microb Pathog ; 184: 106375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774989

ABSTRACT

Food-borne pathogenic bacteria are a major public health concern globally. Traditional control methods using antibiotics have limitations, leading to the exploration of alternative strategies. Essential oils such as cardamom possess antimicrobial properties and have shown efficacy against food-borne pathogenic bacteria. The utilization of essential oils and their bioactive constituents in food preservation is a viable strategy to prolong the shelf-life of food products while ensuring their quality and safety. To the best of our knowledge, there are no studies that have utilized 1,8-cineole (the main active constituent of cardamom essential oil) as a preservative in meat, so this study might be the first to utilize 1,8-cineole as an antibacterial agent in meat preservation. The application of 1,8-cineole had a significant suppressive impact on the growth rate of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in meat samples stored for 7 days at 4 °C. Additionally, the surface color of the meat samples was not negatively impacted by the application of 1,8-cineole. The minimum inhibitory concentration was 12.5-25 mg/ml, and the minimum bactericidal concentration was 25-50.0 mg/ml. The bacterial cell membrane may be the target of cardamom, causing leakage of intracellular proteins, ATP, and DNA. The obtained data in this study may pave a new avenue for using 1,8-cineole as a new perspective for dealing with this problem of food-borne pathogens and food preservation, such as meat.


Subject(s)
Elettaria , Listeria monocytogenes , Oils, Volatile , Eucalyptol , Food Microbiology , Meat/microbiology , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli , Microbial Sensitivity Tests
20.
Food Microbiol ; 109: 104099, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36309426

ABSTRACT

Marinades are increasingly used to manufacture raw fish products. In corresponding meats, marinating is known to have a major effect on the composition of the microbiome, but the effect of marinating on fish is not known as well. This knowledge gap prompted our study of the microbial ecology and amine formation in marinated and unmarinated modified atmosphere commercially packaged rainbow trout fillet strips. According to our findings, marination increased the maximum concentrations (7-8 log CFU/g) of psychrotrophic bacteria by one logarithmic unit and led to 5 times higher average tyramine concentrations than the corresponding unmarinated product. Instead, trimethylamine concentrations were 30 times higher in the unmarinated product than those in the marinated one. According to the 16 S rRNA sequence analyses, lactic acid bacteria (LAB) predominated in the marinated strips one day after the use-by date, whereas in the unmarinated strips Fusobacteriaceae and LAB were the dominating taxa. Based on the culture-dependent analysis, Latilactobacillus fuchuensis was the prevailing LAB in both products. Since the subset of L. fuchuensis strains tested was able to produce tyramine in vitro, we hypothesise that the use of the acidic marinade activated the production of tyrosine-decarboxylating enzymes in L. fuchuensis and led to the increased tyramine concentrations.


Subject(s)
Oncorhynchus mykiss , Animals , Tyramine , Meat/microbiology , Atmosphere
SELECTION OF CITATIONS
SEARCH DETAIL