Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Publication year range
1.
Am J Med Genet A ; 194(6): e63545, 2024 06.
Article in English | MEDLINE | ID: mdl-38264826

ABSTRACT

Mucolipidosis type-II (ML-II) is an ultra-rare disorder caused by deficiency of N-acetylglucosaminyl-1-phosphotransferase enzyme due to biallelic pathogenic variants in GNPTAB gene. There are a few known about the natural history of ML-II. In this study, we presented the natural course of 24 patients diagnosed with ML-II. Mean age at diagnosis was 9.3 ± 5.7 months. All patients had coarse face, developmental delay, and hypotonia. The mean survival time was 3.01 ± 1.4 years. The oldest patient was 6.5 years old. Twelve patients died due to lung infection and respiratory failure. We observed early and significant radiological findings of ML-II were different from typical dysostosis multiplex such as femoral cloaking, rickets-like changes, and talocalcaneal stippling. These are significant findings observed in the fetal or newborn period which is considered to be highly characteristic of ML-II and disappears in the first year. Cloaking, rickets-like changes, and stippling were not observed in patients older than three months of age and this suggests that these findings disappear within the first year. These radiological features can be used as important clues for diagnosis. We detected eight different pathogenic variants in GNPTAB gene, three of them were novel.


Subject(s)
Mucolipidoses , Humans , Mucolipidoses/genetics , Mucolipidoses/diagnosis , Mucolipidoses/diagnostic imaging , Mucolipidoses/pathology , Male , Female , Infant , Child, Preschool , Child , Transferases (Other Substituted Phosphate Groups)/genetics , Mutation/genetics , Radiography , Early Diagnosis , Infant, Newborn , Phenotype
2.
Hum Mol Genet ; 30(10): 908-922, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33822942

ABSTRACT

Mucolipidosis IV (MLIV) is an orphan disease leading to debilitating psychomotor deficits and vision loss. It is caused by loss-of-function mutations in the MCOLN1 gene that encodes the lysosomal transient receptor potential channel mucolipin1, or TRPML1. With no existing therapy, the unmet need in this disease is very high. Here, we showed that AAV-mediated CNS-targeted gene transfer of the human MCOLN1 gene rescued motor function and alleviated brain pathology in the MLIV mouse model. Using the AAV-PHP.b vector in symptomatic mice, we showed long-term reversal of declined motor function and significant delay of paralysis. Next, using self-complementary AAV9 clinical candidate vector, we showed that its intracerebroventricular administration in post-natal day 1 mice significantly improved motor function, myelination and reduced lysosomal storage load in the MLIV mouse brain. Based on our data and general advancements in the gene therapy field, we propose scAAV9-mediated CSF-targeted MCOLN1 gene transfer as a therapeutic strategy in MLIV.


Subject(s)
Genetic Therapy , Mucolipidoses/therapy , Nervous System Diseases/therapy , Transient Receptor Potential Channels/genetics , Animals , Brain/metabolism , Brain/pathology , Dependovirus/genetics , Disease Models, Animal , Humans , Loss of Function Mutation/genetics , Lysosomes/genetics , Lysosomes/pathology , Mice , Mucolipidoses/cerebrospinal fluid , Mucolipidoses/genetics , Mucolipidoses/pathology , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/genetics , Nervous System Diseases/pathology
3.
Liver Int ; 42(2): 402-411, 2022 02.
Article in English | MEDLINE | ID: mdl-34811877

ABSTRACT

BACKGROUND & AIMS: Biallelic pathogenic variants in MYO5B cause microvillus inclusion disease (MVID), or familial intrahepatic cholestasis (FIC). The reported FIC patients are scarce and so the genotype-phenotype correlation has not been fully characterised. This study aimed to report more MYO5B-associated FIC patients and correlate genotypes to phenotypes in more detail. METHODS: The phenotype and genetic data of 12 newly diagnosed MYO5B-associated (including 11 FIC) patients, as well as 118 previously reported patients with available genotypes, were summarised. Only patients with biallelic MYO5B variants were enrolled. Nonsense, frameshift, canonical splice sites, initiation codon loss, and single exon or multiexon deletion were defined as null MYO5B variants. RESULTS: Phenotypically, 50 were isolated MVID, 47 involved both liver and intestine (combined), and 33 were isolated FIC (9 persistent, 15 recurrent, 3 transient, and 6 un-sub-classified) patients. The severity of intestinal manifestation was positively correlated to an increased number of null variants (ρ = 0.299, P = .001). All FIC patients carried at least one non-null variant, and the severity of cholestasis was correlated to the presence of a null variant (ρ = 0.420, P = .029). The proportion of FIC patients (16/29, 55%) harbouring missense/in-frame variants affecting the non-motor regions of MYO5B was significantly higher than that of MVID (3/25, 12%, P = .001) and combined patients (3/31, 10%, P = .000). 10 of the 29 FIC patients harboured missense/in-frame variants at the IQ motifs comparing to none in the 56 MVID and combined patients (P = .000). CONCLUSIONS: The phenotype of MYO5B deficiency was associated with MYO5B genotypes, the nullity or the domain affected.


Subject(s)
Cholestasis, Intrahepatic/genetics , Mucolipidoses , Myosin Heavy Chains , Myosin Type V , Genetic Association Studies , Humans , Liver/pathology , Mucolipidoses/genetics , Mucolipidoses/pathology , Mutation , Myosin Heavy Chains/genetics , Myosin Type V/genetics
4.
Hum Genet ; 140(8): 1143-1156, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33974130

ABSTRACT

Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.


Subject(s)
Eye Diseases, Hereditary/genetics , Intestinal Mucosa/metabolism , Malabsorption Syndromes/genetics , Microvilli/pathology , Mucolipidoses/genetics , Polymorphism, Single Nucleotide , Qa-SNARE Proteins/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinal Dystrophies/genetics , Aged , Aged, 80 and over , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Autopsy , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Female , Gene Expression Regulation , Homozygote , Humans , Intestinal Mucosa/pathology , Malabsorption Syndromes/metabolism , Malabsorption Syndromes/pathology , Mice , Mice, Knockout , Microvilli/genetics , Microvilli/metabolism , Mucolipidoses/metabolism , Mucolipidoses/pathology , Phenotype , Qa-SNARE Proteins/deficiency , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Dystrophies/metabolism , Retinal Dystrophies/pathology , Sensory Rhodopsins/genetics , Sensory Rhodopsins/metabolism , Exome Sequencing
5.
Gastroenterology ; 159(4): 1390-1405.e20, 2020 10.
Article in English | MEDLINE | ID: mdl-32534933

ABSTRACT

BACKGROUND & AIM: Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS: Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS: Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS: LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.


Subject(s)
Lysophospholipids/therapeutic use , Malabsorption Syndromes/drug therapy , Malabsorption Syndromes/pathology , Microvilli/pathology , Mucolipidoses/drug therapy , Mucolipidoses/pathology , Myosin Type V/deficiency , Sodium-Glucose Transporter 1/metabolism , Animals , Disease Models, Animal , Enterocytes/pathology , Malabsorption Syndromes/etiology , Mice , Mice, Knockout , Mucolipidoses/etiology
6.
Gastroenterology ; 158(8): 2236-2249.e9, 2020 06.
Article in English | MEDLINE | ID: mdl-32112796

ABSTRACT

BACKGROUND & AIMS: Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS: Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS: Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS: We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.


Subject(s)
Duodenum/metabolism , Gene Editing , Intestinal Mucosa/metabolism , Malabsorption Syndromes/genetics , Microvilli/pathology , Mucolipidoses/genetics , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Sodium-Glucose Transporter 1/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Animals , Animals, Genetically Modified , Cells, Cultured , Coculture Techniques , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Duodenum/pathology , Genetic Predisposition to Disease , Humans , Intestinal Mucosa/pathology , Malabsorption Syndromes/metabolism , Malabsorption Syndromes/pathology , Microvilli/genetics , Microvilli/metabolism , Mucolipidoses/metabolism , Mucolipidoses/pathology , Mutation, Missense , Phenotype , Sodium/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Hydrogen Exchanger 3/genetics , Sus scrofa
7.
Genet Med ; 23(12): 2369-2377, 2021 12.
Article in English | MEDLINE | ID: mdl-34341521

ABSTRACT

PURPOSE: Pathogenic variants in GNPTAB and GNPTG, encoding different subunits of GlcNAc-1-phosphotransferase, cause mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma. This study aimed to investigate the cellular and molecular bases underlying skeletal abnormalities in patients with MLII and MLIII. METHODS: We analyzed bone biopsies from patients with MLIII alpha/beta or MLIII gamma by undecalcified histology and histomorphometry. The skeletal status of Gnptgko and Gnptab-deficient mice was determined and complemented by biochemical analysis of primary Gnptgko bone cells. The clinical relevance of the mouse data was underscored by systematic urinary collagen crosslinks quantification in patients with MLII, MLIII alpha/beta, and MLIII gamma. RESULTS: The analysis of iliac crest biopsies revealed that bone remodeling is impaired in patients with GNPTAB-associated MLIII alpha/beta but not with GNPTG-associated MLIII gamma. Opposed to Gnptab-deficient mice, skeletal remodeling is not affected in Gnptgko mice. Most importantly, patients with variants in GNPTAB but not in GNPTG exhibited increased bone resorption. CONCLUSION: The gene-specific impact on bone remodeling in human individuals and in mice proposes distinct molecular functions of the GlcNAc-1-phosphotransferase subunits in bone cells. We therefore appeal for the necessity to classify MLIII based on genetic in addition to clinical criteria to ensure appropriate therapy.


Subject(s)
Bone Resorption , Mucolipidoses , Transferases (Other Substituted Phosphate Groups) , Animals , Humans , Mice , Mucolipidoses/genetics , Mucolipidoses/pathology , Transferases (Other Substituted Phosphate Groups)/genetics
8.
Am J Med Genet A ; 185(10): 2873-2877, 2021 10.
Article in English | MEDLINE | ID: mdl-34037310

ABSTRACT

Trichohepatoenteric syndrome (THES) is a very rare autosomal recessive genetic disorder, which is characterized by intractable diarrhea during infancy, dysmorphic features, immunodeficiency, and a failure to thrive. There are still significant difficulties for patients and clinicians in terms of the management of THES, even though its molecular basis has been uncovered in the last decade. In this article, we have presented two cases relating to siblings that have been diagnosed with the condition. Concerning one of the patients, we described a novel variation (c.2114 + 5G > A) in the TTC37 gene and a mild clinical course; meanwhile, the other one was clinically diagnosed with THES at 17 years of age, but they had seizures and died suddenly. These cases expand the spectrum of clinical findings in relation to THES.


Subject(s)
Carrier Proteins/genetics , Diarrhea, Infantile/genetics , Failure to Thrive/genetics , Fetal Growth Retardation/genetics , Hair Diseases/genetics , Malabsorption Syndromes/genetics , Microvilli/pathology , Mucolipidoses/genetics , Adolescent , Diarrhea, Infantile/complications , Diarrhea, Infantile/diagnosis , Diarrhea, Infantile/pathology , Facies , Failure to Thrive/complications , Failure to Thrive/diagnosis , Failure to Thrive/pathology , Female , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/pathology , Genetic Predisposition to Disease , Hair Diseases/complications , Hair Diseases/diagnosis , Hair Diseases/pathology , Humans , Infant , Malabsorption Syndromes/complications , Malabsorption Syndromes/diagnosis , Malabsorption Syndromes/pathology , Male , Microvilli/genetics , Mucolipidoses/complications , Mucolipidoses/diagnosis , Mucolipidoses/pathology , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/pathology , Siblings
9.
Mol Biol Rep ; 48(2): 1465-1474, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33507475

ABSTRACT

Mucolipidosis III gamma (ML III γ) is a slowly progressive disorder that affects multiple parts of the body such as the skeleton, joints, and connective tissue structures. It is caused by pathogenic variants in the GNPTG gene that provides instructions for producing the γ subunit of GlcNAc-1-phosphotransferase. In this study we aim to characterize clinical findings and biological insights on two novel GNPTG variants causing ML III γ phenotypes with varying severity. We report on two siblings with ML III γ bearing the previously undescribed c.477C > G (p.Y159*) nonsense variant in a homozygous state as well as a patient with ML III γ bearing the novel c.110 + 19_111-17del variant in a homozygous state. These variants were revealed by whole-exome sequencing and Sanger sequencing, respectively. Their parents, who are heterozygotes for the same mutation, are healthy. The clinical and radiographic presentation of ML III γ in our patients who had c.477C > G (p.Y159*) variant is consistent with a relatively severe form of the disease, which is further supported by a working three-dimensional model of the GlcNAc-1-phosphotransferase γ subunit. On the other hand, it is seen that our patient who carries the c.110 + 19_111-17del variant has a milder phenotype. Our findings help broaden the spectrum of GNPTG variants causing ML III γ and offer structural and mechanistic insights into loss of GlcNAc-1-phosphotransferase γ subunit function.


Subject(s)
Genetic Predisposition to Disease , Mucolipidoses/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Codon, Nonsense/genetics , Female , Homozygote , Humans , Joints/pathology , Male , Mucolipidoses/pathology , Phenotype , Severity of Illness Index , Siblings , Skeleton/pathology , Exome Sequencing
10.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922276

ABSTRACT

Sialidosis, caused by a genetic deficiency of the lysosomal sialidase gene (NEU1), is a systemic disease involving various tissues and organs, including the nervous system. Understanding the neurological dysfunction and pathology associated with sialidosis remains a challenge, partially due to the lack of a human model system. In this study, we have generated two types of induced pluripotent stem cells (iPSCs) with sialidosis-specific NEU1G227R and NEU1V275A/R347Q mutations (sialidosis-iPSCs), and further differentiated them into neural precursor cells (iNPCs). Characterization of NEU1G227R- and NEU1V275A/R347Q- mutated iNPCs derived from sialidosis-iPSCs (sialidosis-iNPCs) validated that sialidosis-iNPCs faithfully recapitulate key disease-specific phenotypes, including reduced NEU1 activity and impaired lysosomal and autophagic function. In particular, these cells showed defective differentiation into oligodendrocytes and astrocytes, while their neuronal differentiation was not notably affected. Importantly, we found that the phenotypic defects of sialidosis-iNPCs, such as impaired differentiation capacity, could be effectively rescued by the induction of autophagy with rapamycin. Our results demonstrate the first use of a sialidosis-iNPC model with NEU1G227R- and NEU1V275A/R347Q- mutation(s) to study the neurological defects of sialidosis, particularly those related to a defective autophagy-lysosome pathway, and may help accelerate the development of new drugs and therapeutics to combat sialidosis and other LSDs.


Subject(s)
Astrocytes/pathology , Induced Pluripotent Stem Cells/pathology , Mucolipidoses/pathology , Neural Stem Cells/pathology , Neuraminidase/metabolism , Oligodendroglia/pathology , Teratoma/pathology , Astrocytes/metabolism , Autophagy , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/metabolism , Lysosomes , Mucolipidoses/genetics , Mucolipidoses/metabolism , Mutation , Neural Stem Cells/metabolism , Neuraminidase/genetics , Oligodendroglia/metabolism , Phenotype , Teratoma/genetics , Teratoma/metabolism
11.
Hum Mol Genet ; 27(15): 2725-2738, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771310

ABSTRACT

Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.


Subject(s)
Astrocytes/drug effects , Astrocytes/pathology , Brain/drug effects , Fingolimod Hydrochloride/pharmacology , Mucolipidoses/pathology , Animals , Brain/metabolism , Brain/pathology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Encephalitis/drug therapy , Encephalitis/genetics , Encephalitis/metabolism , Encephalitis/pathology , Female , Gene Expression Regulation , Lysosomal Membrane Proteins/metabolism , Male , Mice, Knockout , Mucolipidoses/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
12.
Biochem Biophys Res Commun ; 528(2): 398-403, 2020 07 23.
Article in English | MEDLINE | ID: mdl-31926596

ABSTRACT

We have established a novel, simple, and highly reproducible method to generate skeletal muscle cells from mouse skin. Small pieces of skin from the back of mice were cultured in extracellular material-coated dishes in typical culture medium for about 3 weeks. Myotubes formed after about a week, grew into twitching myotubes, and became twitching myotube clumps after 3 weeks. Skeletal muscle cells are formed spontaneously with no induction. Myotubes were immunologically positive for myosin heavy chains, MyoD, and myogenin. Ultrastructural analysis revealed the presence of the sarcomere structure. Furthermore, PAX7+/MyoD- muscle stem cells proliferated around these myotubes, and MyoD+/myogenin+/MHC-- cells were also observed. Moreover, we investigated the formation of skeletal muscle cells from the sialidosis mouse skin, and showed that it is decreased compared to that of the wild type. Our method to generate skeletal muscle cells from skin is thought to be useful for the investigation of muscle cell development and muscle-related disorders.


Subject(s)
Muscle Cells/cytology , Muscle, Skeletal/cytology , Skin/cytology , Tissue Culture Techniques , Animals , Cell Movement , Disease Models, Animal , Female , Fibroblasts/cytology , Male , Mice , Models, Biological , Mucolipidoses/pathology , Muscle Development , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/ultrastructure , Neuraminidase/metabolism
13.
J Hum Genet ; 65(11): 971-984, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32651481

ABSTRACT

Mucolipidosis (ML) (OMIM 607840 & 607838) is a rare autosomal recessive inherited disorder that occurs due to the deficiency of golgi enzyme uridine diphosphate (UDP)- N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) responsible for tagging mannose-6-phosphate for proper trafficking of lysosomal enzymes to lysosomes. Variants in GlcNAc-phosphotransferase (GNPTAB (α, ß subunits) and GNPTG (γ subunits) are known to result in impaired targeting of lysosomal enzymes leading to Mucolipidosis (ML) Type II or Type III. We analyzed 69 Indian families of MLII/III for clinical features and molecular spectrum and performed in silico analysis for novel variants. We identified 38 pathogenic variants in GNPTAB and 5 pathogenic variants in GNPTG genes including missense, frame shift, deletion, duplication and splice site variations. A total of 26 novel variants were identified in GNPTAB and 4 in GNPTG gene. In silico studies using mutation prediction software like SIFT, Polyphen2 and protein structure analysis further confirmed the pathogenic nature of the novel sequence variants detected in our study. Except for a common variant c.3503_3504delTC in early onset MLII, we could not establish any other significant genotype and phenotype correlation. This is one of the largest studies reported till date on Mucolipidosis II/III in order to identify mutation spectrum and any recurrent mutations specific to the Indian ethnic population. The mutational spectrum information in Indian patients will be useful in better genetic counselling, carrier detection and prenatal diagnosis for patients with ML II/III.


Subject(s)
Mucolipidoses/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Adolescent , Adult , Asian People/genetics , Child , Child, Preschool , Exons/genetics , Female , Frameshift Mutation/genetics , Gene Deletion , Gene Duplication/genetics , Genotype , Humans , India/epidemiology , Lysosomes/genetics , Male , Mannosephosphates/genetics , Mucolipidoses/epidemiology , Mucolipidoses/pathology , Mutation, Missense/genetics , Protein Isoforms/genetics , Young Adult
14.
Prenat Diagn ; 40(5): 605-611, 2020 04.
Article in English | MEDLINE | ID: mdl-32003481

ABSTRACT

OBJECTIVES: There are many causes of fetal effusions, including the rare lysosomal storage diseases (LSDs). Vacuolated lymphocytes (VLs) are found in the blood of infants with LSDs, and their presence in fetal effusion could increase the risk of underlying LSD. METHODS: Between 2006 and 2018, all fetal effusions samples from 43 fetal multidisciplinary centers were referred to a single laboratory. Cells were counted, and, if observed, VLs were categorized and counted. Screening for LSDs was performed by metabolite analyses on amniotic fluid supernatant. The diagnosis of an LSD was confirmed by measuring the activity of the corresponding enzyme and/or mutation analysis. RESULTS: Our laboratory received 614 ascitic fluids and 280 pleural fluids sampled between 22 and 33 weeks of gestation. The final diagnosis was LSD in 16 cases (1.8%). VLs were reported in all these 16 cases, in a mix of lymphocytes with and without vacuoles. Vacuoles in VLs varied in size and number. In most cases, VLs were easy to recognize, with numerous, large, round, well-defined vacuoles, but in three cases of LSDs, VLs were atypical. CONCLUSION: The finding of VLs in fetal effusions is an inexpensive first-line test that may help to prioritize biochemical and genetic tests for LSDs.


Subject(s)
Ascites/pathology , Lymphocytes/pathology , Lysosomal Storage Diseases/pathology , Pleural Effusion/pathology , Vacuoles/pathology , Ascitic Fluid/pathology , Female , Gangliosidosis, GM1/diagnosis , Gangliosidosis, GM1/pathology , Humans , Lysosomal Storage Diseases/diagnosis , Mucolipidoses/diagnosis , Mucolipidoses/pathology , Mucopolysaccharidosis VII/diagnosis , Mucopolysaccharidosis VII/pathology , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/pathology , Pregnancy , Prenatal Diagnosis , Sensitivity and Specificity , Sialic Acid Storage Disease/diagnosis , Sialic Acid Storage Disease/pathology
15.
Mol Cell Proteomics ; 17(8): 1612-1626, 2018 08.
Article in English | MEDLINE | ID: mdl-29773673

ABSTRACT

Targeting of soluble lysosomal enzymes requires mannose 6-phosphate (M6P) signals whose formation is initiated by the hexameric N-acetylglucosamine (GlcNAc)-1-phosphotransferase complex (α2ß2γ2). Upon proteolytic cleavage by site-1 protease, the α/ß-subunit precursor is catalytically activated but the functions of γ-subunits (Gnptg) in M6P modification of lysosomal enzymes are unknown. To investigate this, we analyzed the Gnptg expression in mouse tissues, primary cultured cells, and in Gnptg reporter mice in vivo, and found high amounts in the brain, eye, kidney, femur, vertebra and fibroblasts. Consecutively we performed comprehensive quantitative lysosomal proteome and M6P secretome analysis in fibroblasts of wild-type and Gnptgko mice mimicking the lysosomal storage disorder mucolipidosis III. Although the cleavage of the α/ß-precursor was not affected by Gnptg deficiency, the GlcNAc-1-phosphotransferase activity was significantly reduced. We purified lysosomes and identified 29 soluble lysosomal proteins by SILAC-based mass spectrometry exhibiting differential abundance in Gnptgko fibroblasts which was confirmed by Western blotting and enzymatic activity analysis for selected proteins. A subset of these lysosomal enzymes show also reduced M6P modifications, fail to reach lysosomes and are secreted, among them α-l-fucosidase and arylsulfatase B. Low levels of these enzymes correlate with the accumulation of non-degraded fucose-containing glycostructures and sulfated glycosaminoglycans in Gnptgko lysosomes. Incubation of Gnptgko fibroblasts with arylsulfatase B partially rescued glycosaminoglycan storage. Combinatorial treatments with other here identified missorted enzymes of this degradation pathway might further correct glycosaminoglycan accumulation and will provide a useful basis to reveal mechanisms of selective, Gnptg-dependent formation of M6P residues on lysosomal proteins.


Subject(s)
Enzymes/metabolism , Lysosomes/metabolism , Mucolipidoses/metabolism , Mucolipidoses/pathology , Proteome/metabolism , Animals , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Glycosaminoglycans/metabolism , Humans , Isotope Labeling , Mannosephosphates/metabolism , Mice, Knockout , Protein Subunits/metabolism , Proteolysis , Substrate Specificity
16.
Int J Mol Sci ; 21(17)2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32842549

ABSTRACT

The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.


Subject(s)
Endosomes/metabolism , Neoplasms/metabolism , Small Molecule Libraries/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Drug Delivery Systems/methods , Endocytosis/physiology , Endosomes/drug effects , Humans , Malabsorption Syndromes/metabolism , Malabsorption Syndromes/pathology , Microvilli/metabolism , Microvilli/pathology , Mucolipidoses/metabolism , Mucolipidoses/pathology , Neoplasms/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Transport/physiology , Secretory Pathway , rab GTP-Binding Proteins/metabolism
17.
Hum Mol Genet ; 26(14): 2701-2718, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28449103

ABSTRACT

Mucolipidosis type IV (MLIV) is a lysosomal storage disease characterized by neurologic and ophthalmologic abnormalities. There is currently no effective treatment. MLIV is caused by mutations in MCOLN1, a lysosomal cation channel from the transient receptor potential (TRP) family. In this study, we used genome editing to knockout the two mcoln1 genes present in Danio rerio (zebrafish). Our model successfully reproduced the retinal and neuromuscular defects observed in MLIV patients, indicating that this model is suitable for studying the disease pathogenesis. Importantly, our model revealed novel insights into the origins and progression of the MLIV pathology, including the contribution of autophagosome accumulation to muscle dystrophy and the role of mcoln1 in embryonic development, hair cell viability and cellular maintenance. The generation of a MLIV model in zebrafish is particularly relevant given the suitability of this organism for large-scale in vivo drug screening, thus providing unprecedented opportunities for therapeutic discovery.


Subject(s)
Mucolipidoses/genetics , Transient Receptor Potential Channels/genetics , Zebrafish Proteins/genetics , Amino Acid Sequence , Animals , Autophagosomes/metabolism , Disease Models, Animal , Gene Knockout Techniques , Mucolipidoses/metabolism , Mucolipidoses/pathology , Mutation , Transient Receptor Potential Channels/metabolism , Zebrafish , Zebrafish Proteins/metabolism
18.
Gastroenterology ; 155(6): 1883-1897.e10, 2018 12.
Article in English | MEDLINE | ID: mdl-30144427

ABSTRACT

BACKGROUND & AIMS: Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters. METHODS: We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCreERT2;Myo5bflox/flox mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry. RESULTS: Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCreERT2;Myo5bflox/flox mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCreERT2;Myo5bflox/flox mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCreERT2;Myo5bflox/flox mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity. CONCLUSIONS: Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.


Subject(s)
Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Enterocytes/metabolism , Malabsorption Syndromes/genetics , Microvilli/pathology , Mucolipidoses/genetics , Myosin Type V/genetics , Sodium-Hydrogen Exchangers/metabolism , Animals , Aquaporins/metabolism , Duodenum/metabolism , Duodenum/pathology , Gene Silencing , Humans , Intestinal Mucosa , Intestines/cytology , Intestines/pathology , Malabsorption Syndromes/pathology , Mice , Mice, Knockout , Microvilli/genetics , Mucolipidoses/pathology , Protein Transport , Sodium-Glucose Transporter 1/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Sucrase-Isomaltase Complex/metabolism , Tamoxifen/administration & dosage
19.
J Neuroinflammation ; 16(1): 276, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31883529

ABSTRACT

BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.


Subject(s)
Microglia/metabolism , Mucolipidoses/genetics , Mucolipidoses/pathology , Transcriptome , Animals , Fabry Disease/genetics , Fabry Disease/metabolism , Fabry Disease/pathology , Humans , Mice , Mice, Transgenic , Microglia/pathology , Mucolipidoses/metabolism
20.
Biol Reprod ; 101(4): 782-790, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31317194

ABSTRACT

Transient receptor potential cation channel, mucolipin subfamily, member 1 (TRPML1) (MCOLN1/Mcoln1) is a lysosomal counter ion channel. Mutations in MCOLN1 cause mucolipidosis type IV (MLIV), a progressive and severe lysosomal storage disorder with a slow onset. Mcoln1-/- mice recapitulate typical MLIV phenotypes but roles of TRPML1 in female reproduction are unknown. Despite normal mating activities, Mcoln1-/- female mice had reduced fertility at 2 months old and quickly became infertile at 5 months old. Progesterone deficiency was detected on 4.5 days post coitum/gestation day 4.5 (D4.5). Immunohistochemistry revealed TRPML1 expression in luteal cells of wild type corpus luteum (CL). Corpus luteum formation was not impaired in 5-6 months old Mcoln1-/- females indicated by comparable CL numbers in control and Mcoln1-/- ovaries on both D1.5 and D4.5. In the 5-6 months old Mcoln1-/- ovaries, histology revealed less defined corpus luteal cord formation, extensive luteal cell vacuolization and degeneration; immunofluorescence revealed disorganized staining of collagen IV, a basal lamina marker for endothelial cells; Nile Red staining detected lipid droplet accumulation, a typical phenotype of MLIV; immunofluorescence of heat shock protein 60 (HSP60, a mitochondrial marker) and in situ hybridization of steroidogenic acute regulatory protein (StAR, for the rate-limiting step of steroidogenesis) showed reduced expression of HSP60 and StAR, indicating impaired mitochondrial functions. Luteal cell degeneration and impaired mitochondrial functions can both contribute to progesterone deficiency in the Mcoln1-/- mice. This study demonstrates a novel function of TRPML1 in maintaining CL luteal cell integrity and function.


Subject(s)
Disease Models, Animal , Luteal Cells/pathology , Mucolipidoses/genetics , Progesterone/deficiency , Transient Receptor Potential Channels/genetics , Animals , Corpus Luteum/metabolism , Corpus Luteum/pathology , Corpus Luteum/physiology , Female , Infertility/genetics , Infertility/metabolism , Infertility/pathology , Luteal Cells/metabolism , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucolipidoses/metabolism , Mucolipidoses/pathology , Progesterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL