Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nucleic Acids Res ; 52(14): 8072-8085, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38917326

ABSTRACT

Synucleinopathies, including dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple system atrophy (MSA), are characterized by the presence of α-synuclein (α-syn) aggregates in the central nervous system. Recent evidence suggests that the heterogeneity of synucleinopathies may be partly explained by the fact that patients may have different α-syn fibrillar polymorphs with structural differences. In this study, we identify nuclease resistant 2'fluoro-pyrimidine RNA aptamers that can differentially bind to structurally distinct α-syn fibrillar polymorphs. Moreover, we introduce a method, AptaFOOT-Seq, designed to rapidly assess the affinity of a mixture of these aptamers for different α-SYN fibrillar polymorphs using next-generation sequencing. Our findings reveal that the binding behavior of aptamers can be very different when they are tested separately or in the presence of other aptamers. In this case, competition and cooperation can occur, providing a higher level of information, which can be exploited to obtain specific 'footprints' for different α-Syn fibrillar polymorphs. Notably, these footprints can distinguish polymorphs obtained from patients with PD, DLB or MSA. This result suggests that aptaFOOT-Seq could be used for the detection of misfolded or abnormal protein conformations to improve the diagnosis of synucleinopathies.


Subject(s)
Aptamers, Nucleotide , Parkinson Disease , Synucleinopathies , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Humans , Aptamers, Nucleotide/chemistry , Parkinson Disease/metabolism , Parkinson Disease/genetics , Synucleinopathies/metabolism , Multiple System Atrophy/metabolism , Multiple System Atrophy/genetics , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Protein Binding , High-Throughput Nucleotide Sequencing
2.
Neurobiol Dis ; 197: 106535, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761956

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS: Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS: MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS: Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.


Subject(s)
Iron , Multiple System Atrophy , alpha-Synuclein , Humans , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Iron/metabolism , Male , Aged , Female , Middle Aged , alpha-Synuclein/metabolism , Brain/metabolism , Brain/pathology , Aged, 80 and over , Oligodendroglia/metabolism , Oligodendroglia/pathology
3.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839023

ABSTRACT

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Nerve Tissue Proteins , Oligodendroglia , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/genetics , Aged , Female , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Aged, 80 and over
4.
Neurobiol Dis ; 198: 106549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830476

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS: A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS: MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS: Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/metabolism , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Middle Aged , Aged , Brain/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Iron/metabolism , Neurotransmitter Agents/metabolism , Brain Mapping/methods
5.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38357858

ABSTRACT

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Neurons , alpha-Synuclein , Humans , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , alpha-Synuclein/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/metabolism , Neurons/metabolism , Neurons/pathology , Female , Aged , Male , Middle Aged , Brain/pathology , Brain/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Oligodendroglia/pathology , Oligodendroglia/metabolism , Microscopy/methods
6.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000570

ABSTRACT

While cognitive impairment, which was previously considered a red flag against the clinical diagnosis of multiple system atrophy (MSA), is a common symptom of this rare neurodegenerative disorder, behavioral disorders are reported in 30 to 70% of MSA patients. They include anxiety, apathy, impaired attention, compulsive and REM sleep behavior disorders (RBD), and these conditions, like depression, are early and pervasive features in MSA, which may contribute to disease progression. Despite changing concepts of behavioral changes in this synucleinopathy, the underlying pathophysiological and biochemical mechanisms are poorly understood. While specific neuropathological data are unavailable, neuroimaging studies related anxiety disorders to changes in the cortico-limbic system, apathy (and depression) to dysfunction of prefrontal-subcortical circuits, and compulsive behaviors to impairment of basal ganglia networks and involvement of orbito-frontal circuits. Anxiety has also been related to α-synuclein (αSyn) pathology in the amygdala, RBD to striatal monoaminergic deficit, and compulsive behavior in response to dopamine agonist therapy in MSA, while the basic mechanisms of the other behavioral disorders and their relations to other non-motor dysfunctions in MSA are unknown. In view of the scarcity of functional and biochemical findings in MSA with behavioral symptoms, further neuroimaging and biochemical studies are warranted in order to obtain better insight into their pathogenesis as a basis for the development of diagnostic biomarkers and future adequate treatment modalities of these debilitating comorbidities.


Subject(s)
Multiple System Atrophy , Multiple System Atrophy/physiopathology , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Humans , alpha-Synuclein/metabolism , Anxiety/physiopathology , Animals , Depression/physiopathology , Apathy/physiology
7.
J Am Soc Mass Spectrom ; 35(8): 1775-1785, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38938158

ABSTRACT

Data-independent acquisition (DIA) at the shortened data acquisition time is becoming a method of choice for quantitative proteomic applications requiring high throughput analysis of large cohorts of samples. With the advent of the combination of high resolution mass spectrometry with an asymmetric track lossless analyzer, these DIA capabilities were further extended with the recent demonstration of quantitative analyses at the speed of up to hundreds of samples per day. In particular, the proteomic data for the brain samples related to multiple system atrophy disease were acquired using 7 and 28 min chromatography gradients (Guzman et al., Nat. Biotech. 2024). In this work, we applied the recently introduced DirectMS1 method to reanalysis of these data using only MS1 spectra. Both DirectMS1 and DIA results were matched against long gradient DDA analysis from the earlier study of the same sample cohort. While the quantitation efficiency of DirectMS1 was comparable with DIA on the same data sets, we found an additional five proteins of biological significance relevant to the analyzed tissue samples. Among the findings, DirectMS1 was able to detect decreased caspase activity for Vimentin protein in the multiple system atrophy samples missed by the MS/MS-based quantitation methods. Our study suggests that DirectMS1 can be an efficient MS1-only addition to the analysis of DIA data in high-throughput quantitative proteomic studies.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Humans , Tandem Mass Spectrometry/methods , Multiple System Atrophy/metabolism , Vimentin/analysis , Vimentin/metabolism , Proteome/analysis , Brain/metabolism
8.
ACS Chem Neurosci ; 15(10): 2080-2088, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38690599

ABSTRACT

Amyloid fibrils are characteristic of many neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While different diseases may have fibrils formed of the same protein, the supramolecular morphology of these fibrils is disease-specific. Here, a method is reported to distinguish eight morphologically distinct amyloid fibrils based on differences in ligand binding properties. Eight fibrillar polymorphs of α-synuclein (αSyn) were investigated: five generated de novo using recombinant αSyn and three generated using protein misfolding cyclic amplification (PMCA) of recombinant αSyn seeded with brain homogenates from deceased patients diagnosed with Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Fluorescence binding assays were carried out for each fibril using a toolkit of six different ligands. The fibril samples were separated into five categories based on a binary classification of whether they bound specific ligands or not. Quantitative binding measurements then allowed every fibrillar polymorph to be uniquely identified, and the PMCA fibrils derived from PD, MSA, and DLB patients could be unambiguously distinguished. This approach constitutes a novel and operationally simple method to differentiate amyloid fibril morphologies and to identify disease states using PMCA fibrils obtained by seeding with patient samples.


Subject(s)
Amyloid , Parkinson Disease , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/analysis , Humans , Parkinson Disease/metabolism , Parkinson Disease/diagnosis , Amyloid/metabolism , Amyloid/analysis , Ligands , Multiple System Atrophy/metabolism , Multiple System Atrophy/diagnosis , Lewy Body Disease/metabolism , Lewy Body Disease/diagnosis , Brain/metabolism
9.
Parkinsonism Relat Disord ; 123: 106950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555791

ABSTRACT

INTRODUCTION: Impaired α-synuclein clearance is pivotal in the pathogenesis of neurodegenerative diseases. We evaluated glymphatic clearance in multiple system atrophy (MSA) patients using advanced imaging. METHODS: Forty-four MSA patients (11 with MSA-parkinsonian type [MSA-P] and 33 with MSA-cerebellar type [MSA-C]) and 30 healthy controls were studied using diffusion spectrum magnetic resonance imaging (DSI-MRI). Diffusivities were measured along the x-, y-, and z-axes to calculate the Analysis Along the Perivascular Space (ALPS) index. Comparisons of the ALPS index were conducted between MSA patients and controls and among MSA subtypes. The ALPS index correlation with the Unified Multiple System Atrophy Rating Scale (UMSARS) scores was also analyzed. RESULTS: The ALPS index differed significantly between patients with MSA and healthy controls, with lower values observed in the former (1.46 ± 0.17 versus1.63 ± 0.12, p < 0.001). Both MSA-P and MSA-C patients had lower ALPS-index (1.40 ± 0.13, p < 0.001; 1.47 ± 0.18, p = 0.003, respectively), but there was no significant difference between the two (p = 0.22). No correlation was found between the ALPS index and clinical scores for UMASRS I (r = -0.08, p = 0.61), UMASRS II (r = -0.04, p = 0.81), or UMASRS I + II (r = -0.05, p = 0.74). CONCLUSION: MSA patients show reduced glymphatic clearance as measured by the ALPS index, underscoring the utility of this imaging method in neurodegenerative disease research.


Subject(s)
Diffusion Magnetic Resonance Imaging , Glymphatic System , Multiple System Atrophy , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/physiopathology , Multiple System Atrophy/metabolism , Male , Female , Middle Aged , Glymphatic System/diagnostic imaging , Glymphatic System/physiopathology , Aged
10.
J Neurol Sci ; 463: 123116, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38981418

ABSTRACT

OBJECTIVE: Dysphagia in multiple system atrophy (MSA) is life-threatening and is caused by parkinsonism with cerebellar ataxia as a contributing factor. The present study investigated the relationship between dysphagia severity in MSA and the specific binding ratio (SBR) on dopamine transporter (DaT) SPECT using the Hyodo score, a qualitative scale for use with fiberoptic endoscopic evaluation of swallowing (FEES). METHODS: Hyodo score's ability to predict aspiration during a FEES examination of 88 patients with MSA was first tested. Then the clinical characteristics, Hyodo score, and SBR of patients with either predominant parkinsonism (MSA-P; n = 11) or cerebellar ataxia (MSA-C; n = 25) who underwent FEES and DaT SPECT simultaneously were compared. RESULTS: Logistic regression demonstrated that the Hyodo score was a significant predictive factor of aspiration (p = 0.003). The MSA-P group had a significantly higher Hyodo score (p = 0.026) and lower SBR (p = 0.011) than the MSA-C group while neither group demonstrated any significant difference in disease duration at the FEES examination. Linear regression demonstrated a significant, inverse correlation between the Hyodo score and SBR in the MSA-P (p = 0.044; r = -0.616) and MSA-C (p = 0.044; r = -0.406) groups. When the effect of SBR was removed by analysis of covariance, no significant difference in the Hyodo score remained between the groups. CONCLUSIONS: Our results suggested an association between presynaptic changes in nigrostriatal dopaminergic neurons and dysphagia severity in MSA which largely contributes to the difference in dysphagia severity between MSA-P and MSA-C.


Subject(s)
Deglutition Disorders , Dopamine Plasma Membrane Transport Proteins , Multiple System Atrophy , Severity of Illness Index , Tomography, Emission-Computed, Single-Photon , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/complications , Multiple System Atrophy/metabolism , Male , Female , Deglutition Disorders/diagnostic imaging , Deglutition Disorders/etiology , Aged , Dopamine Plasma Membrane Transport Proteins/metabolism , Middle Aged
11.
Acta Neuropathol Commun ; 12(1): 91, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858742

ABSTRACT

Synucleinopathies are a group of neurodegenerative disorders characterized by the presence of misfolded α-Synuclein (αSyn) in the brain. These conditions manifest with diverse clinical and pathophysiological characteristics. This disease diversity is hypothesized to be driven by αSyn strains with differing biophysical properties, potentially influencing prion-type propagation and consequentially the progression of illness. Previously, we investigated this hypothesis by injecting brain lysate (seeds) from deceased individuals with various synucleinopathies or human recombinant αSyn preformed fibrils (PFFs) into transgenic mice overexpressing either wild type or A53T human αSyn. In the studies herein, we expanded on these experiments, utilizing a panel of antibodies specific for the major carboxyl-terminally truncated forms of αSyn (αSynΔC). These modified forms of αSyn are found enriched in human disease brains to inform on potential strain-specific proteolytic patterns. With monoclonal antibodies specific for human αSyn cleaved at residues 103, 114, 122, 125, and 129, we demonstrate that multiple system atrophy (MSA) seeds and PFFs induce differing neuroanatomical spread of αSyn pathology associated with host specific profiles. Overall, αSyn cleaved at residue 103 was most widely present in the induced pathological inclusions. Furthermore, αSynΔC-positive inclusions were present in astrocytes, but more frequently in activated microglia, with patterns dependent on host and inoculum. These findings support the hypothesis that synucleinopathy heterogeneity might stem from αSyn strains with unique biochemical properties that include proteolytic processing, which could result in dominant strain properties.


Subject(s)
Brain , Disease Models, Animal , Mice, Transgenic , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/immunology , Animals , Humans , Mice , Brain/pathology , Brain/metabolism , Synucleinopathies/pathology , Synucleinopathies/metabolism , Synucleinopathies/immunology , Antibodies, Monoclonal , Multiple System Atrophy/pathology , Multiple System Atrophy/immunology , Multiple System Atrophy/metabolism , Prions/immunology , Prions/metabolism , Female
12.
Mol Brain ; 17(1): 28, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790036

ABSTRACT

The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Oligodendroglia , Protein Aggregates , alpha-Synuclein , Animals , Humans , Mice , alpha-Synuclein/metabolism , Brain/pathology , Brain/metabolism , Cytoplasm/metabolism , Disease Models, Animal , Green Fluorescent Proteins/metabolism , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Mice, Transgenic , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Protein Aggregation, Pathological/metabolism
13.
Mov Disord Clin Pract ; 11(7): 879-885, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576115

ABSTRACT

BACKGROUND: Phenotypes of CANVAS are increasingly diversified, including bradykinesia and dysautonomia, so that its primary differential diagnoses are multiple system atrophy-cerebellar type (MSA-c), and spinocerebellar ataxia type 3 (SCA3). This case series aims to highlight key molecular imaging findings in CANVAS. CASES: We report a case series of six patients with CANVAS who underwent nuclear medicine examinations in our center and 13 patients from the literature. These include 18F-FDG brain positron emission tomography (PET), single photon emission computed tomography (SPECT) of dopamine transporter (DaT) activity, and 123I-MIBG cardiac scintigraphy of noradrenergic transmission. CONCLUSIONS: In CANVAS, 18F-FDG brain PET mainly shows cerebellar hypometabolism, with preserved brainstem and striatum metabolism, contrasting with SCA3 and MSA-c. Dopaminergic denervation on scintigraphy seems to be associated with clinical parkinsonism, ranging from normal to severely impaired DaT SPECT. Additionally, 123I-MIBG cardiac scintigraphy might show denervation in CANVAS, similar to SCA3, but not in most MSA-c patients.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Humans , Male , Diagnosis, Differential , Middle Aged , Female , Aged , Tomography, Emission-Computed, Single-Photon/methods , Molecular Imaging/methods , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/metabolism , Multiple System Atrophy/diagnosis , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Machado-Joseph Disease/diagnostic imaging , Machado-Joseph Disease/diagnosis , Machado-Joseph Disease/metabolism , 3-Iodobenzylguanidine
14.
Neurology ; 102(11): e209453, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759132

ABSTRACT

BACKGROUND AND OBJECTIVES: Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS: Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS: All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION: DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Multiple System Atrophy , Parkinsonian Disorders , Tomography, Emission-Computed, Single-Photon , Humans , Female , Aged , Male , Retrospective Studies , Dopamine Plasma Membrane Transport Proteins/metabolism , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Middle Aged , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/metabolism , Aged, 80 and over , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/pathology , Cohort Studies , Corticobasal Degeneration/diagnostic imaging , Corticobasal Degeneration/metabolism , Dopamine/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Sensitivity and Specificity , Dopaminergic Imaging
15.
J Parkinsons Dis ; 13(8): 1303-1311, 2023.
Article in English | MEDLINE | ID: mdl-38143373

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease clinically characterized by parkinsonism, cerebellar ataxia, and autonomic dysfunction. A major pathological feature of MSA is the presence of α-synuclein aggregates in oligodendrocytes, the myelinating cells of the central nervous system. A genome-wide association study revealed that the CDH4 gene is associated with MSA. However, virtually nothing is known about the role of CDH4 in the context of MSA. OBJECTIVE: Our aim was to compare the expression of CDH4 between MSA and control brains, and to investigate its relationship with α-synuclein in oligodendrocytes. METHODS: RNA and protein were prepared from putamen, motor cortex white matter, cerebellum, and superior occipital cortex tissues collected from MSA (N = 11) and control (N = 13) brains. The expression of CDH4 was measured at mRNA and protein levels by qPCR and western blotting. Oligodendrocyte cells were cultured on plates and transfected with CDH4 cDNA and its impact on α-synuclein was analyzed. RESULTS: Firstly, we found that CDH4 in MSA brain was significantly elevated in the disease-affected motor cortex white matter in MSA (N = 11) compared to controls (N = 13) and unaltered in the disease-unaffected superior occipital cortex. Secondly, we determined that increases in CDH4 expression caused changes in the cellular levels of α-synuclein in oligodendrocytes. CONCLUSIONS: When put together, these results provide evidence that support the GWAS association of CDH4 with MSA.


Subject(s)
Cadherins , Multiple System Atrophy , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Brain/metabolism , Genome-Wide Association Study , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Cadherins/genetics , Cadherins/metabolism
17.
Rev. neurol. (Ed. impr.) ; 54(supl.4): s45-s51, 3 oct., 2012. tab, ilus
Article in Spanish | IBECS (Spain) | ID: ibc-150518

ABSTRACT

Introducción. La Atrofia Multisistémica (AMS) es un trastorno neurodegenerativo, rápidamente progresivo, esporádico, que se presenta con una combinación de síntomas disautonómicos, parkinsonianos, cerebelosos, y corticospinales. La etiopatogenia es desconocida, pero parece existir un papel genético subyacente que implica a la α-sinucleína. El diagnóstico temprano de la enfermedad ha mejorado con los nuevos criterios clínicos de 2008, apoyados por técnicas de neuroimagen estructural y funcional. El tratamiento sigue siendo sintomático, pero se han publicado recientes ensayos clínicos con opciones terapéuticas que intentan frenar la progresión natural de la enfermedad. Objetivo. Revisar los avances más notorios publicados en la literatura científica en los últimos 5 años en la AMS. Desarrollo. Se ha revisado la literatura de los últimos años y se presentan los avances más significativos en la patogenia, diagnóstico, y tratamiento de la AMS, así como las principales perspectivas futuras en dichos campos. Conclusiones. La patogenia de la AMS sigue siendo desconocida, aunque las variaciones en el locus SNCA del cromosoma 4q22.1 que codifica la α-sinucleína juegan un papel destacado. Los nuevos criterios diagnósticos han permitido mejorar la precisión diagnóstica en los estadios iniciales de la enfermedad. Existen diversos ensayos clínicos con prometedoras terapias modificadoras de la enfermedad, aunque son necesarios más estudios futuros para determinar el verdadero alcance clínico de las mismas (AU)


Introduction. Multiple System Atrophy (MSA) is a neurodegenerative, quickly progressive, sporadic disorder that presents with a combination of dysautonomic, parkinsonian, cerebellar and corticospinal symptoms. The aetiopathogenesis is unknown, but there seems to be an underlying genetic role involving a-synuclein. Early diagnosis of the disease has improved with the new clinical criteria of 2008, backed by structural and functional neuroimaging techniques. Treatment continues to be symptomatic, but recent clinical trails have been conducted with therapeutic options that attempt to curb the natural progression of the disease. www.neurologia.com Rev Neurol 2012; 54 (Supl 4): S45-S51 S51 PONENCIA Aims. The purpose of this study is to review the most significant advances in MSA reported in the scientific literature in the last 5 years. Development. The literature from the last few years was reviewed and we report on the most significant advances in the pathogenesis, diagnosis and treatment of MSA, as well as the main future perspectives in those fields. Conclusions. The pathogenesis of MSA remains unknown, although variations in the SNCA locus of chromosome 4q22.1, which codes for a synuclein, play an important role. The new diagnostic criteria have allowed diagnosis to become more accurate in the early stages of the disease. Several clinical trials have been carried out with promising disease-modifying therapies, although further studies will be needed in the future to determine their true clinical scope (AU)


Subject(s)
Humans , Male , Female , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Parkinson Disease/genetics , Homeopathic Pathogenesy/methods , Basal Ganglia/pathology , Pons/metabolism , Olivary Nucleus/metabolism , Levodopa/administration & dosage , Hypotension, Orthostatic/diagnosis , Urinary Incontinence/pathology , Multiple System Atrophy/classification , Multiple System Atrophy/complications , Parkinson Disease/metabolism , Homeopathic Pathogenesy/standards , Basal Ganglia/metabolism , Pons/abnormalities , Olivary Nucleus/cytology , Levodopa , Hypotension, Orthostatic/complications , Urinary Incontinence/complications
SELECTION OF CITATIONS
SEARCH DETAIL