Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816617

ABSTRACT

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Subject(s)
Blood Platelets , Cell Differentiation , Hematopoietic Stem Cells , Megakaryocytes , Blood Platelets/immunology , Blood Platelets/metabolism , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/immunology , Megakaryocytes/cytology , Cell Lineage , Mice, Inbred C57BL , Hematopoiesis , Thrombopoiesis , Mice, Knockout , Humans , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/immunology
2.
Nat Immunol ; 25(5): 902-915, 2024 May.
Article in English | MEDLINE | ID: mdl-38589618

ABSTRACT

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha , Hypersensitivity , Lymphoid Enhancer-Binding Factor 1 , Multipotent Stem Cells , T Cell Transcription Factor 1 , Th2 Cells , Humans , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Th2 Cells/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hypersensitivity/immunology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Cytokines/metabolism , Thymic Stromal Lymphopoietin , Animals , Cells, Cultured , Mice
3.
Immunity ; 46(4): 596-608, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28410989

ABSTRACT

Understanding immunological memory formation depends on elucidating how multipotent memory precursor (MP) cells maintain developmental plasticity and longevity to provide long-term immunity while other effector cells develop into terminally differentiated effector (TE) cells with limited survival. Profiling active (H3K27ac) and repressed (H3K27me3) chromatin in naive, MP, and TE CD8+ T cells during viral infection revealed increased H3K27me3 deposition at numerous pro-memory and pro-survival genes in TE relative to MP cells, indicative of fate restriction, but permissive chromatin at both pro-memory and pro-effector genes in MP cells, indicative of multipotency. Polycomb repressive complex 2 deficiency impaired clonal expansion and TE cell differentiation, but minimally impacted CD8+ memory T cell maturation. Abundant H3K27me3 deposition at pro-memory genes occurred late during TE cell development, probably from diminished transcription factor FOXO1 expression. These results outline a temporal model for loss of memory cell potential through selective epigenetic silencing of pro-memory genes in effector T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Chromatin/immunology , Polycomb Repressive Complex 2/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/immunology , Enhancer of Zeste Homolog 2 Protein/metabolism , Flow Cytometry , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/immunology , Forkhead Box Protein O1/metabolism , Gene Expression/immunology , Histones/immunology , Histones/metabolism , Immunoblotting , Immunologic Memory/genetics , Immunologic Memory/immunology , Lysine/immunology , Lysine/metabolism , Methylation , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological , Multipotent Stem Cells/immunology , Multipotent Stem Cells/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Reverse Transcriptase Polymerase Chain Reaction
4.
Immunity ; 41(1): 116-26, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25035956

ABSTRACT

Maintenance of immunological memory has been proposed to rely on stem-cell-like lymphocytes. However, data supporting this hypothesis are focused on the developmental potential of lymphocyte populations and are thus insufficient to establish the functional hallmarks of stemness. Here, we investigated self-renewal capacity and multipotency of individual memory lymphocytes by in vivo fate mapping of CD8(+) T cells and their descendants across three generations of serial single-cell adoptive transfer and infection-driven re-expansion. We found that immune responses derived from single naive T (Tn) cells, single primary, and single secondary central memory T (Tcm) cells reached similar size and phenotypic diversity, were subjected to comparable stochastic variation, and could ultimately reconstitute immunocompetence against an otherwise lethal infection with the bacterial pathogen Listeria monocytogenes. These observations establish that adult tissue stem cells reside within the CD62L(+) Tcm cell compartment and highlight the promising therapeutic potential of this immune cell subset.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Lineage/immunology , Immunologic Memory/immunology , Adult Stem Cells/immunology , Animals , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Immunocompetence/immunology , Immunotherapy, Adoptive , L-Selectin/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Multipotent Stem Cells/immunology , T-Lymphocyte Subsets/immunology
5.
Cell Tissue Bank ; 20(4): 467-488, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606767

ABSTRACT

Breastmilk is a dynamic, multi-faceted, and complex fluid containing a plethora of biochemical and cellular components that execute developmental effects or differentiation program, providing nourishment and immunity to newborns. Recently, it was reported that breastmilk contains a heterogeneous population of naïve cells, including pluripotent stem cells, multipotent stem cells, immune cells, and non-immune cells. The stem cells derived from breastmilk possess immune privilege and non-tumorigenic properties. Thus, breastmilk may represent an ideal source of stem cells collected by non-perceive procedure than other available sources. Thus, this "maternally originating natural regenerative medicine" may have innumerable applications in clinical biology, cosmetics, and pharmacokinetics. This review describes the efficient integrated cellular system of mammary glands, the impressive stem cell hierarchy of breastmilk, and their possible implications in translational research and therapeutics.


Subject(s)
Milk, Human/cytology , Multipotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Stem Cell Research , Cell Differentiation , Humans , Immunity, Cellular , Infant, Newborn , Mammary Glands, Human/cytology , Mammary Glands, Human/growth & development , Mammary Glands, Human/immunology , Milk, Human/immunology , Multipotent Stem Cells/immunology , Pluripotent Stem Cells/immunology , Regenerative Medicine/methods
6.
Bull Exp Biol Med ; 166(3): 348-352, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30627912

ABSTRACT

One hour after polyvinylpyrrolidone administration, the content of multipotent stromal cells in the spleen of CBA and CBA/N mice increased almost equally (by 2.5 and 2.9 times, respectively), but in 24 h, the effectiveness of multipotent stromal cell cloning in the spleen of CBA/N mice decreased almost to the control level, whereas in CBA mice, the number of multipotent stromal cells continued to increase. Serum concentration of IL-5, TNFα, and IL-2 in both lines was elevated in 1 h after polyvinylpyrrolidone administration, which is likely to reflect activation of the innate immunity. One day after polyvinylpyrrolidone administration, the number of multipotent stromal cells in bone marrow transplants in the CBA/N→CBA/N and CBA→CBA/N groups remained practically unchanged, while in groups CBA→CBA and CBA/N→CBA it was equally increased (by 3.6 and 3.4 times, respectively). Thus, the number of multipotent stromal cells in bone marrow transplants after 1 day was increased only in groups where recipients (CBA mice) were capable of responding to polyvinylpyrrolidone administration, i.e. the number of stromal cells by this term, was apparently determined by the presence of activated immunocompetent cells. These findings also indicate that activation of the stromal tissue dur ing immune response can have a two-phasic pattern: the first phase (1 h after antigen adminis tration) can be determined by activation of innate immunity receptors (in multipotent stromal cells or other cells) observed in CBA and CBA/N mice, and the second phase occurs during further development of the immune response (that was observed in CBA mice, but not in CBA/N mice due to absence of CD+B-1a lymphocytes). The findings attest to close interactions between the stromal tissue and the immune system.


Subject(s)
Bone Marrow Cells/drug effects , Cell Communication/drug effects , Multipotent Stem Cells/drug effects , Povidone/pharmacology , Vaccines, Synthetic/pharmacology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Bone Marrow Transplantation , Cell Communication/immunology , Cell Count , Clone Cells , Host Specificity , Immunity, Innate/drug effects , Interleukin-2/blood , Interleukin-2/immunology , Interleukin-5/blood , Interleukin-5/immunology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred CBA , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
7.
J Cell Mol Med ; 22(3): 1366-1382, 2018 03.
Article in English | MEDLINE | ID: mdl-29364567

ABSTRACT

Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.


Subject(s)
Atherosclerosis/immunology , Cholesterol/immunology , Hypercholesterolemia/immunology , Monocytes/immunology , Neutrophils/immunology , Plaque, Atherosclerotic/immunology , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Bone Marrow/immunology , Bone Marrow/pathology , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/pathology , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Liver X Receptors/genetics , Liver X Receptors/immunology , Mice , Monocytes/pathology , Multipotent Stem Cells/immunology , Multipotent Stem Cells/pathology , Neutrophils/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology
8.
Immunity ; 29(1): 57-67, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18617424

ABSTRACT

Despite studies based on deletion or activation of intracellular components of the canonical Wingless related (Wnt) pathway, the role of Wnts in hematolymphopoiesis remains controversial. Using gain-of-function and loss-of-function models, we found that Wnt4 differentially affected diverse subsets of hematopoietic stem and progenitor cells. Bone-marrow and thymic Lin(-)Sca1(+)Kit(hi) cells (LSKs) were the key targets of Wnt4. In adult mice, Wnt4-induced expansion of Flt3(+) bone-marrow LSKs (lymphoid-primed multipotent progenitors) led to a sizeable accumulation of the most immature thymocyte subsets (upstream of beta-selection) and a major increase in thymopoiesis. Conversely, Wnt4(-/-) neonates showed low frequencies of bone-marrow LSKs and thymic hypocellularity. We provide compelling evidence that Wnt4 activates noncanonical (beta-catenin-independent) signaling and that its effects on hematopoietic cells are mainly non-cell-autonomous. Our work shows that Wnt4 overexpression has a unique ability to expand Flt3(+) LSKs in adults and demonstrates that noncanonical Wnt signaling regulates thymopoiesis.


Subject(s)
Hematopoietic Stem Cells/cytology , Multipotent Stem Cells/cytology , Signal Transduction/immunology , Thymus Gland/growth & development , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation/immunology , Flow Cytometry , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Immunoblotting , Mice , Multipotent Stem Cells/immunology , Multipotent Stem Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thymus Gland/cytology , Thymus Gland/immunology , Wnt Proteins/immunology , Wnt4 Protein , beta Catenin/immunology
9.
Immunity ; 28(4): 509-20, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18342552

ABSTRACT

The development of distinct dendritic cell (DC) subsets is regulated by cytokines. The ligand for the FMS-like tyrosine kinase 3 receptor (Flt3L) is necessary for plasmacytoid DC (pDC) and conventional DC (cDC) maturation. The cytokine GM-CSF inhibits Flt3L-driven pDC production while promoting cDC growth. We show that GM-CSF selectively utilized its signal transducer STAT5 to block Flt3L-dependent pDC development from the lineage-negative, Flt3+ (lin- Flt3+) bone-marrow subset. The signaling molecule STAT3, by contrast, was necessary for expansion of DC progenitors but not pDC maturation. In vivo, STAT5 suppressed pDC formation during repopulation of the DC compartment after bone-marrow ablation. GM-CSF-dependent STAT5 signaling rapidly extinguished pDC-related gene expression in lin- Flt3+ progenitors. Inspection of the Irf8 promoter revealed that STAT5 was recruited during GM-CSF-mediated suppression, indicating that STAT5 directly inhibited transcription of this critical pDC gene. Our results therefore show that GM-CSF controls the production of pDCs by employing STAT5 to suppress IRF8 and the pDC transcriptional network in lin- Flt3+ progenitors.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Growth Inhibitors/physiology , Interferon Regulatory Factors/antagonists & inhibitors , STAT5 Transcription Factor/physiology , Signal Transduction/immunology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Cells, Cultured , Dendritic Cells/cytology , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Interferon Regulatory Factors/biosynthesis , Interferon Regulatory Factors/physiology , Mice , Mice, Knockout , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Multipotent Stem Cells/metabolism , STAT5 Transcription Factor/deficiency , STAT5 Transcription Factor/genetics , Signal Transduction/genetics , fms-Like Tyrosine Kinase 3/biosynthesis
10.
J Immunol ; 195(6): 2666-74, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26268654

ABSTRACT

B lymphopoiesis declines with age, and this decline correlates with increased adipose tissue in the bone marrow (BM). Also, adipocyte-derived factors are known to inhibit B lymphopoiesis. Using cocultures of mouse BM cells with OP9 stromal cells, we found that adipocyte-conditioned medium induces the generation of CD11b(+)Gr1(+) myeloid cells, which inhibit B cell development in vitro. Adipocyte-conditioned medium-induced CD11b(+)Gr1(+) cells express Arg1 (arginase) and Nos2 (inducible NO synthase) and suppress CD4(+) T cell proliferation, indicating that these cells are myeloid-derived suppressor cells (MDSCs). Blocking arginase and inducible NO synthase did not restore B lymphopoiesis, indicating that inhibition is not mediated by these molecules. Transwell and conditioned-medium experiments showed that MDSCs inhibit B lymphopoiesis via soluble factors, and by cytokine array we identified IL-1 as an important factor. Addition of anti-IL-1 Abs restored B lymphopoiesis in BM cultures containing MDSCs, showing that MDSC inhibition of B lymphopoiesis is mediated by IL-1. By treating hematopoietic precursors with IL-1, we found that multipotent progenitors are targets of IL-1. This study uncovers a novel function for MDSCs to inhibit B lymphopoiesis through IL-1. We suggest that inflammaging contributes to a decline of B lymphopoiesis in aged individuals, and furthermore, that MDSCs and IL-1 provide therapeutic targets for restoration of B lymphopoiesis in aged and obese individuals.


Subject(s)
Adipocytes/cytology , B-Lymphocytes/cytology , Immunosenescence/immunology , Interleukin-1/immunology , Lymphopoiesis/drug effects , Adipocytes/immunology , Animals , Antibodies/pharmacology , Arginase/biosynthesis , B-Lymphocytes/immunology , Bone Marrow Cells/cytology , CD11b Antigen/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned/pharmacology , Inflammation/immunology , Interleukin-1/antagonists & inhibitors , Interleukin-1/biosynthesis , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Multipotent Stem Cells/immunology , Myeloid Cells/immunology , Nitric Oxide Synthase Type II/biosynthesis
11.
J Immunol ; 195(1): 156-65, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26026063

ABSTRACT

Extrathymic T cell precursors can be detected in many tissues and represent an immediately competent population for rapid T cell reconstitution in the event of immunodeficiencies. Blood T cell progenitors have been detected, but their source in the bone marrow (BM) remains unclear. Prospective purification of BM-resident and circulating progenitors, together with RT-PCR single-cell analysis, was used to evaluate and compare multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). Molecular analysis of circulating progenitors in comparison with BM-resident progenitors revealed that CCR9(+) progenitors are more abundant in the blood than CCR7(+) progenitors. Second, although Flt3(-) CLPs are less common in the BM, they are abundant in the blood and have reduced Cd25(+)-expressing cells and downregulated c-Kit and IL-7Rα intensities. Third, in contrast, stage 3 MPP (MPP3) cells, the unique circulating MPP subset, have upregulated Il7r, Gata3, and Notch1 in comparison with BM-resident counterparts. Evaluation of the populations' respective abilities to generate splenic T cell precursors (Lin(-)Thy1.2(+)CD25(+)IL7Rα(+)) after grafting recipient nude mice revealed that MPP3 cells were the most effective subset (relative to CLPs). Although several lymphoid genes are expressed by MPP3 cells and Flt3(-) CLPs, the latter only give rise to B cells in the spleen, and Notch1 expression level is not modulated in the blood, as for MPP3 cells. We conclude that CLPs have reached the point where they cannot be a Notch1 target, a limiting condition on the path to T cell engagement.


Subject(s)
B-Lymphocytes/metabolism , Bone Marrow Cells/metabolism , Cell Lineage/genetics , Gene Expression Regulation, Developmental/immunology , Multipotent Stem Cells/metabolism , T-Lymphocytes/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Cell Differentiation , Cell Lineage/immunology , Cell Proliferation , Female , Gene Expression Profiling , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/immunology , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Receptors, CCR/genetics , Receptors, CCR/immunology , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/immunology , Single-Cell Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , fms-Like Tyrosine Kinase 3/deficiency , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/immunology
12.
Bull Exp Biol Med ; 163(6): 761-765, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29063332

ABSTRACT

Pretreatment with the active substance of antiviral preparation Kagocel, inductor of type I endogenous IFN, in a daily therapeutic dose (30 µg/mouse) 3 h prior to administration of S. typhimurium antigens to CBA mice reduced the number of bone marrow multipotent stromal cell (significantly increased by 3.2 times on the next day after antigen injection) to the initial level. Thus, activation of the stromal tissue induced by administration of the bacterial antigen was blocked. In addition, preliminary administration of Kagocel modulated the cytokine profile of the blood serum affected by S. typhimurium antigens: reduced 1.6-fold elevated concentration a proinflammatory cytokine TNFα to the control level (in 4 h after antigen injection) and maintained this level in 20 h after antigen administration. Kagocel also maintained the concentration of anti-inflammatory cytokine IL-10 at the level surpassing the normal by 1.6 times and high concentrations of Th1 cytokines (IL-2, IFNγ, and IL-12). These results suggest that Kagocel can reduce the immune response to bacterial antigens (similar to type I IFN [7]), which can contribute to its therapeutic and preventive effects in addition to its well documented antiviral activity and then this preparation can be used for the therapy of diseases accompanied by excessive or chronic inflammation.


Subject(s)
Antigens, Bacterial/administration & dosage , Bone Marrow Cells/drug effects , Gossypol/analogs & derivatives , Interferon Inducers/pharmacology , Interleukin-10/biosynthesis , Multipotent Stem Cells/drug effects , Animals , Antigens, Bacterial/isolation & purification , Bone Marrow Cells/immunology , Cell Count , Drug Administration Schedule , Gossypol/pharmacology , Interferon-gamma/agonists , Interferon-gamma/biosynthesis , Interleukin-10/agonists , Interleukin-12/agonists , Interleukin-12/biosynthesis , Interleukin-2/agonists , Interleukin-2/biosynthesis , Mice , Mice, Inbred CBA , Multipotent Stem Cells/immunology , Salmonella typhimurium/chemistry , Salmonella typhimurium/pathogenicity , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis
13.
Bull Exp Biol Med ; 163(3): 356-360, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28744636

ABSTRACT

Ligands NLR2 (muramyldipeptide) and TLR (bacterial LPS, flagellin, CpG-dinucleotide, and Poly I:C) and S. typhimurium antigenic complex by 1.5-3-fold increase the efficiency of cloning and content of multipotent stromal cells (MSC) in the bone marrow of CBA mice as soon as 1 h postinjection. The counts of large colonies (150-500 cells) increased by 2.5-3.3 times in comparison with intact bone marrow cultures at the expense of a decrease in the number of smaller colonies, which attests to enhanced proliferation of stromal cells in the colonies. The efficiency of cloning and hence, MSC content in the femoral bone decreased by 1.2-1.9 times after 3 h and increased again after 24 h to the level 1.3-1.5 times higher than the level 1 h postinjection (LPS, Poly I:C, and S. typhimurium antigenic complex). The dynamics of bone marrow MSC cloning efficiency after 1-3 h corresponded to the dynamics of serum cytokine concentrations during the same period. However, the levels of serum cytokines after 24 h in general were similar to those in intact mice or were lower. The concentrations of osteogenic multipotent stromal cells in the bone marrow decreased 2-3-fold after 3 h and thus persisted by 24 h postinjection. Twofold (at 24-h interval) and a single injection of S. typhimurium antigenic complex to mice led to a significant increase of cloning efficiency, observed as early as just 1 h postinjection (1.9 and 1.5 times, respectively). The same picture was observed for serum cytokines. On the whole, injections of TLR and NLR ligands and of S. typhimurium antigenic complex led to stromal tissue activation within 1 h postinjection, this activation consisting in a significant increase of the efficiency of cloning and of MSC count in the bone marrow, and also in an increase in their proliferative activity and a decrease (after 3 h) of osteogenic MSC concentration.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/administration & dosage , Antigens, Bacterial/administration & dosage , Flagellin/administration & dosage , Lipopolysaccharides/administration & dosage , Multipotent Stem Cells/drug effects , Oligodeoxyribonucleotides/administration & dosage , Osteogenesis/drug effects , Poly I-C/administration & dosage , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Cell Differentiation/drug effects , Clone Cells , Femur/cytology , Femur/drug effects , Femur/immunology , Gene Expression , Injections, Intraperitoneal , Male , Mice , Mice, Inbred CBA , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Osteogenesis/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology
14.
Bull Exp Biol Med ; 163(3): 365-369, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28744638

ABSTRACT

The efficiency of cloning and the content of multipotent stromal cells (MSC) in the femoral bone marrow of intact CBA mice was 1.5 times less in old mice (24-36 months) than in young ones (2-3 months). The concentration of osteogenic MSC was higher in old vs. young mice (42±3 vs. 22±2%, respectively). Changes in the total counts of MSC and concentrations of osteogenic MSC in response to osteogenic (curettage, BMP-2) and immunogenic stimuli (S. typhimurium antigenic complex) were similar in young and old mice in comparison with intact controls of respective age. The counts of the total pool of bone marrow MSC and pool of osteogenic MSC in response to osteogenic stimuli were 1.5-2 times less in old vs. young mice. This difference seemed to be a result of age-specific decrease of their bone marrow count but not of age-specific decrease of the MSC functional activity, this leading to a decrease in the transplantability of bone marrow stromal tissue of old mice. Comparison of transplantations "old donor - young recipient" vs. "young donor - young recipient" demonstrated a decrease in the count of nuclear cells (1.8 times), size of bone capsule (2-fold), efficiency of MSC cloning (1.6 times), count of MSC per transplant (2.9 times), and count of osteogenic MSC per transplant (3.3 times). The concentrations of osteogenic MSC in transplants from young and old donors leveled in young recipients, that is, seemed to be regulated by the host. Serum concentrations of IL-10 and TNF-α in intact old mice were at least 2.9 and 2 times higher than in young animals, while the concentrations of almost all the rest studied cytokines (IL-2, IL-5, GM-CSF, IFN-γ, IL-4, IL-12) were lower. Presumably, the decrease in the content of bone marrow MSC and in transplantability of bone marrow stromal tissue in old mice were caused by exhaustion of the MSC pool as a result of age-specific chronic inflammation. These data indicated a close relationship between age-specific changes in the stromal tissue and immune system.


Subject(s)
Aging/immunology , Antigens, Bacterial/administration & dosage , Bone Marrow Transplantation , Bone Morphogenetic Protein 2/administration & dosage , Multipotent Stem Cells/drug effects , Osteogenesis/drug effects , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Morphogenetic Protein 2/biosynthesis , Bone Morphogenetic Protein 2/genetics , Cell Count , Cell Differentiation/drug effects , Clone Cells , Curettage , Cytokines/genetics , Cytokines/immunology , Femur/cytology , Femur/drug effects , Femur/immunology , Gene Expression/drug effects , Humans , Injections, Intraperitoneal , Male , Mice , Mice, Inbred CBA , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Osteogenesis/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Salmonella typhimurium/chemistry
15.
J Mammary Gland Biol Neoplasia ; 21(1-2): 41-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26615610

ABSTRACT

Elucidating cell hierarchy in the mammary gland is fundamental for understanding the mechanisms governing its normal development and malignant transformation. There is relatively little information on cell hierarchy in the bovine mammary gland, despite its agricultural potential and relevance to breast cancer research. Challenges in bovine-to-mouse xenotransplantation and difficulties obtaining bovine-compatible antibodies hinder the study of mammary stem-cell dynamics in this species. In-vitro indications of distinct bovine mammary epithelial cell populations, sorted according to CD24 and CD49f expression, have been provided. Here, we successfully transplanted these bovine populations into the cleared fat pads of immunocompromised mice, providing in-vivo evidence for the multipotency and self-renewal capabilities of cells that are at the top of the cell hierarchy (termed mammary repopulating units). Additional outgrowths from transplantation, composed exclusively of myoepithelial cells, were indicative of unipotent basal stem cells or committed progenitors. Sorting luminal cells according to E-cadherin revealed three distinct populations: luminal progenitors, and early- and late-differentiating cells. Finally, miR-200c expression was negatively correlated with differentiation levels in both the luminal and basal branches of the bovine mammary cell hierarchy. Together, these experiments provide further evidence for the presence of a regenerative entity in the bovine mammary gland and for the multistage differentiation process within the luminal lineage.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Mammary Glands, Animal/cytology , Multipotent Stem Cells/cytology , Parenchymal Tissue/cytology , Stem Cells/cytology , Adipose Tissue , Animals , Biomarkers/metabolism , Cadherins/genetics , Cadherins/metabolism , Cattle , Cell Separation , Cell Transplantation , Cells, Cultured , Crosses, Genetic , Female , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Mice, Inbred NOD , Mice, SCID , MicroRNAs/metabolism , Multipotent Stem Cells/immunology , Multipotent Stem Cells/metabolism , Parenchymal Tissue/immunology , Parenchymal Tissue/metabolism , RNA Interference , Stem Cell Transplantation , Stem Cells/immunology , Stem Cells/metabolism , Transplantation, Heterologous
16.
Clin Immunol ; 162: 9-26, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26521071

ABSTRACT

We studied effects of early and late apoptotic (necroptotic) cell products, related damage associated alarmins and TLR agonists, on hematopoietic stem and progenitor cells (HSPC). Surprisingly, normal HSPC themselves produced IL-17 and IL-21 after 1½days of stimulation, and the best stimulators were TLR 7/8 agonist; HMGB1-DNA; TLR 9 agonist, and necroptotic B cells. The stimulated HSPC expressed additional cytokines/mediators, directly causing rapid expansion of IL-17(+) memory CD4 T (Th17), and CD8 T (Tc17) cells, and antigen-experienced IL-17(+) T cells with "naïve" phenotype. In lupus marrow, HSPC were spontaneously pre-stimulated by endogenous signals to produce IL-17 and IL-21. In contrast to HSPC, megakaryocyte progenitors (MKP) did not produce IL-17, and unlike HSPC, they could process and present particulate apoptotic autoantigens to augment autoimmune memory Th17 response. Thus abnormally stimulated primitive hematopoietic progenitors augment expansion of IL-17 producing immune and autoimmune memory T cells in the bone marrow, which may affect central tolerance.


Subject(s)
Bone Marrow/immunology , Cytokines/immunology , Hematopoietic Stem Cells/immunology , Lupus Erythematosus, Systemic/immunology , Multipotent Stem Cells/immunology , Th17 Cells/immunology , Animals , Apoptosis/immunology , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Flow Cytometry , Humans , Interleukin-17/immunology , Interleukins/immunology , Lupus Erythematosus, Systemic/blood , Mice , Toll-Like Receptors
17.
J Immunol ; 192(12): 5749-60, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24835400

ABSTRACT

The relationships between commitments of dendritic cells (DCs) and T cells in human hematopoietic stem cells are not well understood. In this study, we enumerate and characterize conventional DC and plasmacytoid DC precursors in association with T cell and thymus-derived types of NK cell precursors among CD34(+) hematopoietic progenitor cells (HPCs) circulating in human peripheral blood. By limiting-dilution analyses using coculture with stroma cells expressing Notch1 ligand, the precursor frequencies (PFs) of DCs in HPCs were found to significantly correlate with T cell PFs, but not with NK cell PFs, among healthy donors. Clonal analyses showed that the majority of T/NK dual- and T single-lineage precursors-but only a minority of NK single-lineage precursors-were associated with the generation of DC progenies. All clones producing both DC and T cell progenies were found with monocyte and/or granulocyte progenies, suggesting DC differentiation via myeloid DC pathways. Analyses of peripheral blood HPC subpopulations revealed that the lineage split between DC and T/NK cell progenitor occurs at the stage prior to bifurcation into T and NK cell lineages. The findings suggest a strong linkage between DC and T cell commitments, which may be imprinted in circulating lymphoid-primed multipotent progenitors or in more upstream HPCs.


Subject(s)
Dendritic Cells/immunology , Hematopoietic Stem Cells/immunology , Multipotent Stem Cells/immunology , T-Lymphocytes/immunology , Animals , Dendritic Cells/cytology , Female , Hematopoietic Stem Cells/cytology , Humans , Male , Mice , Multipotent Stem Cells/cytology , Receptor, Notch1/immunology , T-Lymphocytes/cytology
18.
Nature ; 465(7299): 793-7, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20535209

ABSTRACT

Lymphocytes and neutrophils are rapidly depleted by systemic infection. Progenitor cells of the haematopoietic system, such as common myeloid progenitors and common lymphoid progenitors, increase the production of immune cells to restore and maintain homeostasis during chronic infection, but the contribution of haematopoietic stem cells (HSCs) to this process is largely unknown. Here we show, using an in vivo mouse model of Mycobacterium avium infection, that an increased proportion of long-term repopulating HSCs proliferate during M. avium infection, and that this response requires interferon-gamma (IFN-gamma) but not interferon-alpha (IFN-alpha) signalling. Thus, the haematopoietic response to chronic bacterial infection involves the activation not only of intermediate blood progenitors but of long-term repopulating HSCs as well. IFN-gamma is sufficient to promote long-term repopulating HSC proliferation in vivo; furthermore, HSCs from IFN-gamma-deficient mice have a lower proliferative rate, indicating that baseline IFN-gamma tone regulates HSC activity. These findings implicate IFN-gamma both as a regulator of HSCs during homeostasis and under conditions of infectious stress. Our studies contribute to a deeper understanding of haematological responses in patients with chronic infections such as HIV/AIDS or tuberculosis.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Homeostasis/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Tuberculosis/immunology , Animals , Bone Marrow Transplantation , Cell Count , Cell Proliferation , Chronic Disease , Homeostasis/physiology , Interferon-alpha , Interferon-gamma/deficiency , Mice , Mice, Inbred C57BL , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Mycobacterium avium/immunology , Signal Transduction , Tuberculosis/blood , Tuberculosis/microbiology
19.
Nature ; 464(7293): 1362-6, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20200520

ABSTRACT

CD4(+) T helper 2 (T(H)2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, T(H)2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal lymphopoietin, IL33 and IL25 (also known as IL17E) have been implicated in inducing T(H)2 cell-dependent inflammation at mucosal sites, but how these cytokines influence innate immune responses remains poorly defined. Here we show that IL25, a member of the IL17 cytokine family, promotes the accumulation of a lineage-negative (Lin(-)) multipotent progenitor (MPP) cell population in the gut-associated lymphoid tissue that promotes T(H)2 cytokine responses. The IL25-elicited cell population, termed MPP(type2) cells, was defined by the expression of Sca-1 (also known as Ly6a) and intermediate expression of c-Kit (c-Kit(int)), and exhibited multipotent capacity, giving rise to cells of monocyte/macrophage and granulocyte lineages both in vitro and in vivo. Progeny of MPP(type2) cells were competent antigen presenting cells, and adoptive transfer of MPP(type2) cells could promote T(H)2 cytokine responses and confer protective immunity to helminth infection in normally susceptible Il25(-/-) mice. The ability of IL25 to induce the emergence of an MPP(type2) cell population identifies a link between the IL17 cytokine family and extramedullary haematopoiesis, and suggests a previously unrecognized innate immune pathway that promotes T(H)2 cytokine responses at mucosal sites.


Subject(s)
Cell Differentiation , Interleukins/immunology , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Antigens, Ly/metabolism , Cell Lineage , Granulocytes/cytology , Granulocytes/immunology , Granulocytes/metabolism , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Interleukins/biosynthesis , Interleukins/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred Strains , Nippostrongylus/immunology , Proto-Oncogene Proteins c-kit/metabolism , Strongylida Infections/immunology , Th2 Cells/cytology , Trichuriasis/immunology , Trichuris/immunology
20.
Mol Ther ; 23(11): 1783-1793, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26216515

ABSTRACT

T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1ß-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients.


Subject(s)
Adult Stem Cells/physiology , Dinoprostone/immunology , Graft vs Host Disease/prevention & control , Interleukin-7/immunology , Mesenchymal Stem Cells/physiology , Multipotent Stem Cells/physiology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Adult Stem Cells/immunology , Autoimmunity , Cell Cycle Proteins/metabolism , Cell Proliferation , Cells, Cultured , Graft Rejection , Humans , Immune Tolerance , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-7/metabolism , Lymphocyte Depletion/adverse effects , Male , Mesenchymal Stem Cells/immunology , Multipotent Stem Cells/immunology , Nuclear Proteins/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , Transplantation, Homologous/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL