Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.250
Filter
Add more filters

Publication year range
1.
J Nutr ; 154(1): 12-25, 2024 01.
Article in English | MEDLINE | ID: mdl-37716606

ABSTRACT

BACKGROUND: Abdominal obesity is an important cardiovascular disease risk factor. Plasma fatty acids display a complex network of both pro and antiatherogenic effects. High density lipoproteins (HDL) carry out the antiatherogenic pathway called reverse cholesterol transport (RCT), which involves cellular cholesterol efflux (CCE), and lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. OBJECTIVES: Our aim was to characterize RCT and its relation to fatty acids present in plasma in pediatric abdominal obesity. METHODS: Seventeen children and adolescents with abdominal obesity and 17 healthy controls were studied. Anthropometric parameters were registered. Glucose, insulin, lipid levels, CCE employing THP-1 cells, LCAT and CETP activities, plus fatty acids in apo B-depleted plasma were measured. RESULTS: The obese group showed a more atherogenic lipid profile, plus lower CCE (Mean±Standard Deviation) (6 ± 2 vs. 7 ± 2%; P < 0.05) and LCAT activity (11 ± 3 vs. 15 ±5 umol/dL.h; P < 0.05). With respect to fatty acids, the obese group showed higher myristic (1.1 ± 0.3 vs. 0.7 ± 0.3; P < 0.01) and palmitic acids (21.5 ± 2.8 vs. 19.6 ± 1.9; P < 0.05) in addition to lower linoleic acid (26.4 ± 3.3 vs. 29.9 ± 2.6; P < 0.01). Arachidonic acid correlated with CCE (r = 0.37; P < 0.05), myristic acid with LCAT (r = -0.37; P < 0.05), palmitioleic acid with CCE (r = -0.35; P < 0.05), linoleic acid with CCE (r = 0.37; P < 0.05), lauric acid with LCAT (r = 0.49; P < 0.05), myristic acid with LCAT (r = -0.37; P < 0.05) ecoisatrienoic acid with CCE (r = 0.40; P < 0.05) and lignoseric acid with LCAT (r = -0.5; P < 0.01). CONCLUSIONS: Children and adolescents with abdominal obesity presented impaired RCT, which was associated with modifications in proinflammatory fatty acids, such as palmitoleic and myristic, thus contributing to increased cardiovascular disease risk.


Subject(s)
Cardiovascular Diseases , Fatty Acids , Humans , Adolescent , Child , Obesity, Abdominal , Obesity , Cholesterol/metabolism , Linoleic Acids , Myristic Acids
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876760

ABSTRACT

Myristoylation is a posttranslational modification that plays diverse functional roles in many protein species. The myristate moiety is considered insufficient for protein-membrane associations unless additional membrane-affinity motifs, such as a stretch of positively charged residues, are present. Here, we report that the electrically neutral N-terminal fragment of the protein kinase A catalytic subunit (PKA-C), in which myristoylation is the only functional motif, is sufficient for membrane association. This myristoylation can associate a fraction of PKA-C molecules or fluorescent proteins (FPs) to the plasma membrane in neuronal dendrites. The net neutral charge of the PKA-C N terminus is evolutionally conserved, even though its membrane affinity can be readily tuned by changing charges near the myristoylation site. The observed membrane association, while moderate, is sufficient to concentrate PKA activity at the membrane by nearly 20-fold and is required for PKA regulation of AMPA receptors at neuronal synapses. Our results indicate that myristoylation may be sufficient to drive functionally significant membrane association in the absence of canonical assisting motifs. This provides a revised conceptual base for the understanding of how myristoylation regulates protein functions.


Subject(s)
Cell Membrane/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Myristic Acids/metabolism , Neurons/metabolism , Action Potentials , Amino Acid Motifs , Animals , Cell Membrane/physiology , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/chemistry , Neurons/physiology , Protein Processing, Post-Translational , Rats
3.
Mol Plant Microbe Interact ; 35(6): 464-476, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35285673

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) colonize roots, where they provide nutrients in exchange for sugars and lipids. Because AMF lack genes for cytosolic fatty acid de novo synthase (FAS), they depend on host-derived fatty acids. AMF colonization is accompanied by expression of specific lipid genes and synthesis of sn-2 monoacylglycerols (MAGs). It is unknown how host-derived fatty acids are taken up by AMF. We describe the characterization of two AMP-binding domain protein genes from Rhizophagus irregularis, RiFAT1 and RiFAT2, with sequence similarity to Saccharomyces cerevisiae fatty acid transporter 1 (FAT1). Uptake of 13C-myristic acid (14:0) and, to a lesser extent, 13C-palmitic acid (16:0) was enhanced after expression of RiFAT1 or RiFAT2 in S. cerevisiae Δfat1 cells. The uptake of 2H-labeled fatty acids from 2H-myristoylglycerol or 2H-palmitoylglycerol was also increased after RiFAT1 and RiFAT2 expression in Δfat, but intact 2H-MAGs were not detected. RiFAT1 and RiFAT2 expression was induced in colonized roots compared with extraradical mycelium. 13C-label in the AMF-specific palmitvaccenic acid (16:1Δ11) and eicosatrienoic acid (20:3) were detected in colonized roots only when 13C2-acetate was supplemented but not 13C-fatty acids, demonstrating that de novo synthesized, host-derived fatty acids are rapidly taken up by R. irregularis from the roots. The results show that RiFAT1 and RiFAT2 are involved in the uptake of myristic acid (14:0) and palmitic acid (16:0), while fatty acids from MAGs are only taken up after hydrolysis. Therefore, the two proteins might be involved in fatty acid import into the fungal arbuscules in colonized roots.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Glomeromycota , Mycorrhizae , Saccharomyces cerevisiae Proteins , Adenosine Monophosphate/metabolism , Carrier Proteins/metabolism , Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Fungi , Glomeromycota/genetics , Glomeromycota/metabolism , Myristic Acids/metabolism , Palmitic Acids/metabolism , Plant Roots/microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
Int J Cancer ; 151(12): 2082-2094, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35849437

ABSTRACT

Prospective studies that objectively measure circulating levels of fatty acids are needed to clarify their role in the etiology of breast cancer. Thirty-eight phospholipid fatty acids were measured using gas chromatograph in the plasma fraction of blood samples collected prospectively from 2718 postmenopausal women (905 breast cancer cases) enrolled in the Cancer Prevention Study II Nutrition Cohort. Associations of 28 fatty acids that passed quality control metrics (modeled as per 1-SD increase) with breast cancer risk were assessed using multiple variable conditional logistic regression models to compute odds ratios (OR) and 95% confidence intervals (CI). The false discovery rate (q value) was computed to account for multiple comparisons. Myristic acid levels were positively associated with breast cancer risk (OR, 1.17, 95% CI: 1.07-1.28; q value = 0.03). Borderline associations were also found for palmitoleic acid (OR, 1.14, 95% CI: 1.04-1.24) and desaturation index16 (OR, 1.10, 95% CI: 1.01-1.20) at nominal P values (<.03) (q values>0.05). These findings suggest that higher circulating levels of myristic acid, sourced from dietary intake of palm kernel oils along with increased de novo synthesis of fatty acids, may increase breast cancer risk. Additional studies are needed to investigate de novo synthesis of fatty acid in breast cancer tissues.


Subject(s)
Breast Neoplasms , Phospholipids , Female , Humans , Breast Neoplasms/epidemiology , Prospective Studies , Case-Control Studies , Fatty Acids , Logistic Models , Oils , Myristic Acids , Risk Factors
5.
Biotechnol Bioeng ; 119(9): 2482-2493, 2022 09.
Article in English | MEDLINE | ID: mdl-35680651

ABSTRACT

High value unsaturated fatty acids can be produced by de novo synthesis in microalgal cells, especially via heterotrophic cultivation. Unfortunately, the lipid accumulation of heterotrophic microalgae cannot be improved efficiently in conventional ways. Here we reported heterotrophic Tribonema minus, a promising resource for the production of palmitoleic acid which has increasing demands in health service for patients with metabolic syndrome, as whole-cell biocatalyst to develop a novel way of shifting low value exogenous saturated fatty acids to high value ones. Results showed that myristic acid is the best precursor for whole-cell catalysis; it elevated the lipid content of T. minus to 42.2%, the highest among the tried precursors. The influences of cultivation condition on the utilization of extrinsic myristic acid and lipid accumulation were also determined. Under the optimized condition, the lipid content reached as high as 48.9%. In addition, our findings showed that ~13.0% of C16:1 in T. minus is derived from extrinsic myristic acid, and 30.1% of metabolized precursor is converted into heterologous fatty acids. Thus, a feasible approach for both increasing the value of low value saturated fatty acid by bioconversion and enhancing the lipid accumulation in microalgae is proposed by supplementing extrinsic myristic acid.


Subject(s)
Microalgae , Stramenopiles , Biofuels , Biomass , Catalysis , Fatty Acids/metabolism , Humans , Microalgae/metabolism , Myristic Acids/metabolism
6.
Lipids Health Dis ; 20(1): 151, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727932

ABSTRACT

BACKGROUND: Acylcarnitine is an intermediate product of fatty acid oxidation. It is reported to be closely associated with the occurrence of diabetic cardiomyopathy (DCM). However, the mechanism of acylcarnitine affecting myocardial disorders is yet to be explored. This current research explores the different chain lengths of acylcarnitines as biomarkers for the early diagnosis of DCM and the mechanism of acylcarnitines for the development of DCM in-vitro. METHODS: In a retrospective non-interventional study, 50 simple type 2 diabetes mellitus patients and 50 DCM patients were recruited. Plasma samples from both groups were analyzed by high throughput metabolomics and cluster heat map using mass spectrometry. Principal component analysis was used to compare the changes occurring in the studied 25 acylcarnitines. Multivariable binary logistic regression was used to analyze the odds ratio of each group for factors and the 95% confidence interval in DCM. Myristoylcarnitine (C14) exogenous intervention was given to H9c2 cells to verify the expression of lipid metabolism-related protein, inflammation-related protein expression, apoptosis-related protein expression, and cardiomyocyte hypertrophy and fibrosis-related protein expression. RESULTS: Factor 1 (C14, lauroylcarnitine, tetradecanoyldiacylcarnitine, 3-hydroxyl-tetradecanoylcarnitine, arachidic carnitine, octadecanoylcarnitine, 3-hydroxypalmitoleylcarnitine) and factor 4 (octanoylcarnitine, hexanoylcarnitine, decanoylcarnitine) were positively correlated with the risk of DCM. Exogenous C14 supplementation to cardiomyocytes led to increased lipid deposition in cardiomyocytes along with the obstacles in adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways and affecting fatty acid oxidation. This further caused myocardial lipotoxicity, ultimately leading to cardiomyocyte hypertrophy, fibrotic remodeling, and increased apoptosis. However, this effect was mitigated by the AMPK agonist acadesine. CONCLUSIONS: The increased plasma levels in medium and long-chain acylcarnitine extracted from factors 1 and 4 are closely related to the risk of DCM, indicating that these factors can be an important tool for DCM risk assessment. C14 supplementation associated lipid accumulation by inhibiting the AMPK/ACC/CPT1 signaling pathway, aggravated myocardial lipotoxicity, increased apoptosis apart from cardiomyocyte hypertrophy and fibrosis were alleviated by the acadesine.


Subject(s)
Carnitine/analogs & derivatives , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/metabolism , Lipid Metabolism , Adult , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Biomarkers/blood , Carnitine/blood , Carnitine/chemistry , Carnitine/pharmacology , Cell Line , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Lipid Metabolism/drug effects , Male , Mass Spectrometry , Middle Aged , Myoblasts, Cardiac/drug effects , Myoblasts, Cardiac/metabolism , Myristic Acids/pharmacology , Rats , Retrospective Studies , Ribonucleosides/pharmacology , Risk Factors
7.
Chem Rev ; 118(3): 919-988, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29292991

ABSTRACT

Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Proteins/metabolism , Alkyl and Aryl Transferases/antagonists & inhibitors , Alkyl and Aryl Transferases/chemistry , Animals , Humans , Kinetics , Myristic Acids/metabolism , Palmitic Acids/metabolism , Protein Interaction Maps , Protein Prenylation , Proteins/chemistry , Substrate Specificity
8.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L57-L70, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30908938

ABSTRACT

Asthma exacerbations are often caused by rhinovirus (RV). We and others have shown that Toll-like receptor 2 (TLR2), a membrane surface receptor that recognizes bacterial lipopeptides and lipoteichoic acid, is required and sufficient for RV-induced proinflammatory responses in vitro and in vivo. We hypothesized that viral protein-4 (VP4), an internal capsid protein that is myristoylated upon viral replication and externalized upon viral binding, is a ligand for TLR2. Recombinant VP4 and myristoylated VP4 (MyrVP4) were purified by Ni-affinity chromatography. MyrVP4 was also purified from RV-A1B-infected HeLa cells by urea solubilization and anti-VP4 affinity chromatography. Finally, synthetic MyrVP4 was produced by chemical peptide synthesis. MyrVP4-TLR2 interactions were assessed by confocal fluorescence microscopy, fluorescence resonance energy transfer (FRET), and monitoring VP4-induced cytokine mRNA expression in the presence of anti-TLR2 and anti-VP4. MyrVP4 and TLR2 colocalized in TLR2-expressing HEK-293 cells, mouse bone marrow-derived macrophages, human bronchoalveolar macrophages, and human airway epithelial cells. Colocalization was absent in TLR2-null HEK-293 cells and blocked by anti-TLR2 and anti-VP4. Cy3-labeled MyrVP4 and Cy5-labeled anti-TLR2 showed an average fractional FRET efficiency of 0.24 ± 0.05, and Cy5-labeled anti-TLR2 increased and unlabeled MyrVP4 decreased FRET efficiency. MyrVP4-induced chemokine mRNA expression was higher than that elicited by VP4 alone and was attenuated by anti-TLR2 and anti-VP4. Cytokine expression was similarly increased by MyrVP4 purified from RV-infected HeLa cells and synthetic MyrVP4. We conclude that, during RV infection, MyrVP4 and TLR2 interact to generate a proinflammatory response.


Subject(s)
Asthma/genetics , Capsid Proteins/genetics , Eosinophilia/genetics , Picornaviridae Infections/genetics , Protein Processing, Post-Translational , Toll-Like Receptor 2/genetics , Viral Proteins/genetics , Adolescent , Amino Acid Sequence , Animals , Asthma/immunology , Asthma/pathology , Asthma/virology , Capsid Proteins/immunology , Child , Eosinophilia/immunology , Eosinophilia/pathology , Eosinophilia/virology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Myristic Acids/immunology , Myristic Acids/metabolism , Picornaviridae Infections/immunology , Picornaviridae Infections/pathology , Picornaviridae Infections/virology , Protein Binding , Rhinovirus/immunology , Rhinovirus/pathogenicity , Signal Transduction , Toll-Like Receptor 2/immunology , Viral Proteins/immunology , Virus Replication
9.
Liver Int ; 39(1): 106-114, 2019 01.
Article in English | MEDLINE | ID: mdl-29931819

ABSTRACT

BACKGROUND & AIMS: The quantification of lipopolysaccharide (LPS) in biological fluids is challenging. We aimed to measure plasma LPS concentration using a new method of direct quantification of 3-hydroxymyristate (3-HM), a lipid component of LPS, and to evaluate correlations between 3-HM and markers of liver function, endothelial activation, portal hypertension and enterocyte damage. METHODS: Plasma from 90 noninfected cirrhotic patients (30 Child-Pugh [CP]-A, 30 CP-B, 30 CP-C) was prospectively collected. The concentration of 3-HM was determined by high-performance liquid chromatography coupled with mass spectrometry. RESULTS: 3-HM levels were higher in CP-C patients (CP-A/CP-B/CP-C: 68/70/103 ng/mL, P = 0.005). Patients with severe acute alcoholic hepatitis (n = 16; 113 vs 74 ng/mL, P = 0.012), diabetic patients (n = 22; 99 vs 70 ng/mL, P = 0.028) and those not receiving beta blockers (n = 44; 98 vs 72 ng/mL, P = 0.034) had higher levels of 3-HM. We observed a trend towards higher baseline levels of 3-HM in patients with hepatic encephalopathy (n = 7; 144 vs 76 ng/mL, P = 0.45) or SIRS (n = 10; 106 vs 75 ng/mL, P = 0.114). In multivariate analysis, high levels of 3-HM were associated with CP (OR = 4.39; 95%CI = 1.79-10.76) or MELD (OR = 8.24; 95%CI = 3.19-21.32) scores. Patients dying from liver insufficiency (n = 6) during a 12-month follow-up had higher baseline levels of 3-HM (106 vs 75 ng/mL, P = 0.089). CONCLUSIONS: In noninfected cirrhotic patients, 3-HM arises more frequently with impairment of liver function, heavy alcohol consumption, diabetic status, nonuse of beta blockers and a trend towards poorer outcome is also observed. The direct mass measurement of LPS using 3-HM appears reliable to detect transient endotoxaemia and promising to manage the follow-up of cirrhotic patients.


Subject(s)
Blood Chemical Analysis/methods , Endotoxemia/diagnosis , Lipopolysaccharides/blood , Liver Cirrhosis/blood , Myristic Acids/blood , Aged , Biomarkers/blood , Chromatography, High Pressure Liquid , Female , Hepatic Encephalopathy/blood , Hepatic Encephalopathy/complications , Humans , Liver Cirrhosis/diagnosis , Logistic Models , Male , Middle Aged , Multivariate Analysis , Pilot Projects , Risk Factors , Severity of Illness Index
10.
Soft Matter ; 15(3): 399-407, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30601546

ABSTRACT

Hybrid co-assembly of polyoxometalates (POMs) with cationic organic matrices offers a preferable way to greatly enhance POM functionality as well as processability. Thus, multi-stimulus responsive supramolecular materials based on lanthanide-containing POMs with improved luminescence may be fabricated from appropriate components through this convenient strategy. Herein, we reported that the co-assembly of Na9(EuW10O36)·32H2O (EuW10) and a commercially available cationic surfactant, myristoylcholine chloride (Myr), in water could produce enhanced red-emitting luminescent aggregates, with their photophysical properties highly dependent on the molar ratio (R) between Myr and EuW10. The R of 36 was finally selected owing to the displayed superior luminescence intensity and good aggregate stability. The Myr/EuW10 hybrids induced by electrostatic and hydrophobic forces presented practically as multilamellar spheres with diameters varying from 80 to 300 nm. Compared to an aqueous solution of EuW10 nanoclusters, a 12-fold increase in absolute luminescence quantum yield (∼23.3%) was observed for the hybrid spheres, which was ascribed to the efficient shielding of water molecules. An unusual aggregation arrangement mechanism and the excellent photophysical properties of these aggregates were thoroughly investigated. Both the enzyme substrate character of Myr and the sensitive coordination structure of EuW10 to the surrounding environment made Myr/EuW10 aggregates exhibit multi-stimulus responsiveness to enzymes, pH, and transition metal ions, thus providing potential applications in fluorescence sensing, targeted-release, and optoelectronics.


Subject(s)
Acetylcholinesterase/metabolism , Europium/chemistry , Luminescent Agents/chemistry , Myristic Acids/chemistry , Tungsten Compounds/chemistry , Acetylcholinesterase/analysis , Biosensing Techniques/methods , Hydrophobic and Hydrophilic Interactions , Static Electricity , Surface-Active Agents/chemistry
11.
Microbiol Immunol ; 63(8): 334-337, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31218714

ABSTRACT

Lipid A in lipopolysaccharide (LPS) of Escherichia coli mutant strains was modified by the introduction of myristoyltransferase gene cloned from Klebsiella pneumoniae. When the gene was introduced into the mutant having lipid A containing only 3-hydroxymyristic acids, it produced lipid A with two additional myristic acids (C14:0 ). When the same gene was introduced into the mutant with pentaacylated lipid A containing one lauric acid (C12:0 ), C12:0 was replaced by C14:0 . IL-6-inducing activity of LPS with modified lipid A structure suggested that C12:0 in lipid A could be replaced by C14:0 without changing the immunostimulating activity.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Klebsiella pneumoniae/genetics , Lipid A/chemistry , Fatty Acids/chemistry , Interleukin-6/metabolism , Lauric Acids/chemistry , Myristic Acids/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transformation, Genetic
12.
Int J Mol Sci ; 20(20)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658639

ABSTRACT

Recoverin (Rec) is a prototypical calcium sensor protein primarily expressed in the vertebrate retina. The binding of two Ca2+ ions to the functional EF-hand motifs induces the extrusion of a myristoyl group that increases the affinity of Rec for the membrane and leads to the formation of a complex with rhodopsin kinase (GRK1). Here, unbiased all-atom molecular dynamics simulations were performed to monitor the spontaneous insertion of the myristoyl group into a model multicomponent biological membrane for both isolated Rec and for its complex with a peptide from the GRK1 target. It was found that the functional membrane anchoring of the myristoyl group is triggered by persistent electrostatic protein-membrane interactions. In particular, salt bridges between Arg43, Arg46 and polar heads of phosphatidylserine lipids are necessary to enhance the myristoyl hydrophobic packing in the Rec-GRK1 assembly. The long-distance communication between Ca2+-binding EF-hands and residues at the interface with GRK1 is significantly influenced by the presence of the membrane, which leads to dramatic changes in the connectivity of amino acids mediating the highest number of persistent interactions (hubs). In conclusion, specific membrane composition and allosteric interactions are both necessary for the correct assembly and dynamics of functional Rec-GRK1 complex.


Subject(s)
G-Protein-Coupled Receptor Kinase 1/chemistry , G-Protein-Coupled Receptor Kinase 1/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Recoverin/chemistry , Recoverin/metabolism , Allosteric Site , Calcium-Binding Proteins , Computational Biology , Eye Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Light Signal Transduction , Models, Molecular , Molecular Dynamics Simulation , Myristic Acids , Nerve Tissue Proteins/chemistry , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Sequence Analysis, Protein
13.
Plant Physiol ; 173(4): 2010-2028, 2017 04.
Article in English | MEDLINE | ID: mdl-28202596

ABSTRACT

We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Fatty Acid Synthase, Type II/metabolism , Fatty Acid Synthases/metabolism , Hydro-Lyases/metabolism , Mitochondria/enzymology , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Blotting, Western , Carbon Dioxide/metabolism , Fatty Acid Synthase, Type II/genetics , Fatty Acid Synthases/genetics , Gene Expression Regulation, Plant , Glycolates/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hydro-Lyases/genetics , Metabolomics/methods , Microscopy, Confocal , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Mutation , Myristic Acids/metabolism , Plants, Genetically Modified , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA/methods , Sequence Homology, Amino Acid , Sucrose/metabolism
14.
PLoS Comput Biol ; 13(9): e1005673, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28892485

ABSTRACT

Adenylyl cyclase (AC) is an important messenger involved in G-protein-coupled-receptor signal transduction pathways, which is a well-known target for drug development. AC is regulated by activated stimulatory (Gαs) and inhibitory (Gαi) G proteins in the cytosol. Although experimental studies have shown that these Gα subunits can stimulate or inhibit AC's function in a non-competitive way, it is not well understood what the difference is in their mode of action as both Gα subunits appear structurally very similar in a non-lipidated state. However, a significant difference between Gαs and Gαi is that while Gαs does not require any lipidation in order to stimulate AC, N-terminal myristoylation is crucial for Gαi's inhibitory function as AC is not inhibited by non-myristoylated Gαi. At present, only the conformation of the complex including Gαs and AC has been resolved via X-ray crystallography. Therefore, understanding the interaction between Gαi and AC is important as it will provide more insight into the unknown mechanism of AC regulation. This study demonstrates via classical molecular dynamics simulations that the myristoylated Gαi1 structure is able to interact with apo adenylyl cyclase type 5 in a way that causes inhibition of the catalytic function of the enzyme, suggesting that Gα lipidation could play a crucial role in AC regulation and in regulating G protein function by affecting Gαi's active conformation.


Subject(s)
Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Molecular Dynamics Simulation , Myristic Acids , Protein Binding , Protein Conformation
15.
Microbiol Immunol ; 62(8): 497-506, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29932223

ABSTRACT

Lauroyltransferase gene (lpxL), Myristoyltransferase gene (lpxM) and palmitoyltransferase gene (crcA) of Escherichia coli BL21 were independently disrupted by the insertional mutations. The knockout mutant of two transferase genes (lpxL and crcA) produced lipid A with no lauric or palmitic acids and only a little amount of myristic acid. The mutant was susceptible to polymyxin B, but showed comparable growth with the wild-type strain at 30°C. The palmitoyltransferase gene from E. coli (crcA) or Salmonella (pagP) was amplified by PCR, cloned in pUC119, and transferred into the double-knockout mutant by transformation. The transformant contained palmitic acid in the lipid A, and recovered resistance to polymyxin B. Mass spectrometric analysis revealed that palmitic acid was linked to the hydroxyl group of 3-hydroxymyristic acid at C-2 position of proximal (reducing-end) glucosamine. LPS from the double-knockout mutant showed reduced IL-6-inducing activity to macrophage-like line cells compared to that of the wild-type strain, and the activity was only slightly restored by the introduction of palmitic acid to the lipid A. These results suggested that the introduction of one palmitic acid was enough to recover the integrity of the outer membrane, but not enough for the stimulation of macrophages.


Subject(s)
Acyltransferases/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Lipid A/chemistry , Lipid A/genetics , Lipid A/metabolism , Animals , Bacterial Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Gene Knockout Techniques , Humans , Interleukin-6/metabolism , Lauric Acids/metabolism , Macrophages/metabolism , Mice , Microbial Sensitivity Tests , Mutation , Myristic Acid/metabolism , Myristic Acids/chemistry , Palmitic Acids/metabolism , Polymyxin B/pharmacology , RAW 264.7 Cells/drug effects , Salmonella/genetics , U937 Cells/drug effects
16.
Mar Drugs ; 16(4)2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29641496

ABSTRACT

The study of the adaptation mechanisms that allow microorganisms to live and proliferate in an extreme habitat is a growing research field. Directly exposed to the external environment, lipopolysaccharides (LPS) from Gram-negative bacteria are of great appeal as they can present particular structural features that may aid the understanding of the adaptation processes. Moreover, through being involved in modulating the mammalian immune system response in a structure-dependent fashion, the elucidation of the LPS structure can also be seen as a fundamental step from a biomedical point of view. In this paper, the lipid A structure of the LPS from Spiribacter salinus M19-40T, a halophilic gamma-proteobacteria, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. This revealed a mixture of mono- and bisphosphorylated penta- to tri-acylated species with the uncommon 2 + 3 symmetry and bearing an unusual 3-oxotetradecaonic acid.


Subject(s)
Aquatic Organisms/chemistry , Ectothiorhodospiraceae/chemistry , Lipid A/chemistry , Adaptation, Physiological , Aquatic Organisms/physiology , Ectothiorhodospiraceae/physiology , Lipid A/isolation & purification , Lipid A/physiology , Molecular Structure , Myristic Acids/chemistry , Salinity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Proc Natl Acad Sci U S A ; 112(21): E2829-35, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25964351

ABSTRACT

Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fru(M))-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved.


Subject(s)
Copulation/physiology , Drosophila melanogaster/physiology , Sex Attractants/physiology , Smell/physiology , Animals , Animals, Genetically Modified , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Female , Genes, Insect , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Laurates/metabolism , Male , Mutation , Myristic Acids/metabolism , Odorants , Olfactory Receptor Neurons/physiology , Palmitates/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/physiology , Sex Attractants/chemistry , Sexual Behavior, Animal/physiology
18.
Molecules ; 23(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501124

ABSTRACT

In the present work, monoacylglycerol derivatives, i.e., 1-monomyristin, 2-monomyristin, and 2-monopalmitin were successfully prepared from commercially available myristic acid and palmitic acid. The 1-monomyristin compound was prepared through a transesterification reaction between ethyl myristate and 1,2-O-isopropylidene glycerol, which was obtained from the protection of glycerol with acetone, then followed by deprotection using Amberlyst-15. On the other hand, 2-monoacylglycerol derivatives were prepared through enzymatic hydrolysis of triglycerides in the presence of Thermomyces lanuginosa lipase enzymes. The synthesized products were analyzed using fourier transform infrared (FTIR) spectrophotometer, gas or liquid chromatography-mass spectrometer (GC-MS or LC-MS), and proton and carbon nuclear magnetic resonance (¹H- and 13C-NMR) spectrometers. It was found that monomyristin showed high antibacterial and antifungal activities, while 2-monopalmitin did not show any activity at all. The 1-monomyristin compound showed higher antibacterial activity against Staphylococcus aureus and Aggregatibacter actinomycetemcomitans and also higher antifungal activity against Candida albicans compared to the positive control. Meanwhile, 2-monomyristin showed high antibacterial activity against Escherichia coli. The effect of the acyl position and carbon chains towards antibacterial and antifungal activities was discussed.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Glycerides/chemical synthesis , Glycerides/pharmacology , Myristic Acids/chemical synthesis , Myristic Acids/pharmacology , Candida albicans/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
19.
J Biol Chem ; 291(52): 26773-26785, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27875299

ABSTRACT

Virus-host interactions play a role in many stages of the viral lifecycle, including entry. Reovirus, a model system for studying the entry mechanisms of nonenveloped viruses, undergoes a series of regulated structural transitions that culminate in delivery of the viral genetic material. Lipids can trigger one of these conformational changes, infectious subviral particle (ISVP)-to-ISVP* conversion. ISVP* formation releases two virally encoded peptides, myristoylated µ1N (myr-µ1N) and Φ. Among these, myr-µ1N is sufficient to form pores within membranes. Released myr-µ1N can also promote ISVP* formation in trans Using thermal inactivation as a readout for ISVP-to-ISVP* conversion, we demonstrate that lipids render ISVPs less thermostable in a virus concentration-dependent manner. Under conditions in which neither lipids alone nor myr-µ1N alone promotes ISVP-to-ISVP* conversion, myr-µ1N induces particle uncoating when lipids are present. These data suggest that the pore-forming activity and the ISVP*-promoting activity of myr-µ1N are linked. Lipid-associated myr-µ1N interacts with ISVPs and triggers efficient ISVP* formation. The cooperativity between a reovirus component and lipids reveals a distinct virus-host interaction in which membranes can facilitate nonenveloped virus entry.


Subject(s)
Capsid Proteins/metabolism , Cell Membrane/metabolism , Cell-Penetrating Peptides/metabolism , Membrane Lipids/metabolism , Reoviridae Infections/metabolism , Reoviridae/physiology , Virion/physiology , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Cell Membrane/chemistry , Cell Membrane/virology , Cell Membrane Permeability , Cells, Cultured , Liposomes/chemistry , Mice , Models, Biological , Myristic Acids/metabolism , Protein Conformation , Protein Processing, Post-Translational , Reoviridae Infections/virology , Sequence Homology, Amino Acid , Virus Internalization
20.
Biochim Biophys Acta ; 1858(5): 988-94, 2016 May.
Article in English | MEDLINE | ID: mdl-26514602

ABSTRACT

Iso- and anteiso-branched lipids are abundant in the cytoplasmic membranes of bacteria. Their function is assumed to be similar to that of unsaturated lipids in other organisms - to maintain the membrane in a fluid state. However, the presence of terminally branched membrane lipids is likely to impact other membrane properties as well. For instance, lipid acyl chain structure has been shown to influence the activity of antimicrobial peptides. Moreover, the development of resistance to antimicrobial agents in Staphylococcus aureus is accompanied by a shift in the fatty acid composition toward a higher fraction of anteiso-branched lipids. Little is known about how branched lipids and the location of the branch point affect the activity of membrane-active peptides. We hypothesized that bilayers containing lipids with low phase transition temperatures would tend to exclude peptides and be less susceptible to peptide-induced perturbation than those made from higher temperature melting lipids. To test this hypothesis, we synthesized a series of asymmetric phospholipids that only differ in the type of fatty acid esterified at the sn-2 position of the lipid glycerol backbone. We tested the influence of acyl chain structure on peptide activity by measuring the kinetics of release from dye-encapsulated lipid vesicles made from these synthetic lipids. The results were compared to those obtained using vesicles made from S. aureus and Staphylococcus sciuri membrane lipid extracts. Anteiso-branched phospholipids, which melt at very low temperatures, produced lipid vesicles that were only slightly less susceptible to peptide-induced dye release than those made from the iso-branched isomer. However, liposomes made from bacterial phospholipid extracts were generally much more resistant to peptide-induced perturbation than those made from any of the synthetic lipids. The results suggest that the increase in the fraction of anteiso-branched fatty acids in antibiotic-resistant strains of S. aureus is unlikely to be the sole factor responsible for the observed increased antibiotic resistance. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Lipid Bilayers/chemistry , Liposomes/chemistry , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Membrane/chemistry , Drug Compounding , Drug Liberation , Drug Resistance, Bacterial , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Kinetics , Lipid Bilayers/metabolism , Liposomes/metabolism , Lysophosphatidylcholines/chemistry , Lysophosphatidylcholines/metabolism , Myristic Acids/chemistry , Myristic Acids/metabolism , Phase Transition , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Staphylococcus/chemistry , Staphylococcus aureus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL