Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.874
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 181(6): 1189-1193, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32442404

ABSTRACT

Researchers around the globe have been mounting, accelerating, and redeploying efforts across disciplines and organizations to tackle the SARS-CoV-2 outbreak. However, humankind continues to be afflicted by numerous other devastating diseases in increasing numbers. Here, we outline considerations and opportunities toward striking a good balance between maintaining and redefining research priorities.


Subject(s)
Biomedical Research , Coronavirus Infections , Pandemics , Pneumonia, Viral , Biomedical Research/economics , COVID-19 , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Data Science/instrumentation , Data Science/methods , Delivery of Health Care , Humans , Inventions , Metabolic Diseases/diagnosis , Metabolic Diseases/drug therapy , Metabolic Diseases/prevention & control , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Research
2.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33242418

ABSTRACT

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Subject(s)
Cytotoxicity, Immunologic , Immunotherapy , Membrane Proteins/metabolism , Neoplasms/immunology , Neoplasms/therapy , Serpins/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Disease Progression , Female , Gene Deletion , Granzymes/metabolism , Immunity/drug effects , Melanoma/pathology , Mice, Inbred C57BL , Neoplasms/prevention & control , Small Molecule Libraries/pharmacology , Stromal Cells/drug effects , Stromal Cells/pathology , Tumor Microenvironment/drug effects
3.
Annu Rev Immunol ; 29: 111-38, 2011.
Article in English | MEDLINE | ID: mdl-21166538

ABSTRACT

Cervical and other anogenital cancers are initiated by infection with one of a small group of human papillomaviruses (HPV). Virus-like particle-based vaccines have recently been developed to prevent infection with two cancer-associated HPV genotypes (HPV16, HPV18) and have been ∼95% effective at preventing HPV-associated disease caused by these genotypes in virus-naive subjects. Although immunization induces virus-neutralizing antibody sufficient to prevent infection, persistence of antibody as measured by current assays does not appear necessary to maintain protection over time. Investigators have not identified a reliable surrogate immunological marker of protection against disease following immunization. The prophylactic vaccines are not therapeutic for existing infection. Trials of HPV-specific immunotherapy have shown some efficacy for existing disease, although animal modeling suggests that a combination of immunization and local enhancement of innate immunity may be necessary for optimal therapeutic outcome. HPV prophylactic vaccines are the first vaccines designed to prevent a human cancer and are the practical outcome of a global collaborative effort between basic and applied scientists, clinicians, and industry.


Subject(s)
Cancer Vaccines/immunology , Neoplasms/immunology , Neoplasms/prevention & control , Papillomaviridae , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/immunology , Animals , Humans , Neoplasms/virology , Papillomavirus Infections/virology
4.
Cell ; 168(4): 566-570, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187278

ABSTRACT

Study of the biology of tumors caused by germline mutations has led to recent paradigm-changing therapy and is driving precision prevention efforts, including immune oncology and early detection research. Here, we explore recent biologic advances that are redefining the spectrum of cancers linked to various hereditary predisposition syndromes and can be leveraged to improve personalized risk assessment and develop novel interventions to prevent or intercept cancer.


Subject(s)
Genetic Predisposition to Disease , Neoplasms/genetics , Neoplasms/prevention & control , Precision Medicine/methods , Animals , Germ-Line Mutation , Humans
5.
Nature ; 629(8011): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38658748

ABSTRACT

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Dinoprostone , Lymphocytes, Tumor-Infiltrating , Neoplasms , Stem Cells , Tumor Escape , Animals , Female , Humans , Male , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Dinoprostone/metabolism , Disease Models, Animal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-2 , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/prevention & control , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/deficiency , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Tumor Escape/immunology
6.
CA Cancer J Clin ; 72(2): 144-164, 2022 03.
Article in English | MEDLINE | ID: mdl-34751943

ABSTRACT

The increase in cancer incidence and mortality is challenging current cancer care delivery globally, disproportionally affecting low- and middle-income countries (LMICs) when it comes to receiving evidence-based cancer prevention, treatment, and palliative and survivorship care. Patients in LMICs often rely on traditional, complementary, and integrative medicine (TCIM) that is more familiar, less costly, and widely available. However, spheres of influence and tensions between conventional medicine and TCIM can further disrupt efforts in evidence-based cancer care. Integrative oncology provides a framework to research and integrate safe, effective TCIM alongside conventional cancer treatment and can help bridge health care gaps in delivering evidence-informed, patient-centered care. This growing field uses lifestyle modifications, mind and body therapies (eg, acupuncture, massage, meditation, and yoga), and natural products to improve symptom management and quality of life among patients with cancer. On the basis of this review of the global challenges of cancer control and the current status of integrative oncology, the authors recommend: 1) educating and integrating TCIM providers into the cancer control workforce to promote risk reduction and culturally salient healthy life styles; 2) developing and testing TCIM interventions to address cancer symptoms or treatment-related adverse effects (eg, pain, insomnia, fatigue); and 3) disseminating and implementing evidence-based TCIM interventions as part of comprehensive palliative and survivorship care so patients from all cultures can live with or beyond cancer with respect, dignity, and vitality. With conventional medicine and TCIM united under a cohesive framework, integrative oncology may provide citizens of the world with access to safe, effective, evidence-informed, and culturally sensitive cancer care.


Subject(s)
Complementary Therapies , Integrative Medicine , Integrative Oncology , Neoplasms , Delivery of Health Care , Humans , Neoplasms/prevention & control , Quality of Life
7.
CA Cancer J Clin ; 72(6): 561-569, 2022 11.
Article in English | MEDLINE | ID: mdl-35969145

ABSTRACT

Human papillomavirus (HPV) is currently linked to almost 35,000 new cases of cancer in women and men each year in the United States. Gardasil-9 (Merck & Company), the only HPV vaccine now available in the United States, is nearly 100% effective at preventing precancers caused by oncogenic HPV types. In the United States, however, only about one half of adolescents are up to date with HPV vaccination. It is well known that health care clinicians' recommendations play a significant role in parents' decisions regarding HPV vaccination. A growing body of literature examines specific communication strategies for promoting uptake of the HPV vaccine. A comprehensive review of the evidence for each of these strategies is needed. The authors searched the PubMed, EMBASE, Cochrane Central Register of Controlled Trials, PsycINFO, Cumulative Index to Nursing and Allied Health Literature, and Web of Science Complete databases for original articles with a defined clinician communication strategy and an outcome of HPV vaccine uptake or intention to vaccinate (PROSPERO registry no. CRD42020107602). In total, 46 studies were included. The authors identified two main strategies with strong evidence supporting their positive impact on vaccine uptake: strong recommendation and presumptive recommendation. Determinations about a causal relationship were limited by the small numbers of randomized controlled trials. There is also opportunity for more research to determine the effects of motivational interviewing and cancer-prevention messaging.


Subject(s)
Alphapapillomavirus , Neoplasms , Papillomavirus Infections , Papillomavirus Vaccines , Adolescent , Male , Female , Humans , United States , Papillomavirus Infections/prevention & control , Papillomavirus Infections/complications , Papillomavirus Vaccines/therapeutic use , Vaccination , Communication , Parents , Neoplasms/prevention & control
8.
Nat Rev Mol Cell Biol ; 18(3): 175-186, 2017 03.
Article in English | MEDLINE | ID: mdl-28096526

ABSTRACT

The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.


Subject(s)
Genomic Instability , Neoplasms/genetics , Telomere/physiology , Chromothripsis , Humans , Neoplasms/prevention & control , Telomerase/genetics , Telomerase/metabolism , Telomere Shortening
9.
Nature ; 619(7970): 650-657, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37344587

ABSTRACT

Homologous recombination is a fundamental process of life. It is required for the protection and restart of broken replication forks, the repair of chromosome breaks and the exchange of genetic material during meiosis. Individuals with mutations in key recombination genes, such as BRCA2 (also known as FANCD1), or the RAD51 paralogues RAD51B, RAD51C (also known as FANCO), RAD51D, XRCC2 (also known as FANCU) and XRCC3, are predisposed to breast, ovarian and prostate cancers1-10 and the cancer-prone syndrome Fanconi anaemia11-13. The BRCA2 tumour suppressor protein-the product of BRCA2-is well characterized, but the cellular functions of the RAD51 paralogues remain unclear. Genetic knockouts display growth defects, reduced RAD51 focus formation, spontaneous chromosome abnormalities, sensitivity to PARP inhibitors and replication fork defects14,15, but the precise molecular roles of RAD51 paralogues in fork stability, DNA repair and cancer avoidance remain unknown. Here we used cryo-electron microscopy, AlphaFold2 modelling and structural proteomics to determine the structure of the RAD51B-RAD51C-RAD51D-XRCC2 complex (BCDX2), revealing that RAD51C-RAD51D-XRCC2 mimics three RAD51 protomers aligned within a nucleoprotein filament, whereas RAD51B is highly dynamic. Biochemical and single-molecule analyses showed that BCDX2 stimulates the nucleation and extension of RAD51 filaments-which are essential for recombinational DNA repair-in reactions that depend on the coupled ATPase activities of RAD51B and RAD51C. Our studies demonstrate that BCDX2 orchestrates RAD51 assembly on single stranded DNA for replication fork protection and double strand break repair, in reactions that are critical for tumour avoidance.


Subject(s)
Cryoelectron Microscopy , DNA-Binding Proteins , Multiprotein Complexes , Rad51 Recombinase , Tumor Suppressor Proteins , Humans , DNA Repair , DNA Replication , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Homologous Recombination , Rad51 Recombinase/chemistry , Rad51 Recombinase/metabolism , Rad51 Recombinase/ultrastructure , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/ultrastructure , Poly(ADP-ribose) Polymerase Inhibitors , Neoplasms/genetics , Neoplasms/prevention & control , Proteomics , Computer Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , DNA Breaks, Double-Stranded
10.
Nature ; 621(7977): 196-205, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612507

ABSTRACT

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Subject(s)
Healthy Aging , Hyaluronan Synthases , Hyaluronic Acid , Longevity , Mole Rats , Animals , Mice , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/prevention & control , Mice, Transgenic , Mole Rats/genetics , Longevity/genetics , Longevity/immunology , Longevity/physiology , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Healthy Aging/genetics , Healthy Aging/immunology , Healthy Aging/physiology , Transgenes/genetics , Transgenes/physiology , Transcriptome , Neoplasms/genetics , Neoplasms/prevention & control , Oxidative Stress , Geroscience , Rejuvenation/physiology
11.
Mol Cell ; 81(10): 2094-2111.e9, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33878293

ABSTRACT

Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.


Subject(s)
Autoimmunity , Neoplasms/enzymology , Neoplasms/prevention & control , Syk Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Antigens, CD19/metabolism , B-Lymphocytes , Calcium/metabolism , Cell Differentiation , Cell Transformation, Neoplastic , Enzyme Activation , Humans , Immune Tolerance , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/pathology , Mice , Models, Genetic , NFATC Transcription Factors/metabolism , Neoplasm Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
12.
CA Cancer J Clin ; 71(6): 466-487, 2021 11.
Article in English | MEDLINE | ID: mdl-34545941

ABSTRACT

The Hispanic/Latino population is the second largest racial/ethnic group in the continental United States and Hawaii, accounting for 18% (60.6 million) of the total population. An additional 3 million Hispanic Americans live in Puerto Rico. Every 3 years, the American Cancer Society reports on cancer occurrence, risk factors, and screening for Hispanic individuals in the United States using the most recent population-based data. An estimated 176,600 new cancer cases and 46,500 cancer deaths will occur among Hispanic individuals in the continental United States and Hawaii in 2021. Compared to non-Hispanic Whites (NHWs), Hispanic men and women had 25%-30% lower incidence (2014-2018) and mortality (2015-2019) rates for all cancers combined and lower rates for the most common cancers, although this gap is diminishing. For example, the colorectal cancer (CRC) incidence rate ratio for Hispanic compared with NHW individuals narrowed from 0.75 (95% CI, 0.73-0.78) in 1995 to 0.91 (95% CI, 0.89-0.93) in 2018, reflecting delayed declines in CRC rates among Hispanic individuals in part because of slower uptake of screening. In contrast, Hispanic individuals have higher rates of infection-related cancers, including approximately two-fold higher incidence of liver and stomach cancer. Cervical cancer incidence is 32% higher among Hispanic women in the continental US and Hawaii and 78% higher among women in Puerto Rico compared to NHW women, yet is largely preventable through screening. Less access to care may be similarly reflected in the low prevalence of localized-stage breast cancer among Hispanic women, 59% versus 67% among NHW women. Evidence-based strategies for decreasing the cancer burden among the Hispanic population include the use of culturally appropriate lay health advisors and patient navigators and targeted, community-based intervention programs to facilitate access to screening and promote healthy behaviors. In addition, the impact of the COVID-19 pandemic on cancer trends and disparities in the Hispanic population should be closely monitored.


Subject(s)
Early Detection of Cancer/statistics & numerical data , Health Services Accessibility/statistics & numerical data , Hispanic or Latino/statistics & numerical data , Neoplasms/ethnology , Adolescent , Adult , Aged , Female , Humans , Incidence , Male , Middle Aged , Neoplasms/mortality , Neoplasms/prevention & control , Puerto Rico/epidemiology , Risk Factors , Survival Rate , United States/epidemiology , White People/statistics & numerical data , Young Adult
13.
Nat Rev Mol Cell Biol ; 17(2): 110-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26790532

ABSTRACT

The modification of eukaryotic proteins by isoprenoid lipids, which is known as prenylation, controls the localization and activity of a range of proteins that have crucial functions in biological regulation. The roles of prenylated proteins in cells are well conserved across species, underscoring the biological and evolutionary importance of this lipid modification pathway. Genetic suppression and pharmacological inhibition of the protein prenylation machinery have provided insights into several cellular processes and into the aetiology of diseases in which prenylation is involved. The functional dependence of prenylation substrates, such as RAS proteins, on this modification and the therapeutic potential of targeting the prenylation process in pathological conditions accentuate the need to fully understand this form of post-translational modification.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Protein Prenylation , Protein Processing, Post-Translational , Terpenes/metabolism , ras Proteins/metabolism , Aging/genetics , Aging/metabolism , Alkyl and Aryl Transferases/antagonists & inhibitors , Alkyl and Aryl Transferases/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Endopeptidases/genetics , Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/prevention & control , Protein Transport , ras Proteins/antagonists & inhibitors , ras Proteins/genetics
14.
Nature ; 606(7916): 992-998, 2022 06.
Article in English | MEDLINE | ID: mdl-35614223

ABSTRACT

Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.


Subject(s)
Myelodysplastic Syndromes , Neoplasms , Skin Diseases, Genetic , Vaccines , Histocompatibility Antigens Class I , Humans , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplasms/prevention & control
15.
Nature ; 608(7922): 421-428, 2022 08.
Article in English | MEDLINE | ID: mdl-35922508

ABSTRACT

Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues1-6. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis2,7,8. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes4,5,9. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1-the key mediator for BAT-thermogenesis-ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Energy Metabolism , Neoplasms , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Animals , Blood Glucose/metabolism , Combined Modality Therapy , Glycolysis , Humans , Mice , Neoplasms/metabolism , Neoplasms/prevention & control , Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/prevention & control , Pancreatic Neoplasms/therapy , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
16.
Mol Cell ; 80(4): 592-606.e8, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33159855

ABSTRACT

Despite its outstanding clinical success, immune checkpoint blockade remains ineffective in many patients. Accordingly, combination therapy capable of achieving greater antitumor immunity is urgently required. Here, we report that limiting glutamine metabolism in cancer cells bolsters the effectiveness of anti-programmed death ligand-1 (PD-L1) antibody. Inhibition of glutamine utilization increased PD-L1 levels in cancer cells, thereby inactivating co-cultured T cells. Under glutamine-limited conditions, reduced cellular GSH levels caused an upregulation of PD-L1 expression by impairing SERCA activity, which activates the calcium/NF-κB signaling cascade. Consequently, in tumors grown in immunocompetent mice, inhibition of glutamine metabolism decreased the antitumor activity of T cells. In combination with anti-PD-L1, however, glutamine depletion strongly promoted the antitumor efficacy of T cells in vitro and in vivo due to simultaneous increases in Fas/CD95 levels. Our results demonstrate the relevance of cancer glutamine metabolism to antitumor immunity and suggest that co-targeting of glutamine metabolism and PD-L1 represents a promising therapeutic approach.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/metabolism , Glutamine/metabolism , Glutathione/metabolism , Neoplasms/immunology , Neoplasms/prevention & control , T-Lymphocytes/immunology , Aged , Animals , Apoptosis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Cell Proliferation , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
CA Cancer J Clin ; 70(4): 245-271, 2020 07.
Article in English | MEDLINE | ID: mdl-32515498

ABSTRACT

The American Cancer Society (ACS) publishes the Diet and Physical Activity Guideline to serve as a foundation for its communication, policy, and community strategies and, ultimately, to affect dietary and physical activity patterns among Americans. This guideline is developed by a national panel of experts in cancer research, prevention, epidemiology, public health, and policy, and reflects the most current scientific evidence related to dietary and activity patterns and cancer risk. The ACS guideline focuses on recommendations for individual choices regarding diet and physical activity patterns, but those choices occur within a community context that either facilitates or creates barriers to healthy behaviors. Therefore, this committee presents recommendations for community action to accompany the 4 recommendations for individual choices to reduce cancer risk. These recommendations for community action recognize that a supportive social and physical environment is indispensable if individuals at all levels of society are to have genuine opportunities to choose healthy behaviors. This 2020 ACS guideline is consistent with guidelines from the American Heart Association and the American Diabetes Association for the prevention of coronary heart disease and diabetes as well as for general health promotion, as defined by the 2015 to 2020 Dietary Guidelines for Americans and the 2018 Physical Activity Guidelines for Americans.


Subject(s)
Exercise/physiology , Feeding Behavior/physiology , Health Promotion/standards , Healthy Lifestyle/physiology , Neoplasms/prevention & control , American Cancer Society , Humans , United States
18.
CA Cancer J Clin ; 70(4): 274-280, 2020 07.
Article in English | MEDLINE | ID: mdl-32639044

ABSTRACT

The American Cancer Society (ACS) presents an adaptation of the current Advisory Committee on Immunization Practices recommendations for human papillomavirus (HPV) vaccination. The ACS recommends routine HPV vaccination between ages 9 and 12 years to achieve higher on-time vaccination rates, which will lead to increased numbers of cancers prevented. Health care providers are encouraged to start offering the HPV vaccine series at age 9 or 10 years. Catch-up HPV vaccination is recommended for all persons through age 26 years who are not adequately vaccinated. Providers should inform individuals aged 22 to 26 years who have not been previously vaccinated or who have not completed the series that vaccination at older ages is less effective in lowering cancer risk. Catch-up HPV vaccination is not recommended for adults aged older than 26 years. The ACS does not endorse the 2019 Advisory Committee on Immunization Practices recommendation for shared clinical decision making for some adults aged 27 through 45 years who are not adequately vaccinated because of the low effectiveness and low cancer prevention potential of vaccination in this age group, the burden of decision making on patients and clinicians, and the lack of sufficient guidance on the selection of individuals who might benefit.


Subject(s)
Immunization Schedule , Mass Vaccination/standards , Neoplasms/prevention & control , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Adolescent , Adult , Advisory Committees/standards , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , American Cancer Society/organization & administration , Child , Clinical Competence , Female , Health Personnel/education , Health Plan Implementation/organization & administration , Health Plan Implementation/standards , Humans , Intersectoral Collaboration , Mass Vaccination/organization & administration , Middle Aged , Neoplasms/pathology , Neoplasms/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , United States , Vaccination Coverage/organization & administration , Vaccination Coverage/standards , Young Adult
19.
Annu Rev Pharmacol Toxicol ; 63: 165-186, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36202092

ABSTRACT

Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.


Subject(s)
Aspirin , Neoplasms , Humans , Aspirin/pharmacology , Aspirin/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Neoplasms/drug therapy , Neoplasms/prevention & control , Inflammation/drug therapy , Chemoprevention
20.
Annu Rev Med ; 75: 1-11, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37625124

ABSTRACT

The COVID-19 pandemic led to disruption of health services around the world, including cancer services. We carried out a narrative review of the effect of the pandemic on cancer prevention services, including screening. Services were severely affected in the early months of the pandemic, and in some areas are still recovering. Large numbers of additional cancers or additional late-stage cancers have been predicted to arise over the coming years as a result of this disruption. To minimize the effects on cancer outcomes, it is necessary to return as quickly as possible to prepandemic levels of screening and prevention activity or indeed to exceed these levels. The recovery of services should address health inequalities.


Subject(s)
COVID-19 , Neoplasms , Humans , Pandemics/prevention & control , Neoplasms/epidemiology , Neoplasms/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL