Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.563
Filter
Add more filters

Publication year range
1.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682237

ABSTRACT

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Subject(s)
Cell Differentiation , Cyclin-Dependent Kinase 5 , Metformin , Nerve Growth Factor , Neurons , Receptor, trkA , Animals , Metformin/pharmacology , Rats , PC12 Cells , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Receptor, trkA/metabolism , Receptor, trkA/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , Neurogenesis/drug effects , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Phosphotransferases
2.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333908

ABSTRACT

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Subject(s)
Nerve Growth Factor , Osteogenesis , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Dental Pulp , Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , RNA, Small Interfering/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Proliferation
3.
Bioorg Med Chem ; 101: 117637, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38368633

ABSTRACT

Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.


Subject(s)
Nerve Growth Factors , Quinolines , Animals , Rats , Cell Differentiation/drug effects , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , PC12 Cells/drug effects , Phosphorylation
4.
BMC Pulm Med ; 24(1): 55, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273268

ABSTRACT

BACKGROUND: Asthma is the most common allergic disease characterized by an inflammatory response in the airways. Mechanismly, urban particulate matter (PM) is the most widely air pollutant associated with increased asthma morbidity and airway inflammation. Current research found that vitamin D is an essential vitamin with anti-inflammatory, antioxidant and other medical efficacy. Inadequate or deficient vitamin D often leads to the pathogenesis and stability of asthma. NGF exacerbates airway inflammation in asthma by promoting smooth muscle cell proliferation and inducing the Th2 immune response. Activation of the Nrf2/HO-1 signaling pathway can exert a protective effect on the inflammatory response in bronchial asthma. However, the specific mechanism of this pathway in PM-involved asthmatic airway smooth muscle cells remains unclear. METHODS: Mice were sensitized and challenged with Ovalbumin (OVA) to establish an asthma model. They were then exposed to either PM, vitamin D or a combination of both, and inflammatory responses were observed. Including, acetylcholine stimulation at different concentrations measured airway hyperresponsiveness in mice. Bronchoalveolar lavage fluid (BALF) and serum were collected for TNF-α, IL-1ß, IL-6, and Nerve growth factor (NGF) analysis. Additionally, lung tissues underwent histopathological examination to observe alveolar structure and inflammatory cell infiltration. Specific ELISA kits were utilized to determine the levels of the inflammatory factors TNF-α, IL-1ß, IL-6, and Nerve growth factor (NGF). Nrf2/HO-1 signaling pathways were examined by western blot analysis. Meanwhile, we constructed a cell system with low HO-1 expression by lentiviral transfection of airway smooth muscle cells. The changes of Nrf2, HO-1, and NGF were observed after the treatment of OVA, PM, and Vit D were given. RESULTS: The in vivo results showed that vitamin D significantly alleviated pathological changes in lung tissue of PM-exposed mice models. Mechanismly, vitamin D decreased substantial inflammatory cell infiltration in lung tissue, as well as the number of inflammatory cells in BALF. Furthermore, vitamin D reduced the heightened inflammatory factors including of TNF-α, IL-1ß, IL-6, and NGF caused by PM exposure, and triggered the activity of nucleus Nrf2 and HO-1 in PM-exposed asthmatic mice. Notably, knockdown HO-1 weakens the Vitamin D- mediated inhibition to pollution toxicity in asthma. Importantly, in vitro experiments on OVA-stimulated mice airway smooth muscle cells, the results showed that OVA and PM, respectively, reduced Nrf2/HO-1 and increased NGF's expression, while vitamin D reversed the process. And in the HO-1 knockdown cell line of Lenti-si-HO-1 ASMCs, OVA and PM reduced Nrf2's expression, while HO-1 and NGF's expression were unchanged. CONCLUSIONS: The above results demastrate that vitamin D downregulated the inflammatory response and the expression of NGF by regulating the Nrf2/HO-1 signaling pathways in airway smooth muscle cells, thereby showing potent anti-inflammatory activity in asthma.


Subject(s)
Asthma , Particulate Matter , Mice , Animals , Particulate Matter/toxicity , NF-E2-Related Factor 2/metabolism , Vitamin D/pharmacology , Vitamin D/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Asthma/chemically induced , Asthma/drug therapy , Lung/pathology , Inflammation , Signal Transduction , Bronchoalveolar Lavage Fluid , Anti-Inflammatory Agents/pharmacology , Vitamins/therapeutic use , Ovalbumin , Disease Models, Animal , Mice, Inbred BALB C , Cytokines/metabolism
5.
Pharmazie ; 79(3): 67-71, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38872272

ABSTRACT

We examined the mechanism by which 24(R)-ethyllophenol (MAB28) isolated from the branches of Morus alba caused neurite outgrowth in rat pheochromocytoma cells (PC12). MAB28 significantly promoted neurite outgrowth to a similar degree as the positive control, nerve growth factor (NGF). After incubation with MAB28 in PC12 cells, phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and cyclic AMP response element-binding protein was detected, but the time course of phosphorylation was different from that induced by NGF. The expression of chloride intracellular channel protein 3 (CLIC3) was significantly decreased by MAB28. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), an outward rectifying chloride channel inhibitor, significantly promoted neurite outgrowth in PC12 cells. These data suggested that MAB28 could induce neurite outgrowth by downregulating CLIC3 expression.


Subject(s)
Morus , Neurites , Animals , PC12 Cells , Rats , Morus/chemistry , Neurites/drug effects , Neuronal Outgrowth/drug effects , Nerve Growth Factor/pharmacology , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , Nitrobenzoates/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Phenols/pharmacology , Blotting, Western , Extracellular Signal-Regulated MAP Kinases/metabolism , Chloride Channels
6.
Reproduction ; 165(4): 395-405, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36757313

ABSTRACT

In brief: Seminal nerve growth factor induces ovulation in camelids by influencing the secretion of gonadotrophin-releasing hormone (GnRH) into the portal vessels of the pituitary gland. We show that the nerve growth factor-induced release of GnRH is not mediated directly through interaction with hypothalamic neurons. Abstract: Ovulation in camelids is triggered by seminal nerve growth factor (NGF). The mechanism of action of NGF appears to occur via the central nervous system. In this study, we tested the hypothesis that NGF acts in the hypothalamus to induce GnRH release. To determine if NGF-induced ovulation is associated with a rise in NGF concentrations in the cerebrospinal fluid (CSF), llamas were i) mated with an urethrostomized male, ii) mated with intact male, or given intrauterine iii) seminal plasma or i.v.) saline (Experiment 1). To characterize the luteinizing hormone (LH) response after central vs peripheral administration, llamas were treated with saline (negative control) or NGF either by i.v. or intracerebroventricular (ICV) administration (Experiment 2). To determine the role of kisspeptin, the effect of ICV infusion of a kisspeptin receptor antagonist on NGF-induced LH secretion and ovulation was tested in llamas (Experiment 3). In Experiment 1, a surge in circulating concentrations of LH was detected only in llamas mated with an intact male and those given intrauterine seminal plasma, but no changes in CSF concentrations of NGF were detected. In Experiment 2, peripheral administration (i.v.) of NGF induced an LH surge and ovulation, whereas no response was detected after central (ICV) administration. In Experiment 3, the kisspeptin receptor antagonist had no effect on the LH response to NGF. In conclusion, results did not support the hypothesis that NGF-induced ovulation is mediated via a trans-synaptic pathway within the hypothalamus, but rather through a releasing effect on tanycytes at the median eminence.


Subject(s)
Camelids, New World , Nerve Growth Factor , Female , Animals , Male , Nerve Growth Factor/pharmacology , Progesterone , Camelids, New World/metabolism , Kisspeptins/pharmacology , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism
7.
Exp Eye Res ; 237: 109693, 2023 12.
Article in English | MEDLINE | ID: mdl-37890756

ABSTRACT

People suffering from diabetes mellitus commonly have to face diabetic retinopathy (DR), an eye disease characterized by early retinal neurodegeneration and microvascular damage, progressively leading to sight loss. The Ins2Akita (Akita) diabetic mouse presents the characteristics of DR and experimental drugs can be tested on this model to check their efficacy before going to the clinic. Topical administration of Nerve Growth Factor (NGF) has been recently demonstrated to prevent DR in the Akita mouse, reverting the thinning of retinal layers and protecting the retinal ganglion cells (RGCs) from death. In this study, we characterize the effects of topical NGF on neuroretina function, quantified with the electroretinogram (ERG). In particular, we show that NGF can ameliorate RGC conduction in the retina of Akita mice, which correlates with a recovery of retinal nerve fiber plus ganglion cell layer (RNFL-GCL) structure. Overall, our preclinical results highlight that topical administration of NGF could be a promising therapeutic approach for DR, being capable of exerting a beneficial impact on retinal functionality.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Disease Models, Animal , Insulin/metabolism , Nerve Growth Factor/pharmacology , Retina/metabolism
8.
Exp Eye Res ; 231: 109484, 2023 06.
Article in English | MEDLINE | ID: mdl-37080382

ABSTRACT

Diabetic keratopathy (DK) is a common ocular complication of diabetes in which the dendritic cells (DCs)-mediated inflammatory response plays an important role. Nerve growth factor (NGF)/Tropomyosin receptor kinase A (TrkA)-mediated inhibition of the nuclear factor kappa B (NF-κB) pathway can reduce inflammatory cytokine production. Extracellular vesicles (EVs) derived from mouse adipose-derived mesenchymal stem cells (mADSC-EVs) have been explored extensively as treatments for degenerative eye disease. However, mADSC-EVs is poorly studied in the DK models. In this study, we investigated the anti-inflammatory effects of mADSC-EVs and explored the underlying mechanisms in vitro and in vivo DK models. Our results showed that mADSC-EVs have significant therapeutic effects including increasing tear volume and the ratio of lacrimal gland/body weight, promoting corneal nerve regeneration, and sensation recovery in streptozotocin (STZ)-induced DK mice. In addition, mADSC-EVs significantly reduced the inflammatory response involving DCs, consistently up-regulated protein expression of the NGF/TrkA pathway, and importantly, reduced lipopolysaccharide (LPS)-mediated IL-6 and TNF-α expression and directly dependent on TrkA in the induced culture of bone marrow-derived DCs (BMDCs). Taken together, our findings revealed that mADSC-EVs promoted diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving DCs. Given the significant therapeutic efficacy of mADSC-EVs and its clinical application, mADSC-EVs appears to be a promising new therapy for DK.


Subject(s)
Corneal Injuries , Diabetes Mellitus , Extracellular Vesicles , Mesenchymal Stem Cells , Mice , Animals , Nerve Growth Factor/pharmacology , Mesenchymal Stem Cells/physiology , Corneal Injuries/metabolism , Diabetes Mellitus/metabolism , Dendritic Cells , Extracellular Vesicles/physiology , Wound Healing
9.
Nitric Oxide ; 140-141: 30-40, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37699453

ABSTRACT

Urine samples of female patients with overactive bladder (OAB) are characterized by low levels of nerve growth factor (NGF) and elevated concentrations of nitric oxide (NO) compared to healthy controls. We therefore examined how NO might regulate NGF synthesis using rat bladder smooth muscle (SMCs) and urothelial (UROs) cells in culture. In UROs, incubation in hyperglycemic conditions to mimic insulin insensitivity present in the OAB cohort increased secretion of NO and concomitantly decreased NGF, except when the NO synthase inhibitor, l-NAME (1 mM) was present. Sodium nitroprusside (SNP) (300 µM, 24 h), a NO generator, decreased NGF levels and decreased cyclic GMP (cGMP) content, a process validated by the cGMP synthase inhibitor ODQ (100 µM). Alternatively, SNP increased mRNA of both NGF and matrix metalloproteinase-9 (MMP-9). MMP-9 knockout of UROs by Crispr-Cas9 potently decreased the effect of SNP on NGF, implying a dependent role of NO on MMP-9. On the other hand, matrix metalloproteinase-7 (MMP-7) activity was increased by SNP, which taken together with increase in NGF mRNA, suggests a compensatory mechanism. In SMCs, hyperglycemic conditions had the same effect on extracellular content of NO and NGF than in UROs. SNP also decreased NGF secretion but increased cGMP content. Stable permeable analogs of cGMP 8-(4-Chlorophenylthio)-cGMP (1 mM) and N2,2'-O-Dibutyryl-cGMP (3 mM) inhibited NGF release. NGF and MMP-9 mRNA expression was unchanged by SNP. Deletion of MMP-9 in SMCs by Crispr-Cas9 did not alter the effect of SNP. Finally, SNP decreased MMP-7 activity, diminishing the conversion of proNGF to NGF. These results demonstrate that enhanced NO secretion triggered by high glucose decreases NGF secretion through pathways unique for each cell type that involve cGMP and proteases MMP-7 and MMP-9. These results might help to explain our observations from the urine from patients with OAB associated with metabolic syndrome.


Subject(s)
Matrix Metalloproteinase 9 , Nitric Oxide , Rats , Animals , Humans , Female , Nitric Oxide/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 7 , Urinary Bladder , Nerve Growth Factor/pharmacology , Nitroprusside/pharmacology , Enzyme Inhibitors , RNA, Messenger , Cyclic GMP/metabolism
10.
Neuroendocrinology ; 113(2): 216-230, 2023.
Article in English | MEDLINE | ID: mdl-34348336

ABSTRACT

BACKGROUND: PC12 pheochromocytoma tumor cell lines are widely used to decipher the intracellular signaling mechanisms mediating the effects of some growth factors. Nevertheless, the disparity in appearance of some PC12 cell lines used in the different publications questions our ability to compare the results obtained by the numerous laboratories which use them. This led us to analyze the phenotypic aspect and transcriptomic expression of 5 PC12 cell lines from different origins under control conditions and after treatment with nerve growth factor (NGF) or pituitary adenylate cyclase-activating polypeptide (PACAP). METHODS: Characterization of the 5 PC12 cell lines was conducted using imaging techniques and high-throughput real-time PCR combined with bioinformatics analysis. RESULTS: The results show that the 5 cell lines are very variable in terms of shape, proliferation rate, motility, adhesion to the substrate, and gene expression. This high heterogeneity of the cell lines is also found when looking at their response to NGF or PACAP on gene expression or differentiation, with even in some cases opposite effects, as, for example, on cell proliferation. Actually, only 2 of the cell lines tested exhibited some phenotypic similarities with each other, even though the transcriptomic analyses show that they are far from identical. DISCUSSION/CONCLUSION: As this issue of cell heterogenicity is not restricted to PC12 cells, the present results highlight the need to facilitate the supply of cell lines at low cost, the necessity to standardize practices regarding the use of cell lines, and the requirement to define precise markers of established cell lines which should be monitored in every publication. Regarding this latter point, the present data show that transcriptomic analysis by real-time PCR using a panel of genes of interest is easy to implement and provides a reliable method to control the possible drift of the cells over time in culture. Transcriptomic phenotyping combined with bioinformatics analysis can also be a useful approach to predict the response of the cells to treatments in terms of cell signaling activation, which can help to choose among several cell lines the most appropriate one for the investigation of a particular mechanism. Taken together, the results from this study highlight the need to use well-characterized cell lines with standardized protocols to generate reproducible results from 1 laboratory to the other.


Subject(s)
Nerve Growth Factor , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , PC12 Cells , Nerve Growth Factor/pharmacology , Laboratories , Reproducibility of Results
11.
Bioorg Med Chem ; 78: 117144, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36577328

ABSTRACT

Novel steroid glycosides, acanthasterosides A1, B1, and B3, have been isolated from the crown-of-thorns starfish Acanthaster planci. Acanthasterosides B1 and B3 having two separated xyloses induced neurite outgrowth as like as nerve growth factor (NGF) in the rat pheochromocytoma cell line PC12, whereas acanthasteroside A1, having one xylose, did not induce neurite outgrowth. The acanthasteroside B3 induced neuritogenesis via the significant activation of p38 mitogen-activated protein kinase after the activation of the small G-protein Cdc42 rather than via Ras-MEK-ERK pathway that is predominantly activated by NGF. Following subcutaneous administration, acanthasteroside B3 attenuated cognitive impairment of senescence-accelerated mice (SAMP8) in two different cognitive tests. Liquid chromatography-mass spectrometry-assisted quantitative analysis demonstrated that acanthasteroside B3 could be transported into the brain via the circulatory system in mice. Thus, acanthasteroside B3 (and possibly B1) are a novel class of potential drug candidates for neurodegenerative diseases.


Subject(s)
Cognitive Dysfunction , Mitogen-Activated Protein Kinase 14 , Mice , Rats , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , Neurites/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells , Mitogen-Activated Protein Kinase 14/metabolism , Cognitive Dysfunction/metabolism , Starfish/metabolism , Steroids
12.
J Pharmacol Sci ; 151(4): 163-170, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36925214

ABSTRACT

OBJECTIVES: Mast cell-derived tryptase causes neuronal elongation/sensitization leading to visceral hypersensitivity. However, effects of tryptase on enteric glial cells (EGCs) and subsequent interaction between EGCs and neurons remain unknown. METHODS: We evaluated proteins and mRNA expressions in EGC (CRL-2690, ATCC) after tryptase stimulation: nerve growth factor (NGF), netrin-1, and glial cell-derived neurotrophic factor (GDNF). We examined morphological changes in neurons (PC12 cells, CRL-1721.1) by co-incubation with the conditioned medium of EGCs after tryptase stimulation. RESULTS: EGC was activated by tryptase, and proliferated (by 1.8-fold) with cytoplasmic expansion and process elongation. Intercellular connections of EGC were more complexed. Tryptase induced mRNA expression (2.5-fold) and protein expression of NGF. Netrin-1 (3-fold) and GDNF (3-fold) mRNA expressions were increased at 30 min. Increase in netrin-1 continued until 6 h, whereas the latter decreased by 3 h. The conditioned medium of EGC after tryptase stimulation expanded neuronal cytoplasm (round or ramified shapes) and neurite outgrowth with elongation of cytoskeletal filaments in time-dependent and dose-dependent manners. These changes were similar to those after NGF stimulation. Growth cone proteins of neurons were also increased by the conditioned medium. CONCLUSION: EGC activated by tryptase changes neuronal morphology (process elongation and cytoplasm expansion) possibly via the stimuli-associated mediators.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Nerve Growth Factor , Rats , Animals , Tryptases/metabolism , Netrin-1/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Culture Media, Conditioned/metabolism , Neurons/metabolism , Neuroglia/metabolism , RNA, Messenger/metabolism , Cells, Cultured
13.
Can J Physiol Pharmacol ; 101(10): 539-547, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37406358

ABSTRACT

Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation. Immunohistochemical and reverse transcriptase polymerase chain reaction analyses showed the expression of the KCNQ2 isoform. We found that 1 µmol/L XE991, a channel inhibitor, significantly reduced gLTP (∼50%), whereas 5 µmol/L flupirtine, a channel activator, significantly increased gLTP (1.3- to 1.7-fold). Both modulators counterbalanced the effects of the Nts on gLTP. Data suggest that KCNQ/M channels are likely involved in gLTP expression and in the modulation exerted by BDNF and NGF.


Subject(s)
Long-Term Potentiation , Superior Cervical Ganglion , Rats , Animals , Superior Cervical Ganglion/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/pharmacology , Signal Transduction
14.
Biochemistry (Mosc) ; 88(2): 262-279, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37072327

ABSTRACT

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.


Subject(s)
Hyperhomocysteinemia , Placenta , Pregnancy , Female , Rats , Humans , Animals , Placenta/metabolism , Matrix Metalloproteinase 2/metabolism , Vascular Endothelial Growth Factor A/metabolism , Hyperhomocysteinemia/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology
15.
Gerontology ; 69(9): 1065-1075, 2023.
Article in English | MEDLINE | ID: mdl-37285833

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a major public health concern worldwide, but there are still no drugs available that treat it effectively. Previous studies have shown that phenylethanoid glycosides have pharmacological effects, which include anti-AD properties, but the underlying mechanisms by which they ameliorate AD symptoms remain unknown. METHODS: In this study, we used an APP/PS1 AD mouse model to explore the function and mechanisms underlying savatiside A (SA) and torenoside B (TB) in the treatment of AD. SA or TB (100 mg·kg-1·d-1) was orally administered to 7-month-old APP/PS1 mice for 4 weeks. Cognitive and memory functions were measured using behavioral experiments (including the Morris water maze test and the Y-maze spontaneous alternation test). Molecular biology experiments (including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays) were used to detect any corresponding changes in signaling pathways. RESULTS: The results showed that SA or TB treatment could significantly reduce cognitive impairment in APP/PS1 mice. We also showed that chronic treatment with SA/TB could prevent spine loss, synaptophysin immunoreactivity, and neuronal loss in mice, thereby improving synaptic plasticity and moderating learning and memory deficits. SA/TB administration also promoted the expression of synaptic proteins in APP/PS1 mouse brains and upregulated phosphorylation of proteins in the cyclic adenosine monophosphate (cAMP)/CREB/brain-derived neurotrophic growth factor (BDNF) pathway that are responsible for synaptic plasticity. Additionally, chronic SA/TB treatment increased the levels of BDNF and nerve growth factor (NGF) in the brains of APP/PS1 mice. Both astrocyte and microglia volumes, as well as the generation of amyloid ß, were also decreased in SA/TB-treated APP/PS1 mice compared to control APP/PS1 mice. CONCLUSION: In summary, SA/TB treatment was associated with activation of the cAMP/CREB/BDNF pathway and increased BDNF and NGF expression, indicating that SA/TB improves cognitive functioning via nerve regeneration. SA/TB is a promising candidate drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Hippocampus/metabolism , Neuronal Plasticity , Brain/metabolism , Maze Learning , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Disease Models, Animal
16.
Pharmacology ; 108(2): 204-212, 2023.
Article in English | MEDLINE | ID: mdl-36724742

ABSTRACT

The nucleus basalis of Meynert (nBM) is the major source of cholinergic neurons in the basal forebrain, which require nerve growth factor (NGF) for their survival. Melatonin, a pleiotropic hormone, has been shown to exert neuroprotection in several experimental models, but its effect on nBM neurons is not well known. Thus, the aim of this study is to evaluate the effect of melatonin in organotypic brain slices of the nBM. Organotypic nBM slices were incubated for 2 weeks without (control) or with 100 ng/mL NGF, 1 µM melatonin, or a combination of both. Cholinergic neurons were immunohistochemically stained for choline acetyltransferase (ChAT) and subjected to a co-localization study with silent information regulator 1 (SIRT1) and melatonin receptor 1A (MT1A), both potentially involved in melatonin neuroprotection. Counting of ChAT-positive neurons in nBM slices showed that melatonin and NGF significantly increased the number of ChAT-positive neurons compared to the control in a dose-dependent manner (1-10 µM). In co-treatment with NGF, melatonin did not potentiate the maximal NGF-mediated effect. Immunohistochemical analysis proved that cholinergic nBM neurons co-localized with SIRT1 and MT1A receptor. Our data show that melatonin improves the survival of cholinergic nBM neurons and confirm that they express SIRT1 and MT1A.


Subject(s)
Basal Nucleus of Meynert , Melatonin , Melatonin/pharmacology , Nerve Growth Factor/pharmacology , Sirtuin 1/metabolism , Cholinergic Neurons/metabolism , Brain/metabolism , Cholinergic Agents/metabolism , Cholinergic Agents/pharmacology
17.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203377

ABSTRACT

N-acetylcysteine (NAC), a mucolytic agent and an antidote to acetaminophen intoxication, has been studied in experimental conditions and trials exploring its analgesic activity based on its antioxidant and anti-inflammatory properties. The purpose of this study is to investigate additional mechanisms, namely, the inhibition of nerve growth factor (NGF) and the activation of the Tropomyosin receptor kinase A (TrkA) receptor, which is responsible for nociception. In silico studies were conducted to evaluate dithiothreitol and NAC's interaction with TrkA. We also measured the autophosphorylation of TrkA in SH-SY5Y cells via ELISA to assess NAC's in vitro activity against NGF-induced TrkA activation. The in silico and in vitro tests show that NAC interferes with NGF-induced TrkA activation. In particular, NAC breaks the disulfide-bound Cys 300-345 of TrkA, perturbing the NGF-TrkA interaction and producing a rearrangement of the binding site, inducing a consequent loss of their molecular recognition and spatial reorganization, which are necessary for the induction of the autophosphorylation process. The latter was inhibited by 40% using 20 mM NAC. These findings suggest that NAC could have a role as a TrkA antagonist, an action that may contribute to the activity and use of NAC in various pain states (acute, chronic, nociplastic) sustained by NGF hyperactivity and/or accompanied by spinal cord sensitization.


Subject(s)
Acetylcysteine , Neuroblastoma , Humans , Acetylcysteine/pharmacology , Nerve Growth Factor/pharmacology , Analgesics/pharmacology , Disulfides
18.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674850

ABSTRACT

The trafficking of transient receptor potential (TRP) channels to the plasma membrane and the release of calcitonin gene-related peptide (CGRP) from trigeminal ganglion neurons (TGNs) are implicated in some aspects of chronic migraines. These exocytotic processes are inhibited by cleavage of SNAREs with botulinum neurotoxins (BoNTs); moreover, type A toxin (/A) clinically reduces the frequency and severity of migraine attacks but not in all patients for unknown reasons. Herein, neonatal rat TGNs were stimulated with allyl isothiocyanate (AITC), a TRPA1 agonist, and dose relationships were established to link the resultant exocytosis of CGRP with Ca2+ influx. The CGRP release, quantified by ELISA, was best fit by a two-site model (EC50 of 6 and 93 µM) that correlates with elevations in intracellular Ca2+ [Ca2+]i revealed by time-lapse confocal microscopy of fluo-4-acetoxymethyl ester (Fluo-4 AM) loaded cells. These signals were all blocked by two TRPA1 antagonists, HC-030031 and A967079. At low [AITC], [Ca2+]i was limited because of desensitisation to the agonist but rose for concentrations > 0.1 mM due to a deduced non-desensitising second phase of Ca2+ influx. A recombinant BoNT chimera (/DA), which cleaves VAMP1/2/3, inhibited AITC-elicited CGRP release to a greater extent than SNAP-25-cleaving BoNT/A. /DA also proved more efficacious against CGRP efflux evoked by a TRPV1 agonist, capsaicin. Nerve growth factor (NGF), a pain-inducing sensitiser of TGNs, enhanced the CGRP exocytosis induced by low [AITC] only. Both toxins blocked NGF-induced neuropeptide secretion and its enhancement of the response to AITC. In conclusion, NGF sensitisation of sensory neurons involves TRPA1, elevated Ca2+ influx, and CGRP exocytosis, mediated by VAMP1/2/3 and SNAP-25 which can be attenuated by the BoNTs.


Subject(s)
Botulinum Toxins , Transient Receptor Potential Channels , Rats , Animals , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Vesicle-Associated Membrane Protein 1/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Botulinum Toxins/metabolism , Sensory Receptor Cells/metabolism , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel/metabolism
19.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834612

ABSTRACT

Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aß) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aß peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aß-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.


Subject(s)
Alzheimer Disease , Aged , Animals , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Mammals/metabolism , Nerve Growth Factor/pharmacology , Nerve Tissue Proteins , Receptor, Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/metabolism , tau Proteins/metabolism
20.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003427

ABSTRACT

In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.


Subject(s)
Hydrogen Peroxide , Receptor, trkA , Humans , Mice , Animals , Receptor, trkA/metabolism , Feedback , Hydrogen Peroxide/pharmacology , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/metabolism , Receptor, Nerve Growth Factor/metabolism , Cell Line , Oxidative Stress , Epithelial Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL