Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Prod Res ; 20(12): 1074-81, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17201044

ABSTRACT

The microbial transformation of levonorgestrel (1) by Cunningham elegans resulted in the formation of five hydroxylated metabolites, 13-ethyl-10beta, 17beta-dihydroxy-18,19-dinor-17alpha-pregn-4-en-20-yn-3-one(2), 13-ethyl-6beta,17beta-dihydroxy-18,19-dinor-17alpha-pregn-4-en-20-yn-3-one (3) 13-ethyl 6beta, 10beta, 17beta-trihydroxy-18,19-dinor-17alpha-pregn-4-en-20-yn-3-one (4) 13-ethyl-15alpha-17beta-dihydroxy-18,19-dinor-17alpha-pregn-4-en-20-yn-3-one (5) and 13-ethyl-11alpha, 17beta-dihydroxy-18,19-dinor-17alpha-pregn-4en-20-yn-3-one. The fermentation of one with Rhizopus stolonifer, Fusarium lini and Curvularia lunata afforded compound 2 as a major metabolise. These metabolites were structurally characterized on the basis of spectroScopic techniques. Metabolite 6 was identified as a new compound. Compounds 2 2 ad 5 displayed inhibitory activity against the acetylcholinesterase ( AChE, EC. 3.1.1.7) with IC50 values of 79.2 and 24.5 microM, respectively. The metabolites 2 and 5 also showed inhibitory activity against the butyryLcholinesterase ( BChE, E.C 3.1.1.8) with IC50 values ranging between 9.4 and 309.8 microM.


Subject(s)
Cholinesterase Inhibitors/metabolism , Cunninghamella/metabolism , Levonorgestrel/chemistry , Levonorgestrel/metabolism , Norpregnanes/chemistry , Norpregnanes/metabolism , Butyrylcholinesterase/metabolism , Fermentation , Hydroxylation , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Spectrum Analysis
2.
Mol Cell Endocrinol ; 382(2): 899-908, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24239616

ABSTRACT

Medroxyprogesterone acetate (MPA) has widely been used in hormone replacement therapy (HRT), and is associated with an increased risk of breast cancer, possibly due to disruption of androgen receptor (AR) signaling. In contrast, the synthetic HRT Tibolone does not increase breast density, and is rapidly metabolized to estrogenic 3α-OH-tibolone and 3ß-OH-tibolone, and a delta-4 isomer (Δ(4)-TIB) that has both androgenic and progestagenic properties. Here, we show that 5α-dihydrotestosterone (DHT) and Δ(4)-TIB, but not MPA, stabilize AR protein levels, initiate specific AR intramolecular interactions critical for AR transcriptional regulation, and increase proliferation of AR positive MDA-MB-453 breast cancer cells. Structural modeling and molecular dynamic simulation indicate that Δ(4)-TIB induces a more stable AR structure than does DHT, and MPA a less stable one. Microarray expression analyses confirms that the molecular actions of Δ(4)-TIB more closely resembles DHT in breast cancer cells than either ligand does to MPA.


Subject(s)
Androgens/pharmacology , Dihydrotestosterone/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Proteins/genetics , Norpregnenes/pharmacology , Receptors, Androgen/genetics , Androgens/chemistry , Androgens/metabolism , Biotransformation , Cell Line, Tumor , Dihydrotestosterone/chemistry , Dihydrotestosterone/metabolism , Female , Gene Expression Profiling , Humans , Medroxyprogesterone Acetate/chemistry , Medroxyprogesterone Acetate/pharmacology , Molecular Dynamics Simulation , Neoplasm Proteins/metabolism , Norpregnanes/metabolism , Norpregnenes/chemistry , Norpregnenes/metabolism , Oligonucleotide Array Sequence Analysis , Receptors, Androgen/metabolism , Structure-Activity Relationship
3.
J Steroid Biochem Mol Biol ; 116(1-2): 8-14, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19464167

ABSTRACT

This work was undertaken (i) to study deeply the estrogen, androgen and progestative activities of tibolone and its metabolites (ii) to determine whether tibolone and its metabolites present glucocorticoid or mineralocorticoid activity. For this purpose, we used human cell lines bearing a luciferase gene with a responsive element under the control of human estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta) or androgen receptor (AR) or chimeric Gal4 fusion with progesterone receptor (PR), glucocorticoid receptor (GR) or mineralocorticoid receptor (MR). The major tibolone metabolites, the two hydroxymetabolites, bind and activate ER with a preference for ERalpha. Tibolone and the Delta(4)-tibolone are agonists for AR and PR and surprisingly 3alpha- and 3beta-OH-tibolone are antagonists for them. Moreover we showed for the first time that tibolone and its primary metabolites are GR and MR antagonists with a stronger affinity for MR than for GR. In conclusion, tibolone by these actions on different receptors and by this capacity to transform in different metabolites, has more complex effects than initially supposed.


Subject(s)
Estrogen Receptor Modulators/pharmacology , Norpregnenes/pharmacology , Receptors, Steroid/metabolism , Androgens , Cell Line , Estrogen Receptor Modulators/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Norpregnanes/metabolism , Norpregnenes/metabolism , Receptors, Androgen/metabolism , Receptors, Progesterone/agonists , Receptors, Progesterone/metabolism , Receptors, Steroid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL