ABSTRACT
BACKGROUND: The genomic information available for Pediococcus pentosaceus is primarily derived from fermented fruits and vegetables, with less information available from fermented meat. P. pentosaceus LL-07, a strain isolated from fermented meat, has the capability of producing exopolysaccharides (EPS). To assess the probiotic attributes of P. pentosaceus LL-07, we conducted whole-genome sequencing (WGS) using the PacBio SequelIIe and Illumina MiSeq platforms, followed by in vitro experiments to explore its probiotic potential. RESULTS: The genome size of P. pentosaceus LL-07 is 1,782,685 bp, comprising a circular chromosome and a circular plasmid. Our investigation revealed the absence of a CRISPR/Cas system. Sugar fermentation experiments demonstrated the characteristics of carbohydrate metabolism. P. pentosaceus LL-07 contains an EPS synthesis gene cluster consisting of 13 genes, which is different from the currently known gene cluster structure. NO genes associated with hemolysis or toxin synthesis were detected. Additionally, eighty-six genes related to antibiotic resistance were identified but not present in the prophage, transposon or plasmid. In vitro experiments demonstrated that P. pentosaceus LL-07 was comparable to the reference strain P. pentosaceus ATCC25745 in terms of tolerance to artificial digestive juice and bile, autoaggregation and antioxidation, and provided corresponding genomic evidence. CONCLUSION: This study confirmed the safety and probiotic properties of P. pentosaceus LL-07 via complete genome and phenotype analysis, supporting its characterization as a potential probiotic candidate.
Subject(s)
Fermentation , Genome, Bacterial , Pediococcus pentosaceus , Polysaccharides, Bacterial , Probiotics , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Whole Genome Sequencing , Fermented Foods/microbiology , Meat/microbiology , Multigene Family , Genomics/methods , Humans , Plasmids/genetics , Food MicrobiologyABSTRACT
Probiotics have been a part of our lives for centuries, primarily through fermented foods. They find applications in various fields such as food, healthcare, and agriculture. Nowadays, their utilization is expanding, highlighting the importance of discovering new bacterial strains with probiotic properties suitable for diverse applications. In this study, our aim was to isolate new probiotic bacteria. Herniaria glabra L., a plant traditionally used for yogurt making in some regions and recognized in official medicine in many countries, was chosen as the source for obtaining probiotic bacteria. We conducted bacterial isolation from the plant, molecularly identified the isolated bacteria using 16S rRNA sequencing, characterized their probiotic properties, and assessed their wound-healing effects. As a result of these studies, we identified the bacterium isolated from the plant as Pediococcus pentosaceus strain AF2. We found that the strain AF2 exhibited high resistance to conditions within the gastrointestinal tract. Our reliability analysis showed that the isolate had γ-hemolytic activity and displayed sensitivity to certain tested antibiotics. At the same time, AF2 did not show gelatinase and DNase activity. We observed that the strain AF2 produced metabolites with inhibitory activity against E. coli, B. subtilis, P. vulgaris, S. typhimurium, P. aeruginosa, K. pneumoniae, E. cloacae, and Y. pseudotuberculosis. The auto-aggregation value of the strain AF2 was calculated at 73.44%. Coaggregation values against E. coli and L. monocytogenes bacteria were determined to be 56.8% and 57.38%, respectively. Finally, we tested the wound-healing effect of the strain AF2 with cell culture studies and found that the strain AF2 promoted wound healing.
Subject(s)
Pediococcus pentosaceus , Probiotics , Pediococcus pentosaceus/genetics , Furylfuramide/metabolism , Furylfuramide/pharmacology , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Reproducibility of Results , Yogurt , Pediococcus/genetics , Probiotics/metabolismABSTRACT
BACKGROUND: Compelling evidences demonstrated that gut microbiota dysbiosis plays a critical role in the pathogenesis of inflammatory bowel diseases (IBD). Therapies for targeting the microbiota may provide alternative options for the treatment of IBD, such as probiotics. Here, we aimed to investigate the protective effect of a probiotic strain, Pediococcus pentosaceus (P. pentosaceus) CECT 8330, on dextran sulfate sodium (DSS)-induced colitis in mice. METHODS: C57BL/6 mice were administered phosphate-buffered saline (PBS) or P. pentosaceus CECT 8330 (5 × 108 CFU/day) once daily by gavage for 5 days prior to or 2 days after colitis induction by DSS. Weight, fecal conditions, colon length and histopathological changes were examined. ELISA and flow cytometry were applied to determine the cytokines and regulatory T cells (Treg) ratio. Western blot was used to examine the tight junction proteins (TJP) in colonic tissues. Fecal short-chain fatty acids (SCFAs) levels and microbiota composition were analyzed by targeted metabolomics and 16S rRNA gene sequencing, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of orthologous groups of proteins (COG) pathway analysis were used to predict the microbial functional profiles. RESULTS: P. pentosaceus CECT 8330 treatment protected DSS-induced colitis in mice as evidenced by reducing the weight loss, disease activity index (DAI) score, histological damage, and colon length shortening. P. pentosaceus CECT 8330 decreased the serum levels of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6), and increased level of IL-10 in DSS treated mice. P. pentosaceus CECT 8330 upregulated the expression of ZO-1, Occludin and the ratio of Treg cells in colon tissue. P. pentosaceus CECT 8330 increased the fecal SCFAs level and relative abundances of several protective bacteria genera, including norank_f_Muribaculaceae, Lactobacillus, Bifidobacterium, and Dubosiella. Furthermore, the increased abundances of bacteria genera were positively correlated with IL-10 and SCFAs levels, and negatively associated with IL-6, IL-1ß, and TNF-α, respectively. The KEGG and COG pathway analysis revealed that P. pentosaceus CECT 8330 could partially recover the metabolic pathways altered by DSS. CONCLUSIONS: P. pentosaceus CECT 8330 administration protects the DSS-induced colitis and modulates the gut microbial composition and function, immunological profiles, and the gut barrier function. Therefore, P. pentosaceus CECT 8330 may serve as a promising probiotic to ameliorate intestinal inflammation.
Subject(s)
Colitis , Gastrointestinal Microbiome , Animals , Colon/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Immunity , Mice , Mice, Inbred C57BL , Pediococcus pentosaceus/genetics , RNA, Ribosomal, 16S/geneticsABSTRACT
Here, we have analysed and explored the genome sequences of three newly isolated bacteria that were recently characterised for their probiotic activities and ability to produce bacteriocins. These strains, isolated from faeces of animals living in captivity at the zoological garden of Lille (France), are Escherichia coli ICVB443, Enterococcus faecalis ICVB501 and Pediococcus pentosaceus ICVB491. Their genomes have been analysed and compared to those of their pathogenic or probiotic counterparts. The genome analyses of E. coli ICVB443 and Ent. faecalis ICVB501 displayed similarities to those of probiotics E. coli 1917 Nissle, and Ent. faecalis Symbioflor 1, respectively. Furthermore, E. coli ICVB443 shares at least 89 genes with the enteroaggregative E. coli 55989 (EAEC), and Ent. faecalis ICVB501 shares at least 315 genes with the pathogenic Ent. faecalis V583 strain. Unlike Ped. pentosaceus ICVB491, which is devoid of virulence genes, E. coli ICVB443 and Ent. faecalis ICVB501 both carry genes encoding virulence factors on their genomes. Of note, the bioinformatics analysis of these two genomes located the bsh gene, which codes for bile salt hydrolase (BSH). The presence of BSH is of major importance, as it can help to increase the viability of these two strains in the gastrointestinal tract (GIT). The genome analysis of Ped. pentosaceus ICVB491 confirmed its GRAS status (Generally Recognised As Safe), as no genomic virulence factor determinant was found.
Subject(s)
Bacteria/genetics , Bacteriocins/genetics , Feces/microbiology , Genome, Bacterial/genetics , Animals , Bacteria/pathogenicity , Computer Simulation , Enterococcus faecalis/genetics , Enterococcus faecalis/pathogenicity , Escherichia coli/genetics , Escherichia coli/pathogenicity , Gastrointestinal Tract/microbiology , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/pathogenicity , Probiotics , Virulence Factors/geneticsABSTRACT
Lactic acid bacteria (LAB) are important in food fermentation and may enhance overall host health. Previous studies to explore LAB metabolism mainly focused on the genera Lacticaseibacillus and Lactococcus. Pediococcus pentosaceus, historically recognized as an important food fermentation bacterial strain, can produce bacteriocins and occasionally demonstrated probiotic functionalities. This study thoroughly surveyed the growth kinetic of three P. pentosaceus isolates in various culture formulations, especially in fructooligosaccharide (FOS), xylooligosaccharide (XOS), or konjac mannooligosaccharide (KMOS) conditions. Results showed that P. pentosaceus effectively metabolized KMOS, the culture of which led to 23.6-fold population increase. However, FOS and XOS were less metabolized by P. pentosaceus. On functional oligosaccharide cultures, P. pentosaceus could result in higher population proliferation, more acidified fermentation environment, and higher glycoside hydrolysis activities in the culture. RNA-Seq analysis classified 1572 out of 1708 putative genes as mRNA-coding genes. The dataset also revealed that the three functional oligosaccharides led to extensive global functional gene regulations. Phosphate conservation and utilization efficiency enhancement may serve as a leading transcriptional regulation direction in functional oligosaccharide metabolisms. In summary, these discovered metabolic characteristics could be employed to support future studies. KEY POINTS: ⢠Konjac mannooligosaccharides effectively promoted P. pentosaceus proliferation. ⢠Functional genes were highly regulated in functional oligosaccharide utilization. ⢠Phosphate conservation was an important transcriptional regulation direction.
Subject(s)
Bacteriocins , Probiotics , Oligosaccharides , Pediococcus/genetics , Pediococcus pentosaceus/genetics , TranscriptomeABSTRACT
AIMS: We aimed to evaluate some specific conditions for growth of Pediococcus pentosaceus ST65ACC and its bacteriocin expression through ABC transporters; to purify the bacteriocin and determine its sequence; and to evaluate the cytotoxicity potential of the purified bacteriocin(s). METHODS AND RESULTS: The results presented for growth behaviour of P. pentosaceus ST65ACC showed that the bacterial growth was slightly influenced when cultured in MRS broth with different amounts of inoculum: 1, 2, 5 and 10%. The bacteriocin activity increased when 5 and 10% inocula were used. The carbon source (glucose) used in different amounts (1, 2, 3 or 4%) had no significant effect on growth and bacteriocin production. The studied strain P. pentosaceus ST65ACC was able to metabolize xylooligosaccharide (XOS) as the sole carbon source, resulting in the production of an antimicrobial peptide. The genes involved in the ABC transport system and sugar metabolism of P. pentosaceus ST65ACC were expressed at different levels. The bacteriocin produced by P. pentosaceus ST65ACC was partially purified by precipitation with ammonium sulphate (40% saturation), followed by reversed-phase liquid chromatography, resulting in the identification of an active bacteriocin. Tandem mass spectrometry was used to identify the partial sequence KYYGNGVTCGKHSCSVDWGK sharing high similarity to coagulin A. The semi-purified bacteriocin had low cytotoxicity based on estimated values for maximal nontoxic concentration (MNC) and cytotoxicity concentration (CC50 ). CONCLUSIONS: The bacteriocin produced by P. pentosaceus ST65ACC is similar to coagulin, with low cytotoxicity, strong antimicrobial activity and possible additional metabolite routes in the producer cell. In addition to MRS broth, bacteriocin was produced also in medium containing XOS (as the single carbon source). SIGNIFICANCE AND IMPACT OF THE STUDY: To the best of our knowledge, this is the first report of evaluation of the role of ABC transporters in the expression of bacteriocin by P. pentosaceus, cultured in MRS and XOS.
Subject(s)
Bacteriocins/genetics , Cheese/microbiology , Milk/microbiology , Pediococcus pentosaceus/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteriocins/biosynthesis , Bacteriocins/isolation & purification , Bacteriocins/pharmacology , Gene Expression , Hydrogen-Ion Concentration , Pediococcus pentosaceus/chemistry , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/growth & developmentABSTRACT
The bacteriocinogenic lactic acid bacterium Pediococcus pentosaceus LJR1 isolated from rumen liquor of goat had strong anti-bacterial activity toward Listeria monocytogenes in vitro. This antibacterial activity was lost on treatment with protease indicating that the bacteriocin is proteinaceous in nature. The bacteriocin LJR1 produced by P. pentosaceus was purified following a three step procedure consisting of ammonium sulphate precipitation, gel filtration chromatography and reverse phase-high performance liquid chromatography. The molecular weight of purified bacteriocin was determined to be 4.6 kDa using Tricine SDS-PAGE. Further, we found that the proteinaceous bacteriocin was stable at 100 °C as well as 121 °C for 30 min and 15 min respectively and also at different pH ranging from 4 to 10 when stored for 15 min at 37 °C. Its minimum inhibitory concentration for S. typhi MTCC134 and L. monocytogenes MTCC 1143 was 7.81 µg/ml and 15.63 µg/ml respectively. Scanning electron microscopy analysis of the surface of S. typhi treated with the bacteriocin showed the presence of craters; while in the case of treated L. monocytogenes blebs were observed. The addition of the bacteriocin to shrimp (white leg shrimp) has led to reduction of about 1 log units of L. monocytogenes on day 1 and maintained for 7 days on storage at 4 °C. It is clear that the purified bacteriocin has good potential as a bio preservative for application in food industry.
Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteriocins/isolation & purification , Bacteriocins/pharmacology , Food Preservation/methods , Pediococcus pentosaceus/metabolism , Penaeidae/microbiology , Animals , Anti-Bacterial Agents/chemistry , Bacteriocins/chemistry , Bacteriocins/genetics , Food Microbiology , Listeria monocytogenes/cytology , Listeria monocytogenes/drug effects , Microbial Sensitivity Tests , Molecular Weight , Pediocins/genetics , Pediococcus pentosaceus/genetics , Salmonella typhi/cytology , Salmonella typhi/drug effects , Seafood/microbiologyABSTRACT
AIMS: Characteristics of a strain Pediococcus pentosaceus Q6 isolated from Elymus nutans growing on the Tibetan plateau and its effects on E. nutans silage fermentation stored at low temperature were investigated. METHODS AND RESULTS: Sugar fermentation pattern and growth profiles of the strain Q6 and its reference strain APP were characterized. The strain Q6 and APP were inoculated to E. nutans at ensiling respectively; and ensiled at different temperatures (10, 15 and 25°C) for 30, 60 and 90 days. The results indicated that Q6 could grow at pH 3·0 and at 4°C. In contrast to APP, Q6 could ferment mannitol, saccharose, sorbitol and rhamnose. Lower pH in Q6-treated silages fermented for 60 days at 10 and 15°C was found compared with the control and APP-treated groups. For the silages that were stored at 10 or 15°C, the greatest lactic acid content were detected in Q6-inoculated silages ensiled for 30 and 60 days respectively. There were no differences in pH and lactic acid content between Q6- and APP-treated silages ensiled at 10 and 15°C for 90 days respectively. CONCLUSIONS: Inoculation of the strain P. pentosaceus Q6 could improve fermentation quality of ensiled E. nutans at the early stage of ensiling stored at low temperature (10 or 15°C). SIGNIFICANCE AND IMPACT OF THE STUDY: The selection of P. pentosaceus inoculants for improving silage quality at low temperature, which provides a candidate strain to make high-quality silage in regions with frigid climate.
Subject(s)
Elymus/microbiology , Pediococcus pentosaceus/isolation & purification , Silage/analysis , Cold Temperature , Elymus/growth & development , Fermentation , Lactic Acid/metabolism , Mannitol/metabolism , Pediococcus pentosaceus/classification , Pediococcus pentosaceus/genetics , Silage/microbiology , Sorbitol/metabolism , Sucrose/metabolism , Temperature , TibetABSTRACT
Background & objectives: Pediococcus pentosaceus has been reported to cause clinical infections while it is being promoted as probiotic in food formulations. Antibiotic resistance (AR) genes in this species are a matter of concern for treating clinical infections. The present study was aimed at understanding the phenotypic resistance of P. pentosaceus to macrolide-lincosamide-streptogramin B (MLSB) antibiotics and the transfer of AR to pathogens. Methods: P. pentosacues isolates (n=15) recovered from fermented foods were screened for phenotypic resistance to MLSBantibiotics using disc diffusion and microbroth dilution methods. Localization and transferability of the identified resistance genes, erm(B) and msr(C) were evaluated through Southern hybridization and in vitro conjugation methods. Results: Four different phenotypes; sensitive (S) (n=5), macrolide (M) (n=7), lincosamide (L) (n=2) and constitutive (cMLSB) (n=1) were observed among the 15 P. pentosaceus isolates. High-level resistance (>256 µg/ml) to MLSBwas observed with one cMLSBphenotypic isolate IB6-2A. Intermediate resistance (8-16 µg/ml) to macrolides and lincosamides was observed among M and L phenotype isolates, respectively. Cultures with S phenotype were susceptible to all other antibiotics but showed unusual minimum inhibitory concentration (MIC) values of 8-16 µg/ml for azithromycin. Southern hybridization studies revealed that resistance genes localized on the plasmids could be conjugally transferred to Enterococcus faecalis JH2-2. Interpretation & conclusions: The study provides insights into the emerging novel resistance patterns in P. pentosaceus and their ability to disseminate AR. Monitoring their resistance phenotypes before use of MLS antibiotics can help in successful treatment of Pediococcal infections in humans.
Subject(s)
Drug Resistance, Bacterial/genetics , Methyltransferases/genetics , Pediococcus pentosaceus/genetics , Plasmids/genetics , Food Preservation , Humans , Lincosamides/pharmacology , Macrolides/pharmacology , Microbial Sensitivity Tests , Pediococcus pentosaceus/drug effects , Phenotype , Probiotics , Streptogramins/pharmacologyABSTRACT
AIMS: The aim of this study was to verify the suitable use of candidate 'probiotics' selected by in vitro tests and the importance of in vivo assays to nominate micro-organisms as probiotics and alternative prophylactic treatments for Salmonella Typhimurium infection. METHODS AND RESULTS: Thirty-three lactic acid bacteria (LAB) isolated from foal's faeces were assessed based on the main desirable functional in vitro criteria. Based on these results, Pediococcus pentosaceus strain 40 was chosen to evaluate its putative probiotic features in a mouse model of Salmonella infection. Daily intragastric doses of Ped. pentosaceus 40 for 10 days before and 10 days after Salmonella challenge (106 CFU of Salm. Typhimurium per mouse) led to a significant aggravation in mouse health by increasing weight loss, worsening clinical symptoms and anticipating the time and the number of deaths by Salmonella. Pediococcus pentosaceus modulated cell-mediated immune responses by up-regulation of the gene expression of the proinflammatory cytokines IFN-γ and TNF-α in the small intestine. CONCLUSION: The usual criteria were used for in vitro screening of a large number of LAB for desirable probiotic functional properties. However, the best candidate probiotic strain identified, Ped. pentosaceus #40, aggravated the experimental disease in mice. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings emphasize the need for prophylactic or therapeutic effectiveness to be demonstrated in in vivo models to make precise health claims.
Subject(s)
Feces/microbiology , Pediococcus pentosaceus/isolation & purification , Probiotics/administration & dosage , Salmonella Infections/drug therapy , Animals , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Female , Horses , Humans , Male , Mice , Mice, Inbred BALB C , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/physiology , Salmonella/physiology , Salmonella Infections/genetics , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-RegulationABSTRACT
Strain ST3Ha, isolated from commercially available smoked salmon, was identified as Pediococcus pentosaceus based on biochemical and physiological tests and 16S rRNA sequencing. Strain ST3Ha produces a class IIa bacteriocin active against lactic acid bacteria, Listeria monocytogenes and Enterococcus faecalis. The antimicrobial peptide was inactivated by proteolytic enzymes, confirming his proteinaceous nature, but was not affected when treated with α-amylase, SDS, Tween 20, Tween 80, urea, and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 9.0 and after treatment at 100 °C for 120 min or 121 °C for 15 min. The mode of action against Listeria ivanovii subsp. ivanovii ATCC 19119 and E. faecalis ATCC 19443 was bactericidal, resulting in cell lyses and enzyme leakage. The highest level of activity (1.6 × 106 AU/mL) was recorded when cells were grown at 37 °C or 30 °C in MRS broth (pH 6.5). Antimicrobial peptide ST3Ha adsorbs at high levels to the sensitive test organisms on strain-specific manner and depending on incubation temperature, environmental pH, and presence of supplemented chemicals. Based on PCR analysis, P. pentosaceus ST3Ha harbor a 1044-bp plasmid-associated fragment corresponding in size to that recorded for pediocin PA-1. Sequencing of the fragment revealed a gene identical to pedB, reported for pediocin PA-1. The combined application of the low levels (below MIC) of ciprofloxacin and bacteriocin ST3Ha results in the synergetic effect in the inhibition of L. ivanovii subsp. ivanovii ATCC 19119. Expressed by P. pentosaceus ST3Ha, bacteriocin was characterized as low cytotoxic, a characteristic relevant for its application in food industry and/or in human and veterinary medical practices.
Subject(s)
Bacteriocins , Listeria , Humans , Animals , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/chemistry , Pediococcus pentosaceus/genetics , RNA, Ribosomal, 16S/genetics , Pediococcus , Anti-Bacterial Agents/pharmacology , Plasmids , Salmon/microbiology , Antimicrobial PeptidesABSTRACT
Starter cultures play a significant role in lipid hydrolysis, prevention of lipid oxidation, and synthesis of fatty acid in fermented sausage, enhancing product quality. In this study, five synergistic bacterial strains were used, including Pediococcus pentosaceus (B-3), Latilactobacillus sakei DLS-24 (D-24), Latilactobacillus acidophilus DLS-29 (D-29), Lactiplantibacillus pentosus (B-1), and Lactiplantibacillus plantarum (B-2). Sausage B1B3D24 gave the highest free fatty acid with 39.45 g/100 g at 45-Day. Based on 2-thiobarbituric acid reactive substance, B2B3 contains 112.68 MDA/kg. Lipoxygenase activity displays the lowest in B1B3D24 with 0.095 µmol/min·mg followed by B2B3 with 0.145 µmol/min·mg. B1B3D24 contains 11.35 g/kg of monounsaturated fatty acid with the highest content in eicosenoic acid (C20:1) and palmitoleic acid (C16:1). The fatty acid synthesis pathway in B1B3D24 contains an active positive interaction with PUFA to increase the isotopomers of ω-3 and ω-6 fatty acids. In addition, lipid mediating genes in B1B3D24 show the highest counts in fatty-acid synthase, carbonyl reductase 4, 3-oxoacyl-[acyl-carrier-protein] synthase III, hydroxysteroid 17-beta dehydrogenase 8, and acetyl-CoA carboxylase.
Subject(s)
Fatty Acids , Fermentation , Meat Products , Oxidation-Reduction , Meat Products/analysis , Meat Products/microbiology , Fatty Acids/metabolism , Fatty Acids/chemistry , Animals , Swine , Hydrolysis , Pediococcus pentosaceus/metabolism , Pediococcus pentosaceus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Lipid MetabolismABSTRACT
Pediococcus pentosaceus ST65ACC was obtained from a Brazilian artisanal cheese (BAC) and characterized as bacteriocinogenic. This strain presented beneficial properties in previous studies, indicating its potential as a probiotic candidate. In this study, we aimed to carry out a genetic characterization based on whole-genome sequencing (WGS), including taxonomy, biotechnological properties, bacteriocin clusters and safety-related genes. WGS was performed using the Illumina MiSeq platform and the genome was annotated with the Prokaryotic Genome Annotation (Prokka). P. pentosaceus ST65ACC taxonomy was investigated and bacteriocin genes clusters were identified by BAGEL4, metabolic pathways were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and safety-related genes were checked. P. pentosaceus ST65ACC had a total draft genome size of 1,933,194 bp with a GC content of 37.00%, and encoded 1950 protein coding sequences (CDSs), 6 rRNA, 55 tRNA, 1 tmRNA and no plasmids were detected. The analysis revealed absence of a CRISPR/Cas system, bacteriocin gene clusters for pediocin PA-1/AcH and penocin-A were identified. Genes related to beneficial properties, such as stress adaptation genes and adhesion genes, were identified. Furthermore, genes related to biogenic amines and virulence-related genes were not detected. Genes related to antibiotic resistance were identified, but not in prophage regions. Based on the obtained results, the beneficial potential of P. pentosaceus ST65ACC was confirmed, allowing its characterization as a potential probiotic candidate.
Subject(s)
Bacteriocins , Cheese , Animals , Pediococcus pentosaceus/genetics , Milk/metabolism , Bacteriocins/metabolism , Genomics , Pediococcus/metabolismABSTRACT
A total of 187 lactic acid bacteria were isolated from four types of grains collected in South Korea. The bacterial strains were assigned as members of Levilactobacillus brevis, Latilactobacillus curvatus, Lactiplantibacillus plantarum, Lactococcus taiwanensis, Pediococcus pentosaceus, and Weissella paramesenteroides based on the closest similarity using 16S rRNA gene sequence analysis. The strains belonging to the same species were analyzed using RAPD-PCR, and one or two among strains showing the same band pattern were selected. Finally, 25 representative strains were selected for further functional study. Inhibitory effects of lipid accumulation were observed in the strains tested. Pediococcus pentosaceus K28, Levilactobacillus brevis RP21 and Lactiplantibacillus plantarum RP12 significantly reduced lipid accumulation and did not show cytotoxicity in C3H10T1/2 cells at treatment of 1-200 µg/mL. The three LAB strains decreased significantly expression of six adipogenic marker genes, PPARγ, C/EBPα, CD36, LPL, FAS and ACC, in C3H10T1/2 adipocytes. The three strains survived under strong acidity and bile salt conditions. The three strains showed adhesion to Caco-2 cells similar to a reference strain LGG. The resistance of the three strains to several antibiotics was also assessed. Strains RP12 and K28 were confirmed not to produce harmful enzymes based on API ZYM kit results. Based on these results, strains K28, RP21 and RP12 isolated from grains had the ability to inhibit adipogenesis in adipocytes and potentially be useful as probiotics.
Subject(s)
Lactobacillales , Levilactobacillus brevis , Probiotics , Humans , Lactobacillales/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Random Amplified Polymorphic DNA Technique , Caco-2 Cells , Adipogenesis , Probiotics/pharmacology , Pediococcus pentosaceus/genetics , LipidsABSTRACT
Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
Subject(s)
Bacteriocins , Listeria monocytogenes , Probiotics , Humans , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/metabolism , Random Amplified Polymorphic DNA Technique , RNA, Ribosomal, 16S/genetics , Pediococcus/genetics , Pediococcus/metabolism , Bacteriocins/genetics , Bacteriocins/pharmacology , Anti-Bacterial Agents/pharmacology , GenomicsABSTRACT
BACKGROUND: In modern animal husbandry, breeders pay increasing attention to improving sow nutrition during pregnancy and lactation to favor the health of neonates. Sow milk is a main food source for piglets during their first three weeks of life, which is not only a rich repository of essential nutrients and a broad range of bioactive compounds, but also an indispensable source of commensal bacteria. Maternal milk microorganisms are important sources of commensal bacteria for the neonatal gut. Bacteria from maternal milk may confer a health benefit on the host. METHODS: Sow milk bacteria were isolated using culturomics followed by identification using 16S rRNA gene sequencing. To screen isolates for potential probiotic activity, the functional evaluation was conducted to assess their antagonistic activity against pathogens in vitro and evaluate their resistance against oxidative stress in damaged Drosophila induced by paraquat. In a piglet feeding trial, a total of 54 newborn suckling piglets were chosen from nine sows and randomly assigned to three treatments with different concentrations of a candidate strain. Multiple approaches were carried out to verify its antioxidant function including western blotting, enzyme activity analysis, metabolomics and 16S rRNA gene amplicon sequencing. RESULTS: The 1240 isolates were screened out from the sow milk microbiota and grouped into 271 bacterial taxa based on a nonredundant set of 16S rRNA gene sequencing. Among 80 Pediococcus isolates, a new Pediococcus pentosaceus strain (SMM914) showed the best performance in inhibition ability against swine pathogens and in a Drosophila model challenged by paraquat. Pretreatment of piglets with SMM914 induced the Nrf2-Keap1 antioxidant signaling pathway and greatly affected the pathways of amino acid metabolism and lipid metabolism in plasma. In the colon, the relative abundance of Lactobacillus was significantly increased in the high dose SMM914 group compared with the control group. CONCLUSION: P. pentosaceus SMM914 is a promising probiotic conferring antioxidant capacity by activating the Nrf2-Keap1 antioxidant signaling pathway in piglets. Our study provided useful resources for better understanding the relationships between the maternal microbiota and offspring. Video Abstract.
Subject(s)
Antioxidants , Milk , Animals , Antioxidants/analysis , Antioxidants/metabolism , Bacteria , Drosophila/genetics , Drosophila/metabolism , Female , Kelch-Like ECH-Associated Protein 1/analysis , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Paraquat/analysis , Paraquat/metabolism , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/metabolism , Pregnancy , RNA, Ribosomal, 16S/analysis , SwineABSTRACT
The development of non-antibiotic and environmentally friendly agents is a key consideration for health management in shrimp aquaculture. In this study, the probiotic potential in shrimp aquaculture of Pediococcus pentosaceus MR001, isolated from Macrobrachium rosenbergii, was investigated by means of feeding trial and genetic characterization. In the feeding trial, dietary supplementation with P. pentosaceus MR001 significantly increased weight gain and digestive enzyme activity (p < 0.05) in shrimp, Litopenaeus vannamei. The intestinal histology showed that shrimp given the probiotic diet had healthier guts than the control group. Also, the immune gene expression and the survival rate in the treatment group were significantly increased when compared with the control group. The genetic characteristics of P. pentosaceus strain MR001 were explored by performing whole-genome sequencing (WGS) using the HiSeq 2500 platform and PacBio system, revealing the complete circular genome of 1,804,896 bp. We also identified 1789 coding genes and subsequently characterized genes related to the biosynthesis of bacteriocins, stress resistance, and bile tolerance. Our findings suggest that insights in the functional and genetic characteristics of P. pentosaceus strain MR001 could provide opportunities for applications of such strain in shrimp diet supplementation.
Subject(s)
Aquaculture/methods , Genome, Bacterial , Pandalidae/microbiology , Pediococcus pentosaceus/genetics , Probiotics , Animals , Pandalidae/growth & development , Pediococcus pentosaceus/pathogenicityABSTRACT
Constipation is a prevalent and burdensome gastrointestinal (GI) disorder that seriously affects the quality of human life. This study evaluated the effects of the P. pentosaceus B49 (from human colostrum) on loperamide (Lop)-induced constipation in mice. Mice were given P. pentosaceus B49 (5 × 109 CFU or 5 × 1010 CFU) by gavage daily for 14 days. The result shows that P. pentosaceus B49 treatment relieved constipation in mice by shortening the defecation time, increasing the GI transit rate and stool production. Compared with the constipation control group, the P. pentosaceus B49-treated groups showed decreased serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide and nitric oxide), increased serum levels of excitatory neurotransmitters (acetylcholinesterase, motilin, and gastrin), and elevated cecal concentration of short chain fatty acids (SCFAs). Analysis of cecal microbiota reveals that P. pentosaceus B49 was colonized in the intestine of constipated mice, and altered the cecal microbiota by increasing beneficial SCFAs-producing bacteria (i.e., Lactobacillus, Ruminococcaceae_UCG-014, and Bacteroidales_S24-7) and decreasing potential pathogenic bacteria (i.e., Staphylococcus and Helicobacter). Moreover, transcriptome analysis of the colon tissue shows that P. pentosaceus B49 partly normalized the expression of genes related to GI peristalsis (i.e., Ache, Chrm2, Slc18a3, Grp, and Vip), water and electrolyte absorption and transport (i.e., Aqp4, Aqp8, and Atp12a), while down-regulating the expression of pro-inflammatory and pro-oncogenic genes (i.e., Lbp, Lgals2, Bcl2, Bcl2l15, Gsdmc2, and Olfm4) in constipated mice. Our findings indicate that P. pentosaceus B49 effectively relieves constipation in mice and is a promising candidate for treating constipation.
Subject(s)
Colon/metabolism , Colostrum/microbiology , Constipation/chemically induced , Constipation/drug therapy , Constipation/microbiology , Pediococcus pentosaceus/metabolism , Acetylcholinesterase , Animals , Bacteria , Fatty Acids, Volatile/metabolism , Feces , Gastrins , Gastrointestinal Transit/drug effects , Gastrointestinal Transit/physiology , Hormones/blood , Humans , Intestines , Loperamide/adverse effects , Male , Mice , Mice, Inbred BALB C , Milk, Human/microbiology , Motilin , Neurotransmitter Agents/blood , Oxidative Stress , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/isolation & purification , Peristalsis/genetics , Probiotics/therapeutic use , RNA, Ribosomal, 16S/genetics , TranscriptomeABSTRACT
Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC strains, previously isolated from artisanal cheese, were evaluated for their safety with the aim to determine whether they could be used as beneficial strains, especially in the control of Listeria monocytogenes. Both isolates survived simulated gastrointestinal conditions and showed high levels of auto- and co-aggregation with L. monocytogenes, although the hydrophobicity of cells varied. Using the agar-spot test with 33 commercial drugs from different groups, only anti-inflammatory drugs and drugs containing loratadine and propranolol hydrochloride were able to affect the growth of the tested strains. Both strains were resistant to 3 out of 11 antibiotics tested by the disc diffusion method, and low frequencies of antibiotic resistance-encoding genes were observed by PCR analysis. Tested strains neither presented biogenic amine-related genes nor produced these substances. Aside from some antibiotic resistance characteristics, the tested strains were considered safe as they lack other virulence-related genes. E. hirae ST57ACC and P. pentosaceus ST65ACC both presented beneficial properties, particularly their ability to survive gastrointestinal conditions and to aggregate with L. monocytogenes, which can facilitate the elimination of this pathogen. Further studies should be conducted to better understand these interactions.
Subject(s)
Antibiosis/physiology , Cheese/microbiology , Enterococcus hirae/physiology , Listeria monocytogenes/growth & development , Pediococcus pentosaceus/physiology , Drug Resistance, Microbial , Enterococcus hirae/drug effects , Enterococcus hirae/genetics , Hydrophobic and Hydrophilic Interactions , Pediococcus pentosaceus/drug effects , Pediococcus pentosaceus/geneticsABSTRACT
The development and evaluation of a 6-hours laboratory class, based on capillary electrophoresis (CE) and the detection of microbial contaminants, is described. It can be easily scaled up or down, to suit class sizes up to 188 and completed in a shorter time scale. CE uses narrow-bore fused-silica capillaries to separate a complex array of large and small molecules. A laboratory exercise has been devised to illustrate how CE-based genetic analysis system processes DNA fragment analysis to detect three microbial contaminants. The protocol is relatively inexpensive and uses standard molecular biology reagents and equipment. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):279-284, 2018.