ABSTRACT
Hyperglycemia-induced podocyte damage contributes to the onset of diabetic nephropathy, a severe complication of diabetes. Perilipin 5 (Plin5) exerts a vital role in numerous pathological conditions via affecting cell apoptosis, oxidative stress, and inflammation. However, whether Plin5 plays a role in regulating podocyte damage of diabetic nephropathy has not been fully determined. This work aimed to explore the role of Plin5 in mediating high glucose (HG)-induced injury of podocytes in vitro. Our results demonstrated that Plin5 expression was markedly decreased in mouse podocytes challenged with HG. Plin5 overexpression markedly suppressed HG-induced apoptosis, reactive oxygen species (ROS) production, and the pro-inflammatory response in podocytes. On the contrary, Plin5 silencing produced the opposite effects. Further mechanistic analysis demonstrated that Plin5 upregulation remarkably increased the levels of phospho-Akt and phospho-glycogen synthase kinase-3ß (GSK-3ß) in HG-exposed podocytes. Moreover, Plin5 overexpression increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 signaling. Akt inhibition markedly blocked Plin5-mediated activation of Nrf2, while GSK-3ß inhibition reversed Plin5-silencing-induced suppressive effects on Nrf2 activation. Notably, Nrf2 suppression significantly blocked Plin5-mediated protective effects against HG-induced podocyte injury. In summary, our work indicates a vital role for Plin5 in protecting against HG-induced apoptosis, oxidative stress, and inflammation in podocytes via modulation of Akt/GSK-3ß/Nrf2 signaling. This study suggests that Plin5 may participate in modulating podocyte damage in diabetic nephropathy.
Subject(s)
Apoptosis , Glucose/toxicity , Inflammation/drug therapy , Kidney Diseases/prevention & control , Oxidative Stress , Perilipin-5/pharmacology , Podocytes/drug effects , Animals , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Inflammation/metabolism , Inflammation/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Mice , NF-E2-Related Factor 2/metabolism , Phosphorylation , Podocytes/metabolism , Podocytes/pathology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Sweetening Agents/toxicityABSTRACT
BACKGROUND: Hyper-free fatty acidemia (HFFA) impairs cardiac capillaries, as well as type 2 diabetes mellitus (T2DM). Perilipin 5 (Plin5) maintains metabolic balance of free fatty acids (FFAs) in high oxidative tissues via the states of nonphosphorylation and phosphorylation. However, when facing to T2DM-HFFA, Plin5's role in cardiac microvascular endothelial cells (CMECs) is not defined. METHODS: In mice of WT or Plin5-/-, T2DM models were rendered by high-fat diet combined with intraperitoneal injection of streptozocin. CMECs isolated from left ventricles were incubated with high glucose (HG) and high FFAs (HFFAs). Plin5 phosphorylation was stimulated by isoproterenol. Plin5 expression was knocked down by small interfering RNA (siRNA). We determined cardiac function by small animal ultrasound, apoptotic rate by flow cytometry, microvessel quantity by immunohistochemistry, microvascular integrity by scanning electron microscopy, intracellular FFAs by spectrophotometry, lipid droplets (LDs) by Nile red staining, mRNAs by quantitative real-time polymerase chain reaction, proteins by western blots, nitric oxide (NO) and reactive oxygen species (ROS) by fluorescent dye staining and enzyme-linked immunosorbent assay kits. RESULTS: In CMECs, HFFAs aggravated cell injury induced by HG and activated Plin5 expression. In mice with T2DM-HFFA, Plin5 deficiency reduced number of cardiac capillaries, worsened structural incompleteness, and enhanced diastolic dysfunction. Moreover, in CMECs treated with HG-HFFAs, both ablation and phosphorylation of Plin5 reduced LDs content, increased intracellular FFAs, stimulated mitochondrial ß-oxidation, added ROS generation, and reduced the expression and activity of endothelial nitric oxide synthase (eNOS), eventually leading to increased apoptotic rate and decreased NO content, all of which were reversed by N-acetyl-L-cysteine. CONCLUSION: Plin5 preserves lipid balance and cell survival in diabetic CMECs by regulating FFAs metabolism bidirectionally via the states of nonphosphorylation and phosphorylation.