Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.233
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969847

ABSTRACT

Paleoclimatic evidence indicating a series of droughts in the Yucatan Peninsula during the Terminal Classic period suggests that climate change may have contributed to the disruption or collapse of Classic Maya polities. Although climate change cannot fully account for the multifaceted, political turmoil of the period, it is clear that droughts of strong magnitude could have limited food availability, potentially causing famine, migration, and societal decline. Maize was undoubtedly an important staple food of the ancient Maya, but a complete analysis of other food resources that would have been available during drought remains unresolved. Here, we assess drought resistance of all 497 indigenous food plant species documented in ethnographic, ethnobotanical, and botanical studies as having been used by the lowland Maya and classify the availability of these plant species and their edible components under various drought scenarios. Our analysis indicates availability of 83% of food plant species in short-term drought, but this percentage drops to 22% of food plant species available in moderate drought up to 1 y. During extreme drought, lasting several years, our analysis indicates availability of 11% of food plant species. Our results demonstrate a greater diversity of food sources beyond maize that would have been available to the Maya during climate disruption of the Terminal Classic period than has been previously acknowledged. While drought would have necessitated shifts in dietary patterns, the range of physiological drought responses for the available food plants would have allowed a continuing food supply under all but the most dire conditions.


Subject(s)
Diet , Droughts , Plants, Edible , Agriculture , History, Ancient , Humans , Indians, Central American
2.
BMC Plant Biol ; 24(1): 44, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200455

ABSTRACT

BACKGROUND: Hemerocallis citrina Baroni (Huang hua cai in Chinese) is a perennial herbaceous plant grown for its flower buds that are eaten fresh or dried and is known as the vegetarian three treasures. The nuclear genome of H. citrina has been reported, but the intraspecific variation of the plastome (plastid genome) has not yet been studied. Therefore, the panplastome of this species collected from diverse locations is reported here for the first time. RESULTS: In this study, 65 H. citrina samples were resequenced, de novo assembled, and aligned with the published plastome of H. citrina to resolve the H. citrina panplastome. The sizes of the 65 newly assembled complete plastomes of H. citrina ranged from 156,048 bp to 156,263 bp, and the total GC content ranged from 37.31 to 37.34%. The structure of the complete plastomes showed a typical tetrameric structure, including a large single copy (LSC), a small single copy (SSC), and a pair of inverted repeat regions (IRA and IRB). Many nucleotide variants were identified between plastomes, among which the variants in the intergenic spacer region were the most abundant, with the highest number of variants concentrated in the LSC region. Based on the phylogenetic tree constructed using the ML method, population structure analysis, and principal component analysis (PCA), the panplastome data were subdivided into five genetic clusters. The C5 genetic cluster was mostly represented by samples from Qidong, Hunan Province, while samples from Shanxi and Shaanxi Provinces were classified into the C4 genetic cluster. The greatest genetic diversity was found in the C1 genetic cluster, and the greatest genetic distance between any two clusters was found between the C4 and C5 clusters. CONCLUSION: The resolution of the panplastome and the analysis of the population structure of H. citrina plastomes provide important data for future breeding projects and germplasm preservation.


Subject(s)
Hemerocallis , Phylogeny , Plant Breeding , DNA, Intergenic , Genetic Variation , Plants, Edible
3.
Anal Bioanal Chem ; 416(11): 2605-2623, 2024 May.
Article in English | MEDLINE | ID: mdl-38099967

ABSTRACT

Nanoparticle (NP) applications aiming to boost plant biomass production and enhance the nutritional quality of crops hae proven to be a valuable ally in enhancing agricultural output. They contribute to greater food accessibility for a growing and vulnerable population. These nanoscale particles are commonly used in agriculture as fertilizers, pesticides, plant growth promoters, seed treatments, opportune plant disease detection, monitoring soil and water quality, identification and detection of toxic agrochemicals, and soil and water remediation. In addition to the countless NP applications in food and agriculture, it is possible to highlight many others, such as medicine and electronics. However, it is crucial to emphasize the imperative need for thorough NP characterization beyond these applications. Therefore, analytical methods are proposed to determine NPs' physicochemical properties, such as composition, crystal structure, size, shape, surface charge, morphology, and specific surface area, detaching the inductively coupled plasma mass spectrometry (ICP-MS) that allows the reliable elemental composition quantification mainly in metallic NPs. As a result, this review highlights studies involving NPs in agriculture and their consequential effects on plants, with a specific focus on analyses conducted through ICP-MS. Given the numerous applications of NPs in this field, it is essential to address their presence and increase in the environment and humans since biomagnification and biotransformation effects are studies that should be further developed. In light of this, the demand for rapid, innovative, and sensitive analytical methods for the characterization of NPs remains paramount.


Subject(s)
Metal Nanoparticles , Nanoparticles , Humans , Mass Spectrometry/methods , Plants, Edible , Nanoparticles/chemistry , Crops, Agricultural , Soil , Metal Nanoparticles/chemistry
4.
Antonie Van Leeuwenhoek ; 117(1): 7, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170394

ABSTRACT

Edible oil is used in humans' daily lives, and the degradation of edible oil is a key process in sewage water treatment and in compost production from food wastes. In this study, a mixed microbial strain EN00, which showed high edible plant oil (EPO)-consumption activity, was obtained from soil via enrichment cultivation. A fungal strain EN01 was isolated from EN00 and relegated to Fusarium keratoplasticum, based on the nucleotide sequences of the TEF1-α gene. Strain EN01 eliminated more than 90% of hydrophobic compounds from the medium containing 1.0% (w/v) EPO within 10 days at 30 °C. The rate of consumption of EPO by EN01 was comparable with that of EN00, suggesting that EN01 was the main microorganism involved in the EPO-consumption ability of EN00. Strain EN01 efficiently utilized EPO as a sole carbon source. The EPO-consumption rate of EN01 was highest among six tested strains of Fusarium solani species complex (FSSC), while two FSSC strains of F. mori and F. cuneirostrum, whose phylogenetic relationships were relatively distant from EN01, had little EPO-eliminating activity. This data implies that the potent EPO-eliminating activity is not general in FSSC strains but is restricted to selected members of this complex. EN01 showed good growth at 25-30 °C, in media with an initial pH of 4-10, and in the presence of 0-3% (w/v) sodium chloride. Although the safety including pathogenicity must be strictly evaluated, some FSSC strains including EN01 have potentials for use in the degradation and elimination of edible oil.


Subject(s)
Fusarium , Humans , Plants, Edible , Phylogeny , Food
5.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38652378

ABSTRACT

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Subject(s)
Metal Nanoparticles , Plants, Edible , Plants, Medicinal , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Plants, Medicinal/chemistry , Silver/chemistry , Plants, Edible/chemistry , Limit of Detection , Phytochemicals/analysis , Phytochemicals/chemistry , Reproducibility of Results , Alkaloids/analysis
6.
J Microencapsul ; 41(2): 94-111, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38410890

ABSTRACT

AIM: To optimise, and characterise gelatine nanoparticles (GNPs) encapsulating plant extracts and evaluate the glucose-lowering potential. METHODS: GNPs encapsulating plant extracts were prepared by desolvation method followed by adsorption. The GNPs were characterised by loading efficiency, loading capacity, particle size, zeta potential, SEM and FTIR. The glucose-lowering activity of GNPs was determined using oral glucose tolerance test in high-fat diet fed streptozotocin-induced Wistar rats. RESULTS: Loading efficiency and capacity, particle mean diameter, and zeta potential of optimised GNPs 72.45 ± 13.03% w/w, 53.05 ± 26.16% w/w, 517 ± 48 nm and (-)23.43 ± 9.96 mV respectively. GNPs encapsulating aqueous extracts of C. grandis, S. auriculata, and ethanol 70% v/v extracts of M. koenigii showed glucose-lowering activity by 17.62%, 11.96% and 13.73% (p < 0.05) compared to the non-encapsulated extracts. FTIR analysis confirmed the encapsulation of phytoconstituents into GNPs. SEM imaging showed spherical GNPs (174 ± 46 nm). CONCLUSION: GNPs encapsulating plant extracts show promising potential to be developed as nanonutraceuticals against diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Metal Nanoparticles , Rats , Animals , Diabetes Mellitus, Type 2/drug therapy , Rats, Wistar , Plants, Edible , Gelatin , Glucose , Plant Extracts/pharmacology
7.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396910

ABSTRACT

The Mediterranean diet features plant-based foods renowned for their health benefits derived from bioactive compounds. This review aims to provide an overview of the bioactive molecules present in some representative Mediterranean diet plants, examining their human nutrigenomic effects and health benefits as well as the environmental advantages and sustainability derived from their cultivation. Additionally, it explores the facilitation of producing fortified foods aided by soil and plant microbiota properties. Well-studied examples, such as extra virgin olive oil and citrus fruits, have demonstrated significant health advantages, including anti-cancer, anti-inflammatory, and neuroprotective effects. Other less renowned plants are presented in the scientific literature with their beneficial traits on human health highlighted. Prickly pear's indicaxanthin exhibits antioxidant properties and potential anticancer traits, while capers kaempferol and quercetin support cardiovascular health and prevent cancer. Oregano and thyme, containing terpenoids like carvacrol and γ-terpinene, exhibit antimicrobial effects. Besides their nutrigenomic effects, these plants thrive in arid environments, offering benefits associated with their cultivation. Their microbiota, particularly Plant Growth Promoting (PGP) microorganisms, enhance plant growth and stress tolerance, offering biotechnological opportunities for sustainable agriculture. In conclusion, leveraging plant microbiota could revolutionize agricultural practices and increase sustainability as climate change threatens biodiversity. These edible plant species may have crucial importance, not only as healthy products but also for increasing the sustainability of agricultural systems.


Subject(s)
Diet, Mediterranean , Humans , Functional Food , Nutrigenomics , Droughts , Plants, Edible
8.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930892

ABSTRACT

The Lamiaceae family, which includes several well-known aromatic plants, is scientifically relevant due to its essential oils (EOs). In this work, four EOs from Mediterranean species, namely Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., and Thymus vulgaris L., were evaluated for their volatile profiles and the biological activity in vitro to assess their potential use in the food and cosmetic sector. GC/MS analysis revealed dominant compounds, such as carvacrol, thymol, and eucalyptol. Regarding biological action, the samples exhibited antioxidant, cytotoxic, anti-inflammatory, antimicrobial, and antifungal activities, with O. vulgare and T. officinalis standing out. T. vulgaris showed the lowest EC50 in the reducing power assay, and O. vulgare had the lowest EC50 in the DPPH assay. Most EOs also displayed excellent anti-inflammatory responses and antifungal properties, with O. vulgare and T. vulgaris also demonstrating antibacterial activity. All EOs from Mediterranean species showed cytotoxicity against tumoral cell lines. Overall, the selected EOs stood out for their interesting bioactivities, with the obtained results underscoring their potential as natural preservatives and bioactive agents in various industrial applications, including food, pharmaceuticals, and cosmetics.


Subject(s)
Antioxidants , Lamiaceae , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lamiaceae/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Gas Chromatography-Mass Spectrometry , Origanum/chemistry , Salvia officinalis/chemistry , Cell Line, Tumor , Thymus Plant/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plants, Edible/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Thymol/pharmacology , Thymol/chemistry , Microbial Sensitivity Tests , Cymenes
9.
Crit Rev Food Sci Nutr ; 63(30): 10319-10331, 2023.
Article in English | MEDLINE | ID: mdl-35611891

ABSTRACT

Food production has increasingly become effective but not necessarily sustainable. Transitioning toward circular production systems aiming to minimize waste and reuse materials is one of the means to obtain a more sustainable food production system. However, such a circular food production system can also lead to the accumulation and recirculation of chemical hazards. A literature review was performed to identify potential chemical hazards related to the use of edible and non-edible resources in agriculture and horticulture, and edible plant and animal by-products in feed production. The review revealed that limited information was available on the chemical hazards that could occur when reusing crop residues in circular agriculture. Frequently mentioned hazards present in edible and non-edible resources are heavy metals, process and environmental contaminants, pesticides and pharmaceuticals. For feed, natural toxins and pharmaceutical residues are of potential concern. Studies, furthermore, indicated that plants are capable of taking up chemical hazards when grown on contaminated soil. The presence of chemical hazards in manure, sewage sludge, crop residues, and animal by-products may lead to accumulation in a circular food production system. Therefore, it is relevant to identify these hazards prior to application in food production and, if needed, take precautionary measures to prevent food safety risks.


Subject(s)
Soil Pollutants , Animals , Soil Pollutants/analysis , Agriculture , Sewage/chemistry , Food Safety , Plants, Edible
10.
Crit Rev Food Sci Nutr ; 63(31): 10814-10835, 2023.
Article in English | MEDLINE | ID: mdl-35658778

ABSTRACT

Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.


Subject(s)
Polyphenols , Prebiotics , Polyphenols/chemistry , Phenols , Antioxidants/analysis , Plants, Edible
11.
Mar Drugs ; 21(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36976212

ABSTRACT

Antibiotics are used to prevent and treat bacterial infections. After a prolonged use of antibiotics, it may happen that bacteria adapt to their presence, developing antibiotic resistance and bringing up health complications. Nowadays, antibiotic resistance is one of the biggest threats to global health and food security; therefore, scientists have been searching for new classes of antibiotic compounds which naturally express antimicrobial activity. In recent decades, research has been focused on the extraction of plant compounds to treat microbial infections. Plants are potential sources of biological compounds that express several biological functions beneficial for our organism, including antimicrobial activity. The high variety of compounds of natural origin makes it possible to have a great bioavailability of antibacterial molecules to prevent different infections. The antimicrobial activity of marine plants, also called seaweeds or macroalgae, for both Gram-positive and Gram-negative, and several other strains infective for humans, has been proven. The present review presents research focused on the extraction of antimicrobial compounds from red and green macroalgae (domain Eukarya, kingdom Plantae). Nevertheless, further research is needed to verify the action of macroalgae compounds against bacteria in vitro and in vivo, to be involved in the production of safe and novel antibiotics.


Subject(s)
Anti-Infective Agents , Chlorophyta , Rhodophyta , Seaweed , Humans , Plants, Edible , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Plant Extracts/pharmacology
12.
Chem Biodivers ; 20(2): e202200718, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36562215

ABSTRACT

Three underutilized leafy vegetables Sarcochlamys pulcherrima (Roxb.) Gaudich (SP), Ipomoea aquatica Forssk. (IA) and Zanthoxylum rhetsa (Roxb.) DC (ZR) were extracted with different solvents viz. 95 % ethyl alcohol, methanol and hot water. The extracts were evaluated for their antioxidant potential via DPPH, ABTS and FRAP assay along with electroanalytical studies using cyclic voltammetry. The antidiabetic potential was determined by recording their α-amylase and α-glucosidase inhibitory assay. The total phenolic content (TPC), total flavonoid content (TFC) and the liquid chromatography-mass spectrometry (LC/MS) based phytochemical profiles of the extracts were also determined. All three extracts of SP exhibited significant antioxidant capacity. The antidiabetic potential of the IA and ZR extracts was found to be higher than or at par with that of standard acarbose. LC/MS studies reveal the presence of hitherto reported antioxidant and antidiabetic compounds like gamma-aminobutyric acid, cinnamic acid, caffeic acid, α-viniferin, piperlonguminine, niacin, kaempferol, etc., in the extracts.


Subject(s)
Antioxidants , Hypoglycemic Agents , Antioxidants/chemistry , Plants, Edible , Plant Extracts/chemistry , India
13.
ScientificWorldJournal ; 2023: 6670648, 2023.
Article in English | MEDLINE | ID: mdl-37876588

ABSTRACT

The objective of the study was to evaluate the nutritional, mineral, and phytochemical analyses of some selected wild edible plants from Tach Gaint District, Northwest Ethiopia. Proximate composition parameters (moisture, ash, crude fibre, crude fat, crude protein, carbohydrate, and energy) were evaluated using the methods of the Association of Official Analytical Chemists, and elemental analysis was performed using the atomic absorption spectroscopy technique. Results from the nutritional analysis show that Erucastrum abyssinicum leaves had the highest crude protein content (17.47 ± 0.03 g/100 g), followed by Amaranthus graecizans (14.97 ± 0.03 g/100 g). The maximum moisture content (40.8 ± 0.00 g/100 g) and ash content (24.70 ± 0.15 g/100 g) were reported in the leaves of Amaranthus graecizans. The young shoots of Rumex abyssinicus had the highest crude fat content (14.07 ± 0.03 g/100 g) and the highest fibre content (34.70 ± 0.25 g/100 g), while the fruits of Opuntia ficus-indica had the highest amount of utilisable carbohydrate (44.4 ± 0.00 g/100 g) and the estimated energy value (326.4 ± 0.00 Kcal/100 g). Calcium was detected in considerable proportions (754.9 ± 0.23 mg/100 g) followed by iron (31.63 ± 0.03 mg/100 g) in Urtica simensis leaves and zinc content (3.09 ± 0.02 mg/100 g) in young shoots of Rumex abyssinicus. Qualitative phytochemical screening, alkaloids, phenols, flavonoids, triterpenes, saponins, and tannins were found in the methanolic extract of the plants. The results of this study suggest that the consumption of such nutrient-rich wild edible plants could help add a remarkable amount of nutrient and mineral in the human diet.


Subject(s)
Phytochemicals , Plants, Edible , Humans , Ethiopia , Phytochemicals/analysis , Minerals/analysis , Carbohydrates/analysis
14.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628822

ABSTRACT

Obesity is a long-term condition resulting from a continuous imbalance between the amount of energy consumed and expended. It is associated with premature mortality and contributes to a large portion of the global chronic disease burden, including diabesity, cardiovascular disease, hypertension, and some cancers. While lifestyle changes and dietary adjustments are the primary ways to manage obesity, they may not always be sufficient for long-term weight loss. In these cases, medication may be necessary. However, the options for drugs are limited due to their potential side effects. As a result, there is a need to identify safe and effective alternative treatments. Recently, dietary compounds, plants, and bioactive phytochemicals have been considered as promising sources for discovering new pharmacological agents to treat obesity and its related complications. These natural products can function independently or synergistically with other plants to augment their effects at various levels of the body. They can modulate appetite, lipase activity, thermogenesis and fat synthesis and degradation, satiation, adipogenesis, and adipocyte apoptosis. Additionally, targeting adipocyte growth and differentiation with diverse medicinal plants/diet is a significant strategy for devising new anti-obesity drugs that can intervene in preadipocytes, maturing preadipocytes, and mature adipocytes. Clinical trials have shown that the wild edible plants in the Mediterranean diet can reduce the risk of obesity and its related diseases. This review examines the effectiveness of the common components of the Mediterranean diet in managing obesity and its associated health issues. We conducted a comprehensive literature review using PubMed, Science Direct, Google Scholar, and Medline Plus to gather data on the therapeutic effects of the Mediterranean diet and phytochemicals in treating obesity and its associated diseases.


Subject(s)
Anti-Obesity Agents , Diet, Mediterranean , Plants, Edible , Obesity/drug therapy , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Adipocytes
15.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003718

ABSTRACT

Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.


Subject(s)
Liver Diseases, Alcoholic , Plants, Medicinal , Humans , Plants, Edible , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism
16.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903300

ABSTRACT

Approximately 110 types of medicinal materials are listed in the Chinese Pharmacopoeia, both for medicinal purposes and for use as food. There are several domestic scholars who have carried out research on edible plant medicine in China and the results are satisfactory. Though these related articles have appeared in domestic magazines and journals, many of them are yet to be translated into English. Most of the research stays in the extraction and quantitative testing stage, and there are a few medicinal and edible plants that are still under in-depth study. A majority of these edible and herbal plants are also highly enriched in polysaccharides, and this has an effect on immune systems for the prevention of cancer, inflammation, and infection. Comparing the polysaccharide composition of medicinal and edible plants, the monosaccharide and polysaccharide species were identified. It is found that different polysaccharides of different sizes have different pharmacological properties, with some polysaccharides containing special monosaccharides. The pharmacological properties of polysaccharides can be summarized as immunomodulatory, antitumor, anti-inflammatory, antihypertensive and anti-hyperlipemic, antioxidant, and antimicrobial properties. There have been no poisonous effects found in studies of plant polysaccharides, probably because the substances have a long history of use and are safe. In this paper, the application potential of polysaccharides in medicinal and edible plants in Xinjiang was reviewed, and the research progress in the extraction, separation, identification, and pharmacology of these plant polysaccharides was reviewed. At present, the research progress of plant polysaccharides in medicines and food in Xinjiang has not been reported. This paper will provide a data summary for the development and utilization of medical and food plant resources in Xinjiang.


Subject(s)
Plants, Edible , Plants, Medicinal , Polysaccharides , China , Food , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Polysaccharides/pharmacology
17.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630408

ABSTRACT

Numerous studies have provided evidence that diets rich in anthocyanins show a broad spectrum of health benefits. Anthocyanins in nature are usually found in the form of glycosides. Their aglycone forms are called anthocyanidins. The chemical structure of anthocyanins is based on the flavylium cation, but they differ in the position and number of substituents. However, the bioactives and foods that contain them are frequently treated as a uniform group of compounds exhibiting the same biological activity, without paying attention to the structural differences between individual anthocyanidins. The aim of this study was to find out how structural differences impact the biological activity of the six most common dietary anthocyanidins, i.e., delphinidin (Dp), petunidin (Pt), cyanidin (Cd), malvidin (Mv), pelargonidin (Pg) and peonidin (Po). The study concentrated on redox-related phenomena and compared the following parameters: antioxidant activity (measured using various methods: spectrophotometric tests (ABTS, DPPH), ORAC assay and CAA test (cellular antioxidant activity)), the ability to inhibit growth of human colon cancer cells (HT29; determined using MTT assay), and the ability of studied compounds to protect DNA from oxidative damage (comet assay). Based on the obtained results, the relationship between the structure of studied anthocyanidins and their biological activity was assessed. The obtained results revealed that the number and position of the hydroxyl and methoxy groups in the anthocyanidin structure strongly influenced not only the color of anthocyanidins but most of all their antioxidant and biological activities.


Subject(s)
Anthocyanins , Plants, Edible , Humans , Anthocyanins/pharmacology , Antioxidants/pharmacology , Food , Glycosides
18.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446567

ABSTRACT

Bathua (Chenopodium album) is a rich source of extensive-ranging nutrients, including bio-active carbohydrates, flavonoids and phenolics, minerals, and vitamins that translate to countless health benefits such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antioxidant activity. Ascaridole, an important phytoconstituent present in aerial parts of the plant, contributes to its anthelmintic property. Even with vast historical use and significant health benefits, its renown has not spread, and utilization has significantly decreased in recent decades. Gradually, the plant has become known under the name of Non-conventional edible plant (NCEP). This compilation is prepared to bring out the plant under the spotlight for further research by foregrounding previous studies on the plant. Scientific research databases, including PubMed, Google Scholar, Scopus, SpringerLink, ScienceDirect, and Wiley Online, were used to fetch data on C. album. This review offers over up-to-date knowledge on nutritious values, phytochemical composition, volatile compounds, as well as health benefits of C. album. The ethnobotanical and ethnomedicinal uses of the plant in India and other parts of the world are deliberately discussed. Scrutinizing the reported literature on C. album reveals its powerful nutrient composition advantageous in the development of food products. The impact of various cooking and processing methods on the nutritional profile and bioavailability are discussed. The future perspectives with regards to the potential for food and nutraceutical products are critically addressed. This review proves the necessity of breakthrough research to investigate the pharmacology and safety of phytochemicals and nutraceutical development studies on the C. album.


Subject(s)
Chenopodium album , Chenopodium album/chemistry , Plants, Edible , Medicine, Traditional , Plant Extracts/pharmacology , Phytochemicals/pharmacology , Ethnopharmacology
19.
Molecules ; 28(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771154

ABSTRACT

Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.


Subject(s)
Antioxidants , Plants, Edible , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxidative Stress , Food , Tumor Necrosis Factor-alpha/metabolism
20.
Molecules ; 28(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985442

ABSTRACT

Natural products and plant extracts exhibit many biological activities, including that related to the defense mechanisms against parasites. Many studies have investigated the biological functions of secondary metabolites and reported evidence of antiviral activities. The pandemic emergencies have further increased the interest in finding antiviral agents, and efforts are oriented to investigate possible activities of secondary plant metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection. In this review, we performed a comprehensive analysis of studies through in silico and in vitro investigations, also including in vivo applications and clinical trials, to evaluate the state of knowledge on the antiviral activities of secondary metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection, with a particular focus on natural compounds present in food plants. Although some of the food plant secondary metabolites seem to be useful in the prevention and as a possible therapeutic management against SARS-CoV-2, up to now, no molecules can be used as a potential treatment for COVID-19; however, more research is needed.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Plants, Edible
SELECTION OF CITATIONS
SEARCH DETAIL