ABSTRACT
Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt's lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by which mechanism, remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis, we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments in which B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage, leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PAPERCLIP.
Subject(s)
Genomic Instability , Lymphoma, B-Cell/genetics , Malaria/complications , Malaria/genetics , Plasmodium chabaudi/physiology , Animals , B-Lymphocytes/pathology , Chronic Disease , Cytidine Deaminase/metabolism , DNA Replication , Genes, p53 , Germinal Center/parasitology , Malaria/parasitology , Malaria/pathology , Mice , Translocation, GeneticABSTRACT
Malaria and iron deficiency are major global health problems with extensive epidemiological overlap. Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the other hand, iron deficiency can significantly disrupt immune cell function. However, the impact of host cell iron scarcity beyond anaemia remains elusive in malaria. To address this, we employed a transgenic mouse model carrying a mutation in the transferrin receptor (TfrcY20H/Y20H), which limits the ability of cells to internalise iron from plasma. At homeostasis TfrcY20H/Y20H mice appear healthy and are not anaemic. However, TfrcY20H/Y20H mice infected with Plasmodium chabaudi chabaudi AS showed significantly higher peak parasitaemia and body weight loss. We found that TfrcY20H/Y20H mice displayed a similar trajectory of malaria-induced anaemia as wild-type mice, and elevated circulating iron did not increase peak parasitaemia. Instead, P. chabaudi infected TfrcY20H/Y20H mice had an impaired innate and adaptive immune response, marked by decreased cell proliferation and cytokine production. Moreover, we demonstrated that these immune cell impairments were cell-intrinsic, as ex vivo iron supplementation fully recovered CD4+ T cell and B cell function. Despite the inhibited immune response and increased parasitaemia, TfrcY20H/Y20H mice displayed mitigated liver damage, characterised by decreased parasite sequestration in the liver and an attenuated hepatic immune response. Together, these results show that host cell iron scarcity inhibits the immune response but prevents excessive hepatic tissue damage during malaria infection. These divergent effects shed light on the role of iron in the complex balance between protection and pathology in malaria.
Subject(s)
Anemia , Iron Deficiencies , Malaria , Plasmodium chabaudi , Animals , Mice , Iron , Malaria/parasitology , Immunity , Plasmodium chabaudi/physiologyABSTRACT
AIMS: Malaria parasites exhibit daily rhythms in the intra-erythrocytic development cycle (IDC) that underpins asexual replication in the blood. The IDC schedule is aligned with the timing of host feeding-fasting rhythms. When the IDC schedule is perturbed to become mismatched to host rhythms, it readily reschedules but it is not known how. METHODS: We intensively follow four groups of infections that have different temporal alignments between host rhythms and the IDC schedule for 10 days, before and after the peak in asexual densities. We compare how the duration, synchrony and timing of the IDC differs between parasites in control infections and those forced to reschedule by 12 hours and ask whether the density of parasites affects the rescheduling process. RESULTS AND CONCLUSIONS: Our experiments reveal parasites shorten the IDC duration by 2-3 hours to become realigned to host feeding-fasting rhythms with 5-6 days, in a density-independent manner. Furthermore, parasites are able to reschedule without significant fitness costs for them or their hosts. Understanding the extent of, and limits on, plasticity in the IDC schedule may reveal targets for novel interventions, such as drugs to disrupt IDC regulation and preventing IDC dormancy conferring tolerance to existing drugs.
Subject(s)
Malaria , Parasites , Plasmodium chabaudi , Animals , Circadian Rhythm/physiology , Fasting , Malaria/parasitology , Malaria/prevention & control , Plasmodium chabaudi/physiologyABSTRACT
The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the ß2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum ß2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this ß2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next-generation anti-malarial agents.
Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Drug Design , Plasmodium/drug effects , Plasmodium/enzymology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Animals , Antimalarials/adverse effects , Antimalarials/toxicity , Artemisinins/pharmacology , Catalytic Domain , Cryoelectron Microscopy , Dose-Response Relationship, Drug , Drug Resistance , Drug Synergism , Enzyme Activation , Female , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Plasmodium/growth & development , Plasmodium chabaudi/drug effects , Plasmodium chabaudi/enzymology , Plasmodium chabaudi/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/ultrastructure , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/toxicity , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/metabolism , Species Specificity , Substrate Specificity/drug effectsABSTRACT
To understand why some hosts get sicker than others from the same type of infection, it is essential to explain how key processes, such as host responses to infection and parasite growth, are influenced by various biotic and abiotic factors. In many disease systems, the initial infection dose impacts host morbidity and mortality. To explore drivers of dose-dependence and individual variation in infection outcomes, we devised a mathematical model of malaria infection that allowed host and parasite traits to be linear functions (reaction norms) of the initial dose. We fitted the model, using a hierarchical Bayesian approach, to experimental time-series data of acute Plasmodium chabaudi infection across doses spanning seven orders of magnitude. We found evidence for both dose-dependent facilitation and debilitation of host responses. Most importantly, increasing dose reduced the strength of activation of indiscriminate host clearance of red blood cells while increasing the half-life of that response, leading to the maximal response at an intermediate dose. We also explored the causes of diverse infection outcomes across replicate mice receiving the same dose. Besides random noise in the injected dose, we found variation in peak parasite load was due to unobserved individual variation in host responses to clear infected cells. Individual variation in anaemia was likely driven by random variation in parasite burst size, which is linked to the rate of host cells lost to malaria infection. General host vigour in the absence of infection was also correlated with host health during malaria infection. Our work demonstrates that the reaction norm approach provides a useful quantitative framework for examining the impact of a continuous external factor on within-host infection processes.
Subject(s)
Host-Parasite Interactions , Malaria , Anemia/complications , Animals , Bayes Theorem , Computational Biology , Female , Malaria/complications , Malaria/immunology , Malaria/parasitology , Malaria/physiopathology , Mice , Mice, Inbred C57BL , Parasite Load , Plasmodium chabaudi/pathogenicity , Plasmodium chabaudi/physiologyABSTRACT
BACKGROUND: Recent genome wide analysis studies have identified a strong association between single nucleotide variations within the human ATP2B4 gene and susceptibility to severe malaria. The ATP2B4 gene encodes the plasma membrane calcium ATPase 4 (PMCA4), which is responsible for controlling the physiological level of intracellular calcium in many cell types, including red blood cells (RBCs). It is, therefore, postulated that genetic differences in the activity or expression level of PMCA4 alters intracellular Ca2+ levels and affects RBC hydration, modulating the invasion and growth of the Plasmodium parasite within its target host cell. METHODS: In this study the course of three different Plasmodium spp. infections were examined in mice with systemic knockout of Pmca4 expression. RESULTS: Ablation of PMCA4 reduced the size of RBCs and their haemoglobin content but did not affect RBC maturation and reticulocyte count. Surprisingly, knockout of PMCA4 did not significantly alter peripheral parasite burdens or the dynamics of blood stage Plasmodium chabaudi infection or reticulocyte-restricted Plasmodium yoelii infection. Interestingly, although ablation of PMCA4 did not affect peripheral parasite levels during Plasmodium berghei infection, it did promote slight protection against experimental cerebral malaria, associated with a minor reduction in antigen-experienced T cell accumulation in the brain. CONCLUSIONS: The finding suggests that PMCA4 may play a minor role in the development of severe malarial complications, but that this appears independent of direct effects on parasite invasion, growth or survival within RBCs.
Subject(s)
Disease Resistance/genetics , Malaria/genetics , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasmodium/physiology , Animals , Cell Membrane , Malaria/blood , Malaria/parasitology , Malaria, Cerebral/genetics , Malaria, Cerebral/parasitology , Mice , Mice, Knockout , Plasma Membrane Calcium-Transporting ATPases/metabolism , Plasmodium berghei/physiology , Plasmodium chabaudi/physiology , Plasmodium yoelii/physiologyABSTRACT
Various host and parasite factors interact to determine the outcome of infection. We investigated the effects of two factors on the within-host dynamics of malaria in mice: initial infectious dose and co-infection with a helminth that limits the availability of red blood cells (RBCs). Using a statistical, time-series approach to model the within-host 'epidemiology' of malaria, we found that increasing initial dose reduced the time to peak cell-to-cell parasite propagation, but also reduced its magnitude, while helminth co-infection delayed peak cell-to-cell propagation, except at the highest malaria doses. Using a mechanistic model of within-host infection dynamics, we identified dose-dependence in parameters describing host responses to malaria infection and uncovered a plausible explanation of the observed differences in single vs co-infections. Specifically, in co-infections, our model predicted a higher background death rate of RBCs. However, at the highest dose, when intraspecific competition between malaria parasites would be highest, these effects of co-infection were not observed. Such interactions between initial dose and co-infection, although difficult to predict a priori, are key to understanding variation in the severity of disease experienced by hosts and could inform studies of malaria transmission dynamics in nature, where co-infection and low doses are the norm.
Subject(s)
Coinfection/parasitology , Malaria/parasitology , Necator/physiology , Necatoriasis/parasitology , Plasmodium chabaudi/physiology , Animals , Mice , Mice, Inbred BALB CABSTRACT
Circadian clocks coordinate organisms' activities with daily cycles in their environment. Parasites are subject to daily rhythms in the within-host environment, resulting from clock-control of host activities, including immune responses. Parasites also exhibit rhythms in their activities: the timing of within-host replication by malaria parasites is coordinated to host feeding rhythms. Precisely which host feeding-related rhythm(s) parasites align with and how this is achieved are unknown. Understanding rhythmic replication in malaria parasites matters because it underpins disease symptoms and fuels transmission investment. We test if rhythmicity in parasite replication is coordinated with the host's feeding-related rhythms and/or rhythms driven by the host's canonical circadian clock. We find that parasite rhythms coordinate with the time of day that hosts feed in both wild-type and clock-mutant hosts, whereas parasite rhythms become dampened in clock-mutant hosts that eat continuously. Our results hold whether infections are initiated with synchronous or with desynchronized parasites. We conclude that malaria parasite replication is coordinated to rhythmic host processes that are independent of the core-clock proteins PERIOD 1 and 2; most likely, a periodic nutrient made available when the host digests food. Thus, novel interventions could disrupt parasite rhythms to reduce their fitness, without interference by host clock-controlled homeostasis.
Subject(s)
Circadian Clocks , Host-Parasite Interactions/physiology , Plasmodium chabaudi/physiology , Animals , Circadian Rhythm/physiology , Homeostasis , Malaria , Parasites , Period Circadian ProteinsABSTRACT
Sexually reproducing parasites, such as malaria parasites, experience a trade-off between the allocation of resources to asexual replication and the production of sexual forms. Allocation by malaria parasites to sexual forms (the conversion rate) is variable but the evolutionary drivers of this plasticity are poorly understood. We use evolutionary theory for life histories to combine a mathematical model and experiments to reveal that parasites adjust conversion rate according to the dynamics of asexual densities in the blood of the host. Our model predicts the direction of change in conversion rates that returns the greatest fitness after perturbation of asexual densities by different doses of antimalarial drugs. The loss of a high proportion of asexuals is predicted to elicit increased conversion (terminal investment), while smaller losses are managed by reducing conversion (reproductive restraint) to facilitate within-host survival and future transmission. This non-linear pattern of allocation is consistent with adaptive reproductive strategies observed in multicellular organisms. We then empirically estimate conversion rates of the rodent malaria parasite Plasmodium chabaudi in response to the killing of asexual stages by different doses of antimalarial drugs and forecast the short-term fitness consequences of these responses. Our data reveal the predicted non-linear pattern, and this is further supported by analyses of previous experiments that perturb asexual stage densities using drugs or within-host competition, across multiple parasite genotypes. Whilst conversion rates, across all datasets, are most strongly influenced by changes in asexual density, parasites also modulate conversion according to the availability of red blood cell resources. In summary, increasing conversion maximises short-term transmission and reducing conversion facilitates in-host survival and thus, future transmission. Understanding patterns of parasite allocation to reproduction matters because within-host replication is responsible for disease symptoms and between-host transmission determines disease spread.
Subject(s)
Adaptation, Physiological/physiology , Malaria/parasitology , Plasmodium/physiology , Adaptation, Biological/physiology , Animals , Biological Evolution , Computer Simulation , Erythrocytes/parasitology , Host-Parasite Interactions , Models, Theoretical , Parasites , Plasmodium chabaudi/physiology , Reproduction/physiology , Reproduction, Asexual/physiologyABSTRACT
Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host's peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host's peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience.
Subject(s)
Circadian Rhythm/physiology , Feeding Behavior/physiology , Host-Parasite Interactions/physiology , Malaria/parasitology , Animals , Blood Glucose/analysis , Gastrointestinal Microbiome/physiology , Homeostasis , Malaria/blood , Malaria/physiopathology , Male , Mice , Plasmodium chabaudi/growth & development , Plasmodium chabaudi/physiologyABSTRACT
BACKGROUND: Malaria is one of the most prevalent infectious disease in the world with 3.2 billion humans at risk. Malaria causes splenomegaly and damage in other organs including skeletal muscles. Skeletal muscles comprise nearly 50% of the human body and are largely responsible for the regulation and modulation of overall metabolism. It is essential to understand how malaria damages muscles in order to develop effective preventive measures and/or treatments. Using a pre-clinical animal model, the potential molecular mechanisms of Plasmodium infection affecting skeletal muscles of mice were investigated. METHODS: Mouse Signal Transduction Pathway Finder PCR Array was used to monitor gene expression changes of 10 essential signalling pathways in skeletal muscles from mice infected with Plasmodium berghei and Plasmodium chabaudi. Then, a new targeted-lipidomic approach using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to profile 158 lipid signalling mediators (LMs), mostly eicosanoids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was applied. Finally, 16 key LMs directly associated with inflammation, oxidative stress, and tissue healing in skeletal muscles, were quantified. RESULTS: The results showed that the expression of key genes altered by Plasmodium infection is associated with inflammation, oxidative stress, and atrophy. In support to gene profiling results, lipidomics revealed higher concentrations of LMs in skeletal muscles directly related to inflammatory responses, while on the levels of LMs crucial in resolving inflammation and tissue repair reduced significantly. CONCLUSION: The results provide new insights into the molecular mechanisms of malaria-induced muscle damage and revealed a potential mechanism modulating inflammation in malarial muscles. These pre-clinical studies should help with future clinical studies in humans aimed at monitoring of disease progression and development of specific interventions for the prevention and mitigation of long-term chronic effects on skeletal muscle function.
Subject(s)
Malaria/physiopathology , Muscle, Skeletal/physiopathology , Plasmodium berghei/physiology , Plasmodium chabaudi/physiology , Animals , Male , MiceABSTRACT
BACKGROUND: The intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms. When this coordination is disrupted, parasites suffer a 50% reduction in both asexual stages and sexual stage gametocytes over the acute phase of infection. Reduced gametocyte density may not simply follow from a loss of asexuals because investment into gametocytes ("conversion rate") is a plastic trait; furthermore, the densities of both asexuals and gametocytes are highly dynamic during infection. Hence, the reasons for the reduction of gametocytes in infections that are out-of-synch with host circadian rhythms remain unclear. Here, two explanations are tested: first, whether out-of-synch parasites reduce their conversion rate to prioritize asexual replication via reproductive restraint; second, whether out-of-synch gametocytes experience elevated clearance by the host's circadian immune responses. METHODS: First, conversion rate data were analysed from a previous experiment comparing infections of P. chabaudi that were in-synch or 12 h out-of-synch with host circadian rhythms. Second, three new experiments examined whether the inflammatory cytokine TNF varies in its gametocytocidal efficacy according to host time-of-day and gametocyte age. RESULTS: There was no evidence that parasites reduce conversion or that their gametocytes become more vulnerable to TNF when out-of-synch with host circadian rhythms. CONCLUSIONS: The factors causing the reduction of gametocytes in out-of-synch infections remain mysterious. Candidates for future investigation include alternative rhythmic factors involved in innate immune responses and the rhythmicity in essential resources required for gametocyte development. Explaining why it matters for gametocytes to be synchronized to host circadian rhythms might suggest novel approaches to blocking transmission.
Subject(s)
Circadian Rhythm , Erythrocytes/parasitology , Malaria/parasitology , Plasmodium chabaudi/physiology , Tumor Necrosis Factor-alpha/administration & dosage , Animals , Circadian Rhythm/immunology , Female , Flow Cytometry , Gametogenesis/physiology , Linear Models , Malaria/blood , Malaria/immunology , Male , Merozoites/physiology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Plasmodium chabaudi/genetics , Plasmodium chabaudi/growth & development , Plasmodium chabaudi/immunology , Random Allocation , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunologyABSTRACT
Slowing the evolution of antimicrobial resistance is essential if we are to continue to successfully treat infectious diseases. Whether a drug-resistant mutant grows to high densities, and so sickens the patient and spreads to new hosts, is determined by the competitive interactions it has with drug-susceptible pathogens within the host. Competitive interactions thus represent a good target for resistance management strategies. Using an in vivo model of malaria infection, we show that limiting a resource that is disproportionately required by resistant parasites retards the evolution of drug resistance by intensifying competitive interactions between susceptible and resistant parasites. Resource limitation prevented resistance emergence regardless of whether resistant mutants arose de novo or were experimentally added before drug treatment. Our work provides proof of principle that chemotherapy paired with an "ecological" intervention can slow the evolution of resistance to antimicrobial drugs, even when resistant pathogens are present at high frequencies. It also suggests that a broad range of previously untapped compounds could be used for treating infectious diseases.
Subject(s)
Drug Resistance , Host-Parasite Interactions , Malaria , Models, Biological , Mutation , Plasmodium chabaudi/physiology , Malaria/drug therapy , Malaria/genetics , Malaria/metabolismABSTRACT
BACKGROUND: The ability of malaria (Plasmodium) parasites to adjust investment into sexual transmission stages versus asexually replicating stages is well known, but plasticity in other traits underpinning the replication rate of asexual stages in the blood has received less attention. Such traits include burst size (the number of merozoites produced per schizont), the duration of the asexual cycle, and invasion preference for different ages of red blood cell (RBC). METHODS: Here, plasticity [environment (E) effects] and genetic variation [genotype (G) effects] in traits relating to asexual replication rate are examined for 4 genotypes of the rodent malaria parasite Plasmodium chabaudi. An experiment tested whether asexual dynamics differ between parasites infecting control versus anaemic hosts, and whether variation in replication rate can be explained by differences in burst size, asexual cycle, and invasion rates. RESULTS: The within-host environment affected each trait to different extents but generally had similar impacts across genotypes. The dynamics of asexual densities exhibited a genotype by environment effect (G×E), in which one of the genotypes increased replication rate more than the others in anaemic hosts. Burst size and cycle duration varied between the genotypes (G), while burst size increased and cycle duration became longer in anaemic hosts (E). Variation in invasion rates of differently aged RBCs was not explained by environmental or genetic effects. Plasticity in burst size and genotype are the only traits making significant contributions to the increase in asexual densities observed in anaemic hosts, together explaining 46.4% of the variation in replication rate. CONCLUSIONS: That host anaemia induces several species of malaria parasites to alter conversion rate is well documented. Here, previously unknown plasticity in other traits underpinning asexual replication is revealed. These findings contribute to mounting evidence that malaria parasites deploy a suite of sophisticated strategies to maximize fitness by coping with, or exploiting the opportunities provided by, the variable within-host conditions experienced during infections. That genetic variation and genotype by environment interactions also shape these traits highlights their evolutionary potential. Asexual replication rate is a major determinant of virulence and so, understanding the evolution of virulence requires knowledge of the ecological (within-host environment) and genetic drivers of variation among parasites.
Subject(s)
Adaptation, Physiological/genetics , Gene-Environment Interaction , Genetic Variation/physiology , Plasmodium chabaudi/physiology , Reproduction, Asexual , Animals , Female , Mice , Mice, Inbred C57BL , Plasmodium chabaudi/genetics , Reproduction, Asexual/geneticsABSTRACT
BACKGROUND: Given the central importance of anti-malarial drugs in the treatment of malaria, there is a need to understand the effect of Plasmodium infection on the broad spectrum of drug metabolizing enzymes. Previous studies have shown reduced clearance of quinine, a treatment for Plasmodium infection, in individuals with malaria. METHODS: The hepatic expression of a large panel of drug metabolizing enzymes was studied in the livers of mice infected with the AS strain of Plasmodium chabaudi chabaudi, a nonlethal parasite in most strains of mice with several features that model human Plasmodium infections. C57BL/6J mice were infected with P. chabaudi by intraperitoneal injection of infected erythrocytes and sacrificed at different times after infection. Relative hepatic mRNA levels of various drug metabolizing enzymes, cytokines and acute phase proteins were measured by reverse transcriptase-real time PCR. Relative levels of cytochrome P450 proteins were measured by Western blotting with IR-dye labelled antibodies. Pharmacokinetics of 5 prototypic cytochrome P450 substrate drugs were measured by cassette dosing and high-resolution liquid chromatography-mass spectrometry. The results were analysed by MANOVA and post hoc univariate analysis of variance. RESULTS: The great majority of enzyme mRNAs were down-regulated, with the greatest effects occurring at the peak of parasitaemia 8 days post infection. Protein levels of cytochrome P450 enzymes in the Cyp 2b, 2c, 2d, 2e, 3a and 4a subfamilies were also down-regulated. Several distinct groups differing in their temporal patterns of regulation were identified. The cassette dosing study revealed that at the peak of parasitaemia, the clearances of caffeine, bupropion, tolbutamide and midazolam were markedly reduced by 60-70%. CONCLUSIONS: These findings in a model of uncomplicated human malaria suggest that changes in drug clearance in this condition may be of sufficient magnitude to cause significant alterations in exposure and response of anti-malarial drugs and co-medications.
Subject(s)
Antimalarials/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Down-Regulation , Liver/enzymology , Malaria/parasitology , Plasmodium chabaudi/physiology , Acute-Phase Proteins/metabolism , Animals , Cytokines/metabolism , Erythrocytes/parasitology , Female , Inactivation, Metabolic , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolismABSTRACT
BACKGROUND: Cerebral malaria (CM) is the most lethal outcome of Plasmodium infection. There are clear correlations between expression of inflammatory cytokines, severe coagulopathies, and mortality in human CM. However, the mechanisms intertwining the coagulation and inflammation pathways, and their roles in CM, are only beginning to be understood. In mice with T cells deficient in the regulatory cytokine IL-10 (IL-10 KO), infection with Plasmodium chabaudi leads to a hyper-inflammatory response and lethal outcome that can be prevented by anti-TNF treatment. However, inflammatory T cells are adherent within the vasculature and not present in the brain parenchyma, suggesting a novel form of cerebral inflammation. We have previously documented behavioral dysfunction and microglial activation in infected IL-10 KO animals suggestive of neurological involvement driven by inflammation. In order to understand the relationship of intravascular inflammation to parenchymal dysfunction, we studied the congestion of vessels with leukocytes and fibrin(ogen) and the relationship of glial cell activation to congested vessels in the brains of P. chabaudi-infected IL-10 KO mice. METHODS: Using immunofluorescence microscopy, we describe severe thrombotic congestion in these animals. We stained for immune cell surface markers (CD45, CD11b, CD4), fibrin(ogen), microglia (Iba-1), and astrocytes (GFAP) in the brain at the peak of behavioral symptoms. Finally, we investigated the roles of inflammatory cytokine tumor necrosis factor (TNF) and coagulation on the pathology observed using neutralizing antibodies and low-molecular weight heparin to inhibit both inflammation and coagulation, respectively. RESULTS: Many blood vessels in the brain were congested with thrombi containing adherent leukocytes, including CD4 T cells and monocytes. Despite containment of the pathogen and leukocytes within the vasculature, activated microglia and astrocytes were prevalent in the parenchyma, particularly clustered near vessels with thrombi. Neutralization of TNF, or the coagulation cascade, significantly reduced both thrombus formation and gliosis in P. chabaudi-infected IL-10 KO mice. CONCLUSIONS: These findings support the contribution of cytokines, coagulation, and leukocytes within the brain vasculature to neuropathology in malaria infection. Strikingly, localization of inflammatory leukocytes within intravascular clots suggests a mechanism for interaction between the two cascades by which cytokines drive local inflammation without considerable cellular infiltration into the brain parenchyma.
Subject(s)
Cytokines/metabolism , Gliosis/etiology , Gliosis/prevention & control , Malaria, Cerebral/complications , Vasculitis, Central Nervous System/etiology , Ammonia/blood , Animals , Antibodies/therapeutic use , Anticoagulants/therapeutic use , Blood Vessels/pathology , Disease Models, Animal , Fibrinogen/metabolism , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Gliosis/drug therapy , Heparin/therapeutic use , Interleukin-10/genetics , Interleukin-10/metabolism , Leukocytes/pathology , Liver/metabolism , Liver/pathology , Malaria, Cerebral/mortality , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmodium chabaudi/physiology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Vasculitis, Central Nervous System/drug therapy , Vasculitis, Central Nervous System/parasitologyABSTRACT
Daily rhythms in behaviour, physiology and molecular processes are expected to enable organisms to appropriately schedule activities according to consequences of the daily rotation of the Earth. For parasites, this includes capitalizing on periodicity in transmission opportunities and for hosts/vectors, this may select for rhythms in immune defence. We examine rhythms in the density and infectivity of transmission forms (gametocytes) of rodent malaria parasites in the host's blood, parasite development inside mosquito vectors and potential for onwards transmission. Furthermore, we simultaneously test whether mosquitoes exhibit rhythms in susceptibility. We reveal that at night, gametocytes are twice as infective, despite being less numerous in the blood. Enhanced infectiousness at night interacts with mosquito rhythms to increase sporozoite burdens fourfold when mosquitoes feed during their rest phase. Thus, changes in mosquito biting time (owing to bed nets) may render gametocytes less infective, but this is compensated for by the greater mosquito susceptibility.
Subject(s)
Anopheles/parasitology , Mosquito Vectors/physiology , Plasmodium chabaudi/physiology , Animals , Malaria , PeriodicityABSTRACT
BACKGROUND: The role of the liver for survival of blood-stage malaria is only poorly understood. In experimental blood-stage malaria with Plasmodium chabaudi, protective vaccination induces healing and, thus, survival of otherwise lethal infections. This model is appropriate to study the role of the liver in vaccination-induced survival of blood-stage malaria. METHODS: Female Balb/c mice were vaccinated with a non-infectious vaccine consisting of plasma membranes isolated in the form of erythrocyte ghosts from P. chabaudi-infected erythrocytes at week 3 and week 1 before infection with P. chabaudi blood-stage malaria. Gene expression microarrays and quantitative real-time PCR were used to investigate the response of the liver, in terms of expression of mRNA and long intergenic non-coding (linc)RNA, to vaccination-induced healing infections and lethal P. chabaudi malaria at early patency on day 4 post infection, when parasitized erythrocytes begin to appear in peripheral blood. RESULTS: In vaccination-induced healing infections, 23 genes were identified to be induced in the liver by > tenfold at p < 0.01. More than one-third were genes known to be involved in erythropoiesis, such as Kel, Rhag, Ahsp, Ermap, Slc4a1, Cldn13 Gata1, and Gfi1b. Another group of > tenfold expressed genes include genes involved in natural cytotoxicity, such as those encoding killer cell lectin-like receptors Klrb1a, Klrc3, Klrd1, the natural cytotoxicity-triggering receptor 1 Ncr1, as well as the granzyme B encoding Gzmb. Additionally, a series of genes involved in the control of cell cycle and mitosis were identified: Ccnb1, Cdc25c, Ckap2l were expressed > tenfold only in vaccination-protected mice, and the expression of 22 genes was at least 100% higher in vaccination-protected mice than in non-vaccinated mice. Furthermore, distinct lincRNA species were changed by > threefold in livers of vaccination-protected mice, whereas lethal malaria induced different lincRNAs. CONCLUSION: The present data suggest that protective vaccination accelerates the malaria-induced occurrence of extramedullary erythropoiesis, generation of liver-resident cytotoxic cells, and regeneration from malaria-induced injury in the liver at early patency, which may be critical for final survival of otherwise lethal blood-stage malaria of P. chabaudi.
Subject(s)
Gene Expression , Malaria Vaccines/immunology , Malaria/genetics , Plasmodium chabaudi/physiology , Animals , Female , Liver/metabolism , Liver/parasitology , Malaria/immunology , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free OrganismsABSTRACT
BACKGROUND: Iron deficiency is the most widespread nutrient deficiency and an important cause of developmental impairment in children. However, some studies have indicated that iron deficiency can also protect against malaria, which is a leading cause of childhood morbidity and mortality in large parts of the world. This has rendered interventions against iron deficiency in malaria-endemic areas controversial. METHODS: The effect of nutritional iron deficiency on the clinical outcome of Plasmodium chabaudi AS infection in A/J mice and the impact of intravenous iron supplementation with ferric carboxymaltose were studied before and after parasite infection. Plasma levels of the iron status markers hepcidin and fibroblast growth factor 23 were measured in animals surviving and succumbing to malaria, and accompanying tissue pathology in the liver and the spleen was assessed. RESULTS: Nutritional iron deficiency was associated with increased mortality from P. chabaudi malaria. This increased mortality could be partially offset by carefully timed, short-duration adjunctive iron supplementation. Moribund animals were characterized by low levels of hepcidin and high levels of fibroblast growth factor 23. All infected mice had extramedullary splenic haematopoiesis, and iron-supplemented mice had visually detectable intracellular iron stores. CONCLUSIONS: Blood transfusions are the only currently available means to correct severe anaemia in children with malaria. The potential of carefully timed, short-duration adjunctive iron supplementation as a safe alternative should be considered.
Subject(s)
Dietary Supplements/analysis , Ferric Compounds/administration & dosage , Iron Deficiencies , Malaria/drug therapy , Malnutrition/drug therapy , Maltose/analogs & derivatives , Plasmodium chabaudi/physiology , Animals , Fibroblast Growth Factor-23 , Malaria/mortality , Male , Maltose/administration & dosage , Mice , Plasmodium chabaudi/drug effects , Specific Pathogen-Free OrganismsABSTRACT
The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections-i.e. is phenotypically plastic-in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections.