Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
Add more filters

Publication year range
1.
Plant Physiol ; 195(1): 326-342, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38345835

ABSTRACT

Photoreactivation enzyme that repairs cyclobutane pyrimidine dimer (CPD) induced by ultraviolet-B radiation, commonly called CPD photolyase (PHR) is essential for plants living under sunlight. Rice (Oryza sativa) PHR (OsPHR) is a unique triple-targeting protein. The signal sequences required for its translocation to the nucleus or mitochondria are located in the C-terminal region but have yet to be identified for chloroplasts. Here, we identified sequences located in the N-terminal region, including the serine-phosphorylation site at position 7 of OsPHR, and found that OsPHR is transported/localized to chloroplasts via a vesicle transport system under the control of serine-phosphorylation. However, the sequence identified in this study is only conserved in some Poaceae species, and in many other plants, PHR is not localized to the chloroplasts. Therefore, we reasoned that Poaceae species need the ability to repair CPD in the chloroplast genome to survive under sunlight and have uniquely acquired this mechanism for PHR chloroplast translocation.


Subject(s)
Chloroplasts , Deoxyribodipyrimidine Photo-Lyase , Oryza , Ultraviolet Rays , Chloroplasts/metabolism , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Oryza/genetics , Oryza/enzymology , Oryza/radiation effects , Oryza/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pyrimidine Dimers/metabolism , Poaceae/genetics , Poaceae/enzymology , Poaceae/radiation effects , Poaceae/metabolism , Amino Acid Sequence , Protein Transport
2.
Plant J ; 101(5): 1170-1184, 2020 03.
Article in English | MEDLINE | ID: mdl-31651067

ABSTRACT

Three subtypes of C4 photosynthesis exist (NADP-ME, NAD-ME and PEPCK), each known to be beneficial under specific environmental conditions. However, the influence of photosynthetic subtype on transcriptomic plasticity, as well as the genes underpinning this variability, remain largely unknown. Here, we comprehensively investigate the responses of six C4 grass species, spanning all three C4 subtypes, to two controlled environmental stresses: low light (200 µmol m-2  sec-1 ) and glacial CO2 (subambient; 180 ppm). We identify a susceptibility within NADP-ME species to glacial CO2 . Notably, although glacial CO2 phenotypes could be tied to C4 subtype, biochemical and transcriptomic responses to glacial CO2 were largely species specific. Nevertheless, we were able to identify subtype specific subsets of significantly differentially expressed transcripts which link resource acquisition and allocation to NADP-ME species susceptibility to glacial CO2 . Here, low light phenotypes were comparable across species with no clear subtype response, while again, transcriptomic responses to low light were largely species specific. However, numerous functional similarities were noted within the transcriptomic responses to low light, suggesting these responses are functionally relatively conserved. Additionally, PEPCK species exhibited heightened regulation of transcripts related to metabolism in response to both stresses, likely tied to their C4 metabolic pathway. These results highlight the influence that both species and subtype can have on plant responses to abiotic stress, building on our mechanistic understanding of acclimation within C4 grasses and highlighting avenues for future crop improvements.


Subject(s)
Carbon Dioxide/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Poaceae/genetics , Transcriptome , Acclimatization , Gene Expression Profiling , Light , Metabolic Networks and Pathways , Phenotype , Phosphoenolpyruvate Carboxylase/genetics , Photosynthesis , Poaceae/enzymology , Poaceae/physiology , Poaceae/radiation effects , Species Specificity
3.
Mol Biol Evol ; 37(11): 3094-3104, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32521019

ABSTRACT

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.


Subject(s)
Biological Evolution , Gene Transfer, Horizontal , Phosphoenolpyruvate Carboxylase/genetics , Photosynthesis/genetics , Poaceae/genetics , Amino Acid Substitution , Poaceae/enzymology
4.
Chembiochem ; 22(11): 1992-2001, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33660881

ABSTRACT

Imperata cylindrica is known to produce a pair of triterpenes, isoarborinol and fernenol, that exhibit identical planar structures but possess opposite stereochemistry at six of the nine chiral centers. These differences arise from a boat or a chair cyclization of the B-ring of the substrate. Herein, we report the characterization of three OSC genes from I. cylindrica. IcOSC1 and IcOSC5 were identified as isoarborinol and fernenol synthases, respectively, while IcOSC3 was characterized as a multifunctional enzyme that produces glutinol and friedelin as its major products. Mutational studies of isoarborinol and fernenol synthases revealed that the residues surrounding the DCTAE motif partially affected the conformation of the B-ring during cyclization. Additionally, the IcOSC1-W255H mutant produced the rare triterpene boehmerol. The introduced histidine residue presumably abstracted a proton from the intermediary carbocation at C18 during the 1,2-rearrangement. Expression analysis indicated that all OSC genes were highly expressed in stems.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Poaceae/enzymology , Triterpenes/metabolism , Biocatalysis , Cyclization , Molecular Structure , Stereoisomerism , Triterpenes/chemistry
5.
Photosynth Res ; 147(2): 211-227, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33393063

ABSTRACT

C4-like plants represent the penultimate stage of evolution from C3 to C4 plants. Although Coleataenia prionitis (formerly Panicum prionitis) has been described as a C4 plant, its leaf anatomy and gas exchange traits suggest that it may be a C4-like plant. Here, we reexamined the leaf structure and biochemical and physiological traits of photosynthesis in this grass. The large vascular bundles were surrounded by two layers of bundle sheath (BS): a colorless outer BS and a chloroplast-rich inner BS. Small vascular bundles, which generally had a single BS layer with various vascular structures, also occurred throughout the mesophyll together with BS cells not associated with vascular tissue. The mesophyll cells did not show a radial arrangement typical of Kranz anatomy. These features suggest that the leaf anatomy of C. prionitis is on the evolutionary pathway to a complete C4 Kranz type. Phosphoenolpyruvate carboxylase (PEPC) and pyruvate, Pi dikinase occurred in the mesophyll and outer BS. Glycine decarboxylase was confined to the inner BS. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) accumulated in the mesophyll and both BSs. C. prionitis had biochemical traits of NADP-malic enzyme type, whereas its gas exchange traits were close to those of C4-like intermediate plants rather than C4 plants. A gas exchange study with a PEPC inhibitor suggested that Rubisco in the mesophyll could fix atmospheric CO2. These data demonstrate that C. prionitis is not a true C4 plant but should be considered as a C4-like plant.


Subject(s)
Carbon Dioxide/metabolism , Photosynthesis , Poaceae/physiology , Chloroplasts/enzymology , Chloroplasts/physiology , Chloroplasts/ultrastructure , Glycine Dehydrogenase (Decarboxylating)/metabolism , Malate Dehydrogenase/metabolism , Mesophyll Cells/enzymology , Mesophyll Cells/physiology , Mesophyll Cells/ultrastructure , Phenotype , Phosphoenolpyruvate Carboxylase/antagonists & inhibitors , Phosphoenolpyruvate Carboxylase/metabolism , Plant Leaves/enzymology , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Poaceae/enzymology , Poaceae/ultrastructure , Ribulose-Bisphosphate Carboxylase/metabolism
6.
Ecotoxicol Environ Saf ; 207: 111308, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32931972

ABSTRACT

Pogonatherum crinitum is a promising lead (Pb) hyperaccumulator; however, the effects of Pb contamination on P. crinitum rhizosphere soil enzymatic activities and microbial composition remain largely unexplored. Thus, an indoor experiment was conducted by cultivating P. crinitum seedlings and exposing them to four Pb concentrations (0, 1,000, 2000 and 3000 mg/kg Pb). Protease, urease, acid phosphatase and invertase activities were determined using standard methods while soil bacterial composition was determined by 16 S rDNA sequencing. The results showed that rhizosphere soil acid phosphatase activity significantly increased with increasing Pb concentration, while urease activity was significantly greater in rhizosphere soil contaminated with 1000 and 2000 mg/kg than in the control. There was a clear shift in bacterial composition during phytoremediation by P. crinitum. Compared to the control, Bacteroidetes was more abundant in all Pb-contaminated soils, Actinobacteria was more abundant in 1000 mg/kg Pb-treated soil, and Firmicutes was more abundant in 3000 mg/kg Pb-treated soil. Positive correlations were observed between dominant bacterial phyla and soil enzyme activities. Metabolic pathways, such as ABC transporter, quinine reductase, and ATP-binding protein were significantly increased in rhizosphere soil bacteria with Pb contamination. In conclusion, Pb contamination differentially influenced the activities of rhizosphere soil enzymes, specifically increasing acid phosphatase and urease activities, and alters the dominance of soil bacteria through up-regulation of genes related to some metabolic pathways. The strong correlations between dominant bacterial phyla and enzymatic activities suggest synergetic effects on the growth of P. crinitum during Pb contamination.


Subject(s)
Bioaccumulation , Lead/toxicity , Poaceae/drug effects , Poaceae/enzymology , Rhizosphere , Soil Microbiology , Soil Pollutants/toxicity , Acid Phosphatase/metabolism , Actinobacteria/drug effects , Actinobacteria/enzymology , Biodegradation, Environmental , Lead/metabolism , Peptide Hydrolases/metabolism , Poaceae/growth & development , Seedlings/drug effects , Seedlings/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Urease/metabolism
7.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34884720

ABSTRACT

Lignin biosynthesis enzymes form complexes for metabolic channelling during lignification and these enzymes also play an essential role in biotic and abiotic stress response. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme that catalyses the reduction of aldehydes to alcohols, which is the final step in the lignin biosynthesis pathway. In the present study, we identified 49 CAD enzymes in five Bambusoideae species and analysed their phylogenetic relationships and conserved domains. Expression analysis of Moso bamboo PheCAD genes in several developmental tissues and stages revealed that among the PheCAD genes, PheCAD2 has the highest expression level and is expressed in many tissues and PheCAD1, PheCAD6, PheCAD8 and PheCAD12 were also expressed in most of the tissues studied. Co-expression analysis identified that the PheCAD2 positively correlates with most lignin biosynthesis enzymes, indicating that PheCAD2 might be the key enzyme involved in lignin biosynthesis. Further, more than 35% of the co-expressed genes with PheCADs were involved in biotic or abiotic stress responses. Abiotic stress transcriptomic data (SA, ABA, drought, and salt) analysis identified that PheCAD2, PheCAD3 and PheCAD5 genes were highly upregulated, confirming their involvement in abiotic stress response. Through yeast two-hybrid analysis, we found that PheCAD1, PheCAD2 and PheCAD8 form homo-dimers. Interestingly, BiFC and pull-down experiments identified that these enzymes form both homo- and hetero- dimers. These data suggest that PheCAD genes are involved in abiotic stress response and PheCAD2 might be a key lignin biosynthesis pathway enzyme. Moreover, this is the first report to show that three PheCAD enzymes form complexes and that the formation of PheCAD homo- and hetero- dimers might be tissue specific.


Subject(s)
Alcohol Oxidoreductases/metabolism , Gene Expression Regulation, Plant , Lignin/biosynthesis , Poaceae/enzymology , Stress, Physiological , Alcohol Oxidoreductases/genetics , Dimerization , Poaceae/genetics , Protein Multimerization
8.
Plant Mol Biol ; 104(1-2): 203-215, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32683610

ABSTRACT

KEY MESSAGE: Distinct catalytic features of the Poaceae TPS-a subfamily arose early in grass evolution and the reactions catalyzed have become more complex with time. The structural diversity of terpenes found in nature is mainly determined by terpene synthases (TPS). TPS enzymes accept ubiquitous prenyl diphosphates as substrates and convert them into the various terpene skeletons by catalyzing a carbocation-driven reaction. Based on their sequence similarity, terpene synthases from land plants can be divided into different subfamilies, TPS-a to TPS-h. In this study, we aimed to understand the evolution and functional diversification of the TPS-a subfamily in the Poaceae (the grass family), a plant family that contains important crops such as maize, wheat, rice, and sorghum. Sequence comparisons showed that aside from one clade shared with other monocot plants, the Poaceae TPS-a subfamily consists of five well-defined clades I-V, the common ancestor of which probably originated very early in the evolution of the grasses. A survey of the TPS literature and the characterization of representative TPS enzymes from clades I-III revealed clade-specific substrate and product specificities. The enzymes in both clade I and II function as sesquiterpene synthases with clade I enzymes catalyzing initial C10-C1 or C11-C1 ring closures and clade II enzymes catalyzing C6-C1 closures. The enzymes of clade III mainly act as monoterpene synthases, forming cyclic and acyclic monoterpenes. The reconstruction and characterization of clade ancestors demonstrated that the differences among clades I-III were already present in their ancestors. However, the ancestors generally catalyzed simpler reactions with less double-bond isomerization and fewer cyclization steps. Overall, our data indicate an early origin of key enzymatic features of TPS-a enzymes in the Poaceae, and the development of more complex reactions over the course of evolution.


Subject(s)
Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Poaceae/enzymology , Poaceae/genetics , Alkyl and Aryl Transferases/classification , Cloning, Molecular , Escherichia coli/genetics , Evolution, Molecular , Genes, Plant/genetics , Intramolecular Lyases/metabolism , Plant Proteins/genetics , Sequence Analysis , Terpenes/metabolism
9.
Planta ; 252(2): 23, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32676847

ABSTRACT

MAIN CONCLUSION: The changes in the expression of key sugar metabolism enzymes (SPS and SUS), sucrose content and arrangement of chloroplast starch may play a significant role in the cold response in M. giganteus and maize plants. To understand the mechanism of the chilling-response of two closely-related C4 plants, we investigated the changes in the expression of sucrose phosphate synthase (SPS) and sucrose synthase (SUS) as well as changes in their potential products: sucrose, cellulose and starch in the leaves of Miscanthus × giganteus and Zea mays. Low temperature (12-14 °C) increased SPS content in Miscanthus (MG) and chilling-sensitive maize line (Zm-S), but not in chilling-tolerant one (Zm-T). In Zm-S line, chilling also caused the higher intensity of labelling of SPS in the cytoplasm of mesophyll cells, as demonstrated by electron microscopy. SUS labelling was also increased by cold stress only in MG plants what was observed in the secondary wall between mesophyll and bundle sheath cells, as well as in the vacuoles of companion cells. Cold led to a marked increase in total starch grain area in the chloroplasts of Zm-S line. In turn, Fourier transform infrared spectroscopy (FTIR) showed a slight shift in the cellulose band position, which may indicate the formation of more compact cellulose arrangement in Zm-T maize line. In conclusion, this work presents new findings supporting diversified cold-response, not only between two C4 plant species but also within one species of maize.


Subject(s)
Carbohydrate Metabolism , Glucosyltransferases/metabolism , Poaceae/enzymology , Zea mays/enzymology , Cellulose/metabolism , Chloroplasts/metabolism , Cold Temperature , Immunohistochemistry , Plant Leaves/enzymology , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Poaceae/physiology , Poaceae/ultrastructure , Starch/metabolism , Stress, Physiological , Sucrose/metabolism , Zea mays/physiology , Zea mays/ultrastructure
10.
Physiol Plant ; 169(1): 83-98, 2020 May.
Article in English | MEDLINE | ID: mdl-31782807

ABSTRACT

Hybridization is a relevant evolutionary mechanism linked to the invasiveness of plant species, but little is known about its effect on enzymatic activities in response to stress. We analyzed the effects of salinity on key mechanistic traits of phosphoenolpyruvate carboxylase (PEPC) enzyme for two hybrid taxa derived from native Spartina maritima (Curtis) Fernald and invasive Spartina densiflora Brongn. in comparison with their parental species. Parental species showed contrasted strategies at the PEPC level to cope with salinity. Spartina maritima showed its physiological optimum at 10 to 40 ppt salinity, with high PEPC activity (per unit leaf soluble protein), in contrast to the lower salinity optimum of 0.5 and 10 ppt for S. densiflora, where highest levels of PEPC apparent specific activity coincided with high light-induced activation of PEPC. Both hybrids showed constant PEPC apparent specific activity from fresh water to hypersalinity and exhibited higher net photosynthesis rates in fresh water than their parents. Spartina maritima × densiflora presented three transgressive PEPC-related traits, being the only taxon able to increase its PEPC activation in darkness at high salinity. Spartina densiflora × maritima showed most PEPC-related traits intermediate between its parents. Inheritance types operating differently in reciprocal hybrids determine key functional traits conditioning their ecological performance.


Subject(s)
Phosphoenolpyruvate Carboxylase/physiology , Poaceae/enzymology , Salt-Tolerant Plants/enzymology , Photosynthesis , Plant Leaves
11.
Int J Mol Sci ; 21(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847126

ABSTRACT

We characterized an Na+ transporter SvHKT1;1 from a halophytic turf grass, Sporobolus virginicus. SvHKT1;1 mediated inward and outward Na+ transport in Xenopus laevis oocytes and did not complement K+ transporter-defective mutant yeast. SvHKT1;1 did not complement athkt1;1 mutant Arabidopsis, suggesting its distinguishable function from other typical HKT1 transporters. The transcript was abundant in the shoots compared with the roots in S. virginicus and was upregulated by severe salt stress (500 mM NaCl), but not by lower stress. SvHKT1;1-expressing Arabidopsis lines showed higher shoot Na+ concentrations and lower salt tolerance than wild type (WT) plants under nonstress and salt stress conditions and showed higher Na+ uptake rate in roots at the early stage of salt treatment. These results suggested that constitutive expression of SvHKT1;1 enhanced Na+ uptake in root epidermal cells, followed by increased Na+ transport to shoots, which led to reduced salt tolerance. However, Na+ concentrations in phloem sap of the SvHKT1;1 lines were higher than those in WT plants under salt stress. Based on this result, together with the induction of the SvHKT1;1 transcription under high salinity stress, it was suggested that SvHKT1;1 plays a role in preventing excess shoot Na+ accumulation in S. virginicus.


Subject(s)
Magnoliopsida , Plant Shoots/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium/metabolism , Sodium/pharmacology , Arabidopsis/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Magnoliopsida/enzymology , Magnoliopsida/genetics , Magnoliopsida/metabolism , Plant Shoots/genetics , Plants, Genetically Modified , Poaceae/enzymology , Poaceae/genetics , Poaceae/metabolism , Salt Stress/genetics , Salt Tolerance , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
12.
BMC Genomics ; 20(1): 990, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31847807

ABSTRACT

BACKGROUND: Salinity has obvious effects on plant growth and crop productivity. The salinity-responsive mechanisms have been well-studied in differentiated organs (e.g., leaves, roots and stems), but not in unorganized cells such as callus. High-throughput quantitative proteomics approaches have been used to investigate callus development, somatic embryogenesis, organogenesis, and stress response in numbers of plant species. However, they have not been applied to callus from monocotyledonous halophyte alkaligrass (Puccinellia tenuifora). RESULTS: The alkaligrass callus growth, viability and membrane integrity were perturbed by 50 mM and 150 mM NaCl treatments. Callus cells accumulated the proline, soluble sugar and glycine betaine for the maintenance of osmotic homeostasis. Importantly, the activities of ROS scavenging enzymes (e.g., SOD, APX, POD, GPX, MDHAR and GR) and antioxidants (e.g., ASA, DHA and GSH) were induced by salinity. The abundance patterns of 55 salt-responsive proteins indicate that salt signal transduction, cytoskeleton, ROS scavenging, energy supply, gene expression, protein synthesis and processing, as well as other basic metabolic processes were altered in callus to cope with the stress. CONCLUSIONS: The undifferentiated callus exhibited unique salinity-responsive mechanisms for ROS scavenging and energy supply. Activation of the POD pathway and AsA-GSH cycle was universal in callus and differentiated organs, but salinity-induced SOD pathway and salinity-reduced CAT pathway in callus were different from those in leaves and roots. To cope with salinity, callus mainly relied on glycolysis, but not the TCA cycle, for energy supply.


Subject(s)
Poaceae/metabolism , Reactive Oxygen Species/metabolism , Salt Stress , Antioxidants/metabolism , Energy Metabolism/drug effects , Osmoregulation/drug effects , Plant Proteins/metabolism , Poaceae/drug effects , Poaceae/enzymology , Poaceae/growth & development , Protein Interaction Mapping , Proteomics , Salinity , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/metabolism , Sodium Chloride/toxicity
13.
Mol Biol Evol ; 35(10): 2454-2462, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30053133

ABSTRACT

Gene duplication is an important driver for the evolution of new genes and protein functions. Duplication of DNA-dependent RNA polymerase (Pol) II subunits within plants led to the emergence of RNA Pol IV and V complexes, each of which possess unique functions necessary for RNA-directed DNA Methylation. Comprehensive identification of Pol V subunit orthologs across the monocot radiation revealed a duplication of the largest two subunits within the grasses (Poaceae), including critical cereal crops. These paralogous Pol subunits display sequence conservation within catalytic domains, but their carboxy terminal domains differ in length and character of the Ago-binding platform, suggesting unique functional interactions. Phylogenetic analysis of the catalytic region indicates positive selection on one paralog following duplication, consistent with retention via neofunctionalization. Positive selection on residue pairs that are predicted to interact between subunits suggests that paralogous subunits have evolved specific assembly partners. Additional Pol subunits as well as Pol-interacting proteins also possess grass-specific paralogs, supporting the hypothesis that a novel Pol complex with distinct function has evolved in the grass family, Poaceae.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Edible Grain/enzymology , Gene Duplication , Poaceae/enzymology , Selection, Genetic , Amino Acid Sequence , Edible Grain/genetics , Grain Proteins , Phylogeny , Poaceae/genetics
14.
Plant Physiol ; 177(3): 1124-1141, 2018 07.
Article in English | MEDLINE | ID: mdl-29780036

ABSTRACT

Cell walls are crucial for the integrity and function of all land plants and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterization of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was thought previously to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-ß-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae.


Subject(s)
Cell Wall/metabolism , Glucosyltransferases/genetics , Phylogeny , Plant Proteins/genetics , Evolution, Molecular , Glucosyltransferases/metabolism , Magnoliopsida/enzymology , Magnoliopsida/genetics , Multigene Family , Plant Proteins/metabolism , Plants, Genetically Modified , Poaceae/enzymology , Poaceae/genetics , Nicotiana/genetics , Nicotiana/metabolism , beta-Glucans/metabolism
15.
J Exp Bot ; 70(12): 3255-3268, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30949663

ABSTRACT

C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.


Subject(s)
Carbon/metabolism , Gene Expression , Poaceae/physiology , Biological Evolution , Phenotype , Poaceae/enzymology , Poaceae/genetics
16.
J Exp Bot ; 70(19): 5391-5405, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31145784

ABSTRACT

Phytochelatin synthases (PCSs) play pivotal roles in the detoxification of heavy metals and metalloids in plants; however, little information on the evolution of recently duplicated PCS genes in plant species is available. Here we characterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundo donax L.), a biomass/bioenergy crop with remarkable resistance to cadmium and other heavy metals. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicated that the three A. donax PCSs, namely AdPCS1-3, form a monophyletic clade. The AdPCS1-3 genes were expressed at low levels in many A. donax organs and displayed different levels of cadmium-responsive expression in roots. Overexpression of AdPCS1-3 in Arabidopsis thaliana and yeast reproduced the phenotype of functional PCS genes. Mass spectrometry analyses confirmed that AdPCS1-3 are all functional enzymes, but with significant differences in the amount of the phytochelatins synthesized. Moreover, heterogeneous evolutionary rates characterized the AdPCS1-3 genes, indicative of relaxed natural selection. These results highlight the elevated functional differentiation of A. donax PCS genes from both a transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant responsiveness to heavy metal stress.


Subject(s)
Aminoacyltransferases/genetics , Evolution, Molecular , Plant Proteins/genetics , Poaceae/genetics , Amino Acid Sequence , Aminoacyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Poaceae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment/veterinary
17.
Int J Mol Sci ; 20(13)2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31262075

ABSTRACT

: Genome amplification and sequence divergence provides raw materials to allow organismal adaptation. This is exemplified by the large expansion of the ubiquitin-26S proteasome system (UPS) in land plants, which primarily rely on intracellular signaling and biochemical metabolism to combat biotic and abiotic stresses. While a handful of functional genomic studies have demonstrated the adaptive role of the UPS in plant growth and development, many UPS members remain unknown. In this work, we applied a comparative genomic study to address the functional divergence of the UPS at a systematic level. We first used a closing-target-trimming annotation approach to identify most, if not all, UPS members in six species from each of two evolutionarily distant plant families, Brassicaceae and Poaceae. To reduce age-related errors, the two groups of species were selected based on their similar chronological order of speciation. Through size comparison, chronological expansion inference, evolutionary selection analyses, duplication mechanism prediction, and functional domain enrichment assays, we discovered significant diversities within the UPS, particularly between members from its three largest ubiquitin ligase gene families, the F-box (FBX), the Really Interesting New Gene (RING), and the Bric-a-Brac/Tramtrack/Broad Complex (BTB) families, between Brassicaceae and Poaceae. Uncovering independent Arabidopsis and Oryza genus-specific subclades of the 26S proteasome subunits from a comprehensive phylogenetic analysis further supported a diversifying evolutionary model of the UPS in these two genera, confirming its role in plant adaptation.


Subject(s)
Brassicaceae/genetics , Evolution, Molecular , Poaceae/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Brassicaceae/enzymology , Genetic Speciation , Poaceae/enzymology
18.
Biochem Biophys Res Commun ; 495(2): 1851-1857, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29233696

ABSTRACT

Reactive oxygen species (ROS) are a key factor in abiotic stresses; excess ROS is harmful to plants. Glutathione reductase (GR) plays an important role in scavenging ROS in plants. Here, a GR gene, named SpGR, was cloned from Stipa purpurea and characterized. The full-length open reading frame was 1497 bp, encoding 498 amino acids. Subcellular localization analysis indicated that SpGR was localized to both the plasma membrane and nucleus. The expression of SpGR was induced by cold, salt, and drought stresses. Functional analysis indicated that ectopic expression of SpGR in Arabidopsis thaliana resulted in greater tolerance to salt stress than that of wild-type plants, but no difference under cold or drought treatments. The results of GR activity and GSSG and GSH content analyses suggested that, under salt stress, transgenic plants produced more GR to reduce GSSG to GSH for scavenging ROS than wild-type plants. Therefore, SpGR may be a candidate gene for plants to resist abiotic stress.


Subject(s)
Arabidopsis/physiology , Glutathione Reductase/chemistry , Glutathione Reductase/metabolism , Plants, Genetically Modified/physiology , Poaceae/enzymology , Reactive Oxygen Species/metabolism , Salt-Tolerant Plants/genetics , Cloning, Molecular/methods , Enzyme Activation , Genetic Enhancement/methods , Glutathione Reductase/genetics , Poaceae/genetics
19.
Planta ; 248(5): 1121-1141, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30066217

ABSTRACT

MAIN CONCLUSION: The promoter deletion mutants from second isoform of INO1 (gene-encoding MIPS) from Porteresia coarctata of 932 bp (pPcINO1.2.932) and 793 bp (pPcINO1.2.793) prove to be very efficient as salt/drought stress-inducible promoters, while pPcINO1.2.932 is found to be responsive to cold stress as well. The promoters of the two identified myo-inositol-1-phosphate synthase (INO1) isoforms from salt-tolerant wild rice, Porteresia coarctata (PcINO1.1 and PcINO1.2) have been compared bioinformatically with their counterparts present in the salt-sensitive rice, Oryza sativa. PcINO1.2 promoter was found to be enriched with many abiotic stress-responsive elements, like abscisic acid-responsive elements, MYC-responsive elements, MYB-binding sites, low-temperature stress-responsive elements, and heat-shock elements similar to the ones found in the conserved motifs of the promoters of salt/drought stress-inducible INO1 promoters across Kingdom Planta. To have detailed analysis on the arrangement of cis-acting regulatory elements present in PcINO1 promoters, 5' deletion mutational studies were performed in dicot model plants. Both transient as well as stable transformation methods were used to check the influence of PcINO1 promoter deletion mutants under salt and physiologically drought conditions using ß-glucuronidase as the reporter gene. The deletion mutant from the promoter of PcINO1.2 of length 932 bp (pPcINO1.2.932) was found to be significantly upregulated under drought stress and also in cold stress, while another deletion mutant, pPcINO1.2.793 (of 793 bp), was significantly upregulated under salt stress. P. coarctata being a halophytic species, the high inducibility of pPcINO1.2.932 upon exposure to low-temperature stress was an unexpected result.


Subject(s)
Myo-Inositol-1-Phosphate Synthase/genetics , Plant Proteins/genetics , Poaceae/genetics , Promoter Regions, Genetic/genetics , Salt-Tolerant Plants/genetics , Arabidopsis/genetics , Oryza/enzymology , Oryza/genetics , Phylogeny , Plants, Genetically Modified , Poaceae/enzymology , Salt Tolerance/genetics , Salt-Tolerant Plants/enzymology , Nicotiana/genetics
20.
Planta ; 248(4): 875-892, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29951845

ABSTRACT

MAIN CONCLUSION: Although the PAO/phyllobilin pathway of chlorophyll breakdown is active in grass leaf senescence, the abundance of phyllobilins is far below the amount of degraded chlorophyll. The yellowing of fully developed leaves is the most prominent visual symptom of plant senescence. Thereby, chlorophyll is degraded via the so-called pheophorbide a oxygenase (PAO)/phyllobilin pathway to a species-specific set of phyllobilins, linear tetrapyrrolic products of chlorophyll breakdown. Here, we investigated the diversity and abundance of phyllobilins in cereal and forage crops, i.e. barley, rice, ryegrass, sorghum and wheat, using liquid chromatography-mass spectrometry. A total of thirteen phyllobilins were identified, among them four novel, not yet described ones, pointing to a rather high diversity of phyllobilin-modifying activities present in the Gramineae. Along with these phyllobilins, barley orthologs of known Arabidopsis thaliana chlorophyll catabolic enzymes were demonstrated to localize in the chloroplast, and two of them, i.e. PAO and pheophytin pheophorbide hydrolase, complemented respective Arabidopsis mutants. These data confirm functionality of the PAO/phyllobilin pathway in grasses. Interestingly, when comparing phyllobilin abundance with amounts of degraded chlorophyll in senescent leaves, in most analyzed grass species only minor fractions of chlorophyll were recovered as phyllobilins, opposite to A. thaliana where phyllobilin quantities match degraded chlorophyll rather well. These data show that, despite the presence and activity of the PAO/phyllobilin pathway in barley (and other cereals), phyllobilins do not accumulate stoichiometrically, implying possible degradation of chlorophyll beyond the phyllobilin level.


Subject(s)
Bile Pigments/metabolism , Chlorophyll/metabolism , Hordeum/enzymology , Metabolic Networks and Pathways , Oxygenases/metabolism , Poaceae/enzymology , Bile Pigments/chemistry , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Genes, Reporter , Hordeum/chemistry , Hordeum/genetics , Mutation , Oxygenases/genetics , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/genetics , Poaceae/chemistry , Poaceae/genetics , Recombinant Fusion Proteins , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL