ABSTRACT
Three decades of studies on the multifunctional 6-deoxyerythronolide B synthase have laid a foundation for understanding the chemistry and evolution of polyketide antibiotic biosynthesis by a large family of versatile enzymatic assembly lines. Recent progress in applying chemical and structural biology tools to this prototypical assembly-line polyketide synthase (PKS) and related systems has highlighted several features of their catalytic cycles and associated protein dynamics. There is compelling evidence that multiple mechanisms have evolved in this enzyme family to channel growing polyketide chains along uniquely defined sequences of 10-100 active sites, each of which is used only once in the overall catalytic cycle of an assembly-line PKS. Looking forward, one anticipates major advances in our understanding of the mechanisms by which the free energy of a repetitive Claisen-like reaction is harnessed to guide the growing polyketide chain along the assembly line in a manner that is kinetically robust yet evolutionarily adaptable.
Subject(s)
Catalytic Domain , Polyketide Synthases , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Models, Molecular , Polyketides/metabolism , Polyketides/chemistry , Protein Conformation , Substrate SpecificityABSTRACT
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Subject(s)
Metagenomics/methods , Microbiota/physiology , Peptides/metabolism , Polyketides/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Microbiota/genetics , PhenotypeABSTRACT
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Subject(s)
Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Animals , Biocatalysis , Biological Products/chemistry , Biological Products/metabolism , Fatty Acid Synthases/classification , Humans , Models, Molecular , Molecular Mimicry , Molecular Structure , Polyketide Synthases/classification , Polyketides/chemistry , Polyketides/metabolism , Protein Domains , Structural Homology, Protein , Substrate SpecificityABSTRACT
Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.
Subject(s)
Bacteria , Bacterial Toxins , Peptides , Polyketides , Prophages , Virus Activation , Bacteria/drug effects , Bacteria/virology , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Bacteriolysis/drug effects , Microbial Interactions/drug effects , Peptides/metabolism , Peptides/pharmacology , Polyketides/metabolism , Polyketides/pharmacology , Prophages/drug effects , Prophages/physiology , SOS Response, Genetics/drug effects , Virus Activation/drug effectsABSTRACT
Colibactin produced primarily by Escherichia coli strains of the B2 phylogroup cross-links DNA and can promote colon cancer in human hosts. Here, we investigate the toxin's impact on colibactin producers and on bacteria cocultured with producing cells. Using genome-wide genetic screens and mutation accumulation experiments, we uncover the cellular pathways that mitigate colibactin damage and reveal the specific mutations it induces. We discover that although colibactin targets A/T-rich motifs, as observed in human colon cells, it induces a bacteria-unique mutation pattern. Based on this pattern, we predict that long-term colibactin exposure will culminate in a genomic bias in trinucleotide composition. We test this prediction by analyzing thousands of E. coli genomes and find that colibactin-producing strains indeed show the predicted skewness in trinucleotide composition. Our work reveals a bacteria-specific mutation pattern and suggests that the resistance protein encoded on the colibactin pathogenicity island is insufficient in preventing self-inflicted DNA damage.
Subject(s)
DNA Damage , Escherichia coli , Mutation , Peptides , Polyketides , Polyketides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/metabolism , Peptides/genetics , Humans , Genome, Bacterial , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolismABSTRACT
Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.
Subject(s)
Aflatoxins , Polyketides , Secondary Metabolism/genetics , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Genome, Fungal , Polyketides/metabolism , Multigene Family , Aflatoxins/metabolism , Genes, FungalABSTRACT
Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.
Subject(s)
Amoeba , Biological Products , Dictyostelium , Polyketides , Amoeba/genetics , Biological Products/metabolism , Dictyostelium/physiology , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/metabolismABSTRACT
SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
Subject(s)
Cholera/microbiology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Microbial Interactions , Mutagens/metabolism , Vibrio cholerae/physiology , Animals , Antibiosis , Cholera/mortality , DNA Damage , Disease Models, Animal , Escherichia coli/physiology , Humans , Mice , Peptides/metabolism , Peptides/pharmacology , Polyketides/metabolism , Polyketides/pharmacology , Prognosis , Reactive Oxygen Species , Vibrio cholerae/drug effectsABSTRACT
The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.
Subject(s)
Bacteria , Biological Products , Multigene Family , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Biological Products/metabolism , Peptides/metabolism , Peptides/genetics , Protein Processing, Post-Translational , Metagenome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ecosystem , Genome, Bacterial , Microbiota , Polyketides/metabolismABSTRACT
Engineered type I polyketide synthases (type I PKSs) can enable access to diverse polyketide pharmacophores and generate non-natural natural products. However, the promise of type I PKS engineering remains modestly realized at best. Here, we report that ketosynthase (KS) domains, the key carbon-carbon bond-forming catalysts, control which intermediates are allowed to progress along the PKS assembly lines and which intermediates are excluded. Using bimodular PKSs, we demonstrate that KSs can be exquisitely selective for the upstream polyketide substrate while retaining promiscuity for the extender unit that they incorporate. It is then the downstream KS that acts as a gatekeeper to ensure the fidelity of the extender unit incorporation by the upstream KS. We also demonstrate that these findings are not universally applicable; substrate-tolerant KSs do allow engineered polyketide intermediates to be extended. Our results demonstrate the utility for evaluating the KS-induced bottlenecks to gauge the feasibility of engineering PKS assembly lines.
Subject(s)
Polyketide Synthases , Protein Engineering , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Protein Engineering/methods , Polyketides/metabolism , Polyketides/chemistry , Substrate Specificity , Protein DomainsABSTRACT
BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.
Subject(s)
Anthraquinones , Endophytes , Hypericum , Multigene Family , Polyketides , Hypericum/microbiology , Hypericum/genetics , Hypericum/metabolism , Polyketides/metabolism , Endophytes/genetics , Endophytes/metabolism , Anthraquinones/metabolism , Fungi/genetics , Genome, Fungal , Computer Simulation , Polyketide Synthases/genetics , Perylene/analogs & derivatives , Perylene/metabolism , Anthracenes/metabolism , Genomics , PhylogenyABSTRACT
Bacterial aromatic polyketides are compounds with multiple aromatic rings synthesized by bacterial type II polyketide synthases (PKSs), some of which have been developed into clinical drugs. Compounds containing aromatic polyketides synthesized by hybrid type I and type II PKSs are extremely rare. Here, we report the discovery of a gene cluster encoding both modular type I and type II PKSs as well as KAS III through extensive bioinformatics analysis, leading to the characterization of the hybrid polyketide, spirocycline A. The structure of spirocycline A is rare among all aromatic polyketides, featuring a unique starter unit and four spirocycles and forming a dimer. Biosynthetic studies indicate that the starter unit of this molecule is synthesized by type I PKS in collaboration with two trans-acting ketoreductase (KR) and enoylreductase (ER). It is then transferred by KAS III to the type II PKS system, which synthesizes the tricyclic aromatic polyketide backbone. The subsequent formation of the spirocycle and dimerization are carried out by four redox enzymes encoded in the gene cluster. Overall, the discovery of spirocycline A provides a new approach for identifying novel aromatic polyketides and offers potential enzymatic tools for the bioengineering of these hybrid polyketides.
Subject(s)
Multigene Family , Polyketide Synthases , Polyketides , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/metabolism , Polyketides/chemistryABSTRACT
Microorganisms are remarkable chemists capable of assembling complex molecular architectures that penetrate cells and bind biomolecular targets with exquisite selectivity. Consequently, microbial natural products have wide-ranging applications in medicine and agriculture. How the "blind watchmaker" of evolution creates skeletal diversity is a key question in natural products research. Comparative analysis of biosynthetic pathways to structurally related metabolites is an insightful approach to addressing this. Here, we report comparative biosynthetic investigations of gladiolin, a polyketide antibiotic from Burkholderia gladioli with promising activity against multidrug-resistant Mycobacterium tuberculosis, and etnangien, a structurally related antibiotic produced by Sorangium cellulosum. Although these metabolites have very similar macrolide cores, their C21 side chains differ significantly in both length and degree of saturation. Surprisingly, the trans-acyltransferase polyketide synthases (PKSs) that assemble these antibiotics are almost identical, raising intriguing questions about mechanisms underlying structural diversification in this important class of biosynthetic assembly line. In vitro reconstitution of key biosynthetic transformations using simplified substrate analogues, combined with gene deletion and complementation experiments, enabled us to elucidate the origin of all the structural differences in the C21 side chains of gladiolin and etnangien. The more saturated gladiolin side chain arises from a cis-acting enoylreductase (ER) domain in module 1 and in trans recruitment of a standalone ER to module 5 of the PKS. Remarkably, module 5 of the gladiolin PKS is intrinsically iterative in the absence of the standalone ER, accounting for the longer side chain in etnangien. These findings have important implications for biosynthetic engineering approaches to the creation of novel polyketide skeletons.
Subject(s)
Biological Products , Imidazoles , Macrolides , Polyenes , Polyketides , Sulfonamides , Thiophenes , Polyketide Synthases/metabolism , Acyltransferases , Anti-Bacterial Agents , Polyketides/metabolism , Biological Products/metabolismABSTRACT
Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.
Subject(s)
Cryoelectron Microscopy , Polyketide Synthases , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Cryoelectron Microscopy/methods , Crystallography, X-Ray , Catalytic Domain , Models, Molecular , Polyketides/chemistry , Polyketides/metabolismABSTRACT
The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.
Subject(s)
Escherichia coli Proteins , Polyketides , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/genetics , Peptides/metabolism , Escherichia coli Proteins/metabolism , Polyketides/metabolismABSTRACT
Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.
Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Membrane Proteins , Phosphotransferases , Polyketides , Staphylococcus aureus , Transcription Factors , Animals , Anti-Bacterial Agents/metabolism , Carbon/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Humans , Membrane Proteins/metabolism , Mice , Mutagens/metabolism , N-Methylaspartate/metabolism , Peptides , Phosphotransferases/genetics , Polyketides/metabolism , Staphylococcus/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Transcription Factors/metabolism , Wound Infection/microbiologyABSTRACT
BACKGROUND: Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS: We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION: Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.
Subject(s)
Biological Products , Metabolic Engineering , Multigene Family , Polyketides , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Biological Products/metabolism , Polyketides/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Streptomyces lividans/genetics , Streptomyces lividans/metabolism , Biosynthetic Pathways/geneticsABSTRACT
The longhorn beetle Graphisurus fasciatus (Degeer) ranges from southeastern Canada to Florida and west to Texas, and has frequently been caught during field trials testing attraction of other cerambycid species to their synthesized pheromones. Collections of headspace volatiles from live beetles revealed that males but not females produce a polyketide compound identified as (4R,6S,7E,9E)-4,6,8-trimethylundeca-7,9-dien-3-one ([4R,6S,7E,9E]-graphisurone). Field trials verified that beetles of both sexes were attracted to the synthesized compound, indicating that it is an aggregation-sex pheromone. This structure represents a new structural motif among cerambycid pheromones, and a new natural product. While this study was in progress, the same compound was isolated from males of the South American cerambycid Eutrypanus dorsalis (Germar), in the same subfamily (Lamiinae) and tribe (Acanthocinini) as G. fasciatus. Field trials in Brazil confirmed that (4R,6S,7E,9E)-graphisurone is also an aggregation-sex pheromone for E. dorsalis, and a possible pheromone for two additional sympatric lamiine species, Hylettus seniculus (Germar) (Acanthocinini) and Oreodera quinquetuberculata (Drapiez) (tribe Acrocinini). These results indicate that graphisurone may be shared among a number of related species, as has been found with many components of cerambycid pheromones.
Subject(s)
Coleoptera , Sex Attractants , Animals , Male , Coleoptera/chemistry , Coleoptera/physiology , Sex Attractants/chemistry , Sex Attractants/pharmacology , Sex Attractants/metabolism , Female , Polyketides/metabolism , Polyketides/chemistry , Polyketides/pharmacology , South America , North AmericaABSTRACT
Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: ⢠Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. ⢠Three polyketides and one asterriquinone were isolated from HDAC deleted strain. ⢠Two different PKSs were reported in C. olivaceum SD-80A.
Subject(s)
Chaetomium , Histone Deacetylases , Multigene Family , Polyketides , Secondary Metabolism , Chaetomium/genetics , Chaetomium/enzymology , Chaetomium/metabolism , Secondary Metabolism/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Polyketides/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Biosynthetic Pathways/genetics , Epigenesis, GeneticABSTRACT
Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: ⢠Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites ⢠Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes ⢠A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.