ABSTRACT
Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.
Subject(s)
BK Virus , Polyomavirus Infections , Polyomavirus , BK Virus/genetics , Humans , Polyomavirus/genetics , Polyomavirus Infections/genetics , RNA Splicing , Simian virus 40/geneticsABSTRACT
The clinical importance and the pathogenesis of the MW and STL polyomaviruses (PyVs) remain unclear. Our aim was to study the seroprevalence of MWPyV and STLPyV, and to examine the prevalence of viral DNA in respiratory samples and secondary lymphoid tissues. In total, 618 serum samples (0.8-90 years) were analyzed for seroprevalence. For the DNA prevalence study, 146 patients (2.5-37.5 years) were sampled for adenoids (n = 100), tonsils (n = 100), throat swabs (n = 146), and middle ear discharge (n = 15) in study Group 1. In Group 2, we analyzed 1130 nasopharyngeal samples from patients (0.8-92 years) tested for SARS-CoV-2 infection. The adult seropositivity was 54% for MWPyV, and 81.2% for STLPyV. Both seroprevalence rates increased with age; however, the majority of STLPyV primary infections appeared to occur in children. MWPyV was detected in 2.7%-4.9% of respiratory samples, and in a middle ear discharge. STLPyV DNA prevalence was 1.4%-3.4% in swab samples, and it was detected in an adenoid and in a middle ear discharge. The prevalence of both viruses was significantly higher in the children. Noncoding control regions of both viruses and the complete genomes of STLPyV were sequenced. MWPyV and STLPyV are widespread viruses, and respiratory transmission may be possible.
Subject(s)
DNA, Viral , Polyomavirus Infections , Polyomavirus , Humans , Seroepidemiologic Studies , Adult , Adolescent , Middle Aged , Polyomavirus/genetics , Polyomavirus/isolation & purification , Polyomavirus/classification , Aged , Young Adult , Child, Preschool , Child , Polyomavirus Infections/epidemiology , Polyomavirus Infections/virology , DNA, Viral/genetics , DNA, Viral/blood , Aged, 80 and over , Male , Female , Infant , Adenoids/virology , Prevalence , Nasopharynx/virology , Antibodies, Viral/bloodABSTRACT
Psittacine beak and feather disease virus (PBFDV) and budgerigar fledgling disease virus (BFDV) are significant avian pathogens that threaten both captive and wild birds, particularly parrots, which are common hosts. This study involved sampling and testing of 516 captive birds from households, pet shops, and an animal clinic in Hong Kong for PBFDV and BFDV. The results showed that PBFDV and BFDV were present in 7.17% and 0.58% of the samples, respectively. These rates were lower than those reported in most parts of Asia. Notably, the infection rates of PBFDV in pet shops were significantly higher compared to other sources, while no BFDV-positive samples were found in pet shops. Most of the positive samples came from parrots, but PBFDV was also detected in two non-parrot species, including Swinhoe's white-eyes (Zosterops simplex), which had not been reported previously. The ability of PBFDV to infect both psittacine and passerine birds is concerning, especially in densely populated urban areas such as Hong Kong, where captive flocks come into close contact with wildlife. Phylogenetic analysis of the Cap and Rep genes of PBFDV revealed that the strains found in Hong Kong were closely related to those in Europe and other parts of Asia, including mainland China, Thailand, Taiwan, and Saudi Arabia. These findings indicate the presence of both viruses among captive birds in Hong Kong. We recommend implementing regular surveillance for both viruses and adopting measures to prevent contact between captive and wild birds, thereby reducing the transmission of introduced diseases to native species.
Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Melopsittacus , Parrots , Polyomavirus Infections , Polyomavirus , Animals , Circovirus/genetics , Hong Kong/epidemiology , Prevalence , Phylogeny , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Polyomavirus/genetics , Animals, Wild , Genotype , Bird Diseases/epidemiology , Risk FactorsABSTRACT
BACKGROUND: Human polyomaviruses contribute to human oncogenesis through persistent infections, but currently there is no effective preventive measure against the malignancies caused by this virus. Therefore, the development of a safe and effective vaccine against HPyV is of high priority. METHODS: First, the proteomes of 2 polyomavirus species (HPyV6 and HPyV7) were downloaded from the NCBI database for the selection of the target proteins. The epitope identification process focused on selecting proteins that were crucial, associated with virulence, present on the surface, antigenic, non-toxic, and non-homologous with the human proteome. Then, the immunoinformatic methods were used to identify cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes from the target antigens, which could be used to create epitope-based vaccine. The physicochemical features of the designed vaccine were predicted through various online servers. The binding pattern and stability between the vaccine candidate and Toll-like receptors were analyzed through molecular docking and molecular dynamics (MD) simulation, while the immunogenicity of the designed vaccines was assessed using immune simulation. RESULTS: Online tools were utilized to forecast the most optimal epitope from the immunogenic targets, including LTAg, VP1, and VP1 antigens of HPyV6 and HPyV7. A multi-epitope vaccine was developed by combining 10 CTL, 7 HTL, and 6 LBL epitopes with suitable linkers and adjuvant. The vaccine displayed 98.35% of the world's population coverage. The 3D model of the vaccine structure revealed that the majority of residues (87.7%) were located in favored regions of the Ramachandran plot. The evaluation of molecular docking and MD simulation revealed that the constructed vaccine exhibits a strong binding (-1414.0 kcal/mol) towards the host's TLR4. Moreover, the vaccine-TLR complexes remained stable throughout the dynamic conditions present in the natural environment. The immune simulation results demonstrated that the vaccine design had the capacity to elicit robust immune responses in the host. CONCLUSION: The multi-parametric analysis revealed that the designed vaccine is capable of inducing sustained immunity against the selected polyomaviruses, although further in-vivo investigations are needed to verify its effectiveness.
Subject(s)
Polyomavirus , Vaccines , Humans , Molecular Docking Simulation , Vaccinology , Epitopes, T-Lymphocyte , Polyomavirus/genetics , Computational Biology/methodsABSTRACT
The objective of this study was to assess the occurrence and seasonal frequency of human adenovirus (HAdV), human polyomavirus (HPyV), and human papillomavirus (HPV) in urban sewage. The detection of these viruses was carried out by polymerase chain reaction (PCR), and then the viral concentrations in the positive samples were quantified by quantitative PCR (qPCR). Additionally, HAdV and HPyV genotyping was also performed by PCR. A total of 38/60 (63.3%) positive samples were found. HAdV was the most prevalent virus (26/60; 43.3%), followed by HPyV (21/60; 35%) and HPV (21/60; 35%). The viral concentrations ranged from 3.56 × 102 to 7.55 × 107 genome copies/L. The most common dual viral agents was found between HAdV and HPyV, in eight samples (8/38, 21%). HAdV types 40 and 41 as well as HPyV types JC and BK were identified, with HAdV-40 and HPyV JC being the most prevalent types. Furthermore, the detection rates of HAdV, HPyV, and HPV were higher during the winter season than the other seasons. The high prevalence of HAdV and HPyV supports their suitability as viral indicators of sewage contamination. Furthermore, this study demonstrates the advantages of environmental surveillance as a tool to elucidate the community-circulating viruses.
Subject(s)
Adenoviruses, Human , Papillomavirus Infections , Polyomavirus , Humans , Adenoviridae , Sewage , Polyomavirus/geneticsABSTRACT
PURPOSE: Sinonasal lymphoma (SL) is a rare lymphatic neoplasm of the nasal cavities, paranasal sinuses and nasopharynx. Whereas some risk factors for SL subtypes have been identified, their aetiology is unknown. Along with other predisposing factors, the viral association of lymphomas, such as Epstein-Barr virus (EBV) and Burkitt and Hodgkin lymphomas, is well-established. Modern molecular biology techniques have enabled the discovery of novel human viruses, exemplified by the protoparvovirus cutavirus (CuV), associated with cutaneous T-cell lymphoma. These findings, and the anatomical location of the sinonasal tract with its rich microbiome and infectious agents, justify in-depth studies among SL. METHODS: We analysed the presence of 20 viruses of Orthoherpesviridae, Parvoviridae, and Polyomaviridae by qPCR in 24 SL tumours. We performed RNAscope in situ hybridisation (RISH) to localize the viruses. Parvovirus-specific IgG was analysed by enzyme immunoassay and targeted next-generation sequencing (NGS) was applied to detect CuV in plasma. RESULTS: We detected viral DNA in 15/24 (63%) tumours; nine of EBV, six of human herpesvirus (HHV) -7, four each of HHV-6B and parvovirus B19, two of cytomegalovirus, and one each of CuV and Merkel-cell polyomavirus. We found tumours with up to four viruses per tumour, and localized CuV and EBV DNAs by RISH. Two of the ten plasma samples exhibited CuV IgG, and one plasma sample demonstrated CuV viremia by NGS. CONCLUSION: Viruses were frequent findings in SL. The EBV detection rate was high in diffuse large B-cell lymphoma, and co-detections with other viruses were prevalent.
Subject(s)
Herpesviridae , Paranasal Sinus Neoplasms , Polyomavirus , Humans , Male , Middle Aged , Paranasal Sinus Neoplasms/virology , Aged , Female , Polyomavirus/isolation & purification , Polyomavirus/genetics , Herpesviridae/isolation & purification , Herpesviridae/genetics , Adult , Aged, 80 and over , DNA, Viral/analysis , In Situ HybridizationABSTRACT
Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.
Subject(s)
DNA Replication , Polyomavirus , Proteomics , Virus Replication , Phosphorylation , Humans , Proteomics/methods , Polyomavirus/metabolism , Polyomavirus/genetics , Tandem Mass Spectrometry , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Chromatography, Liquid , Antigens, Viral, Tumor/metabolism , Antigens, Viral, Tumor/genetics , Protein Processing, Post-Translational , DNA, Viral/metabolism , DNA, Viral/geneticsABSTRACT
Worldwide, the incidence of renal cell carcinoma (RCC) is rising, accounting for approximately 2% of all cancer diagnoses and deaths. The etiology of RCC is still obscure. Here, we assessed the presence of HPyVs in paraffin-embedded tissue (FFPE) resected tissue from patients with RCC by using different molecular techniques. Fifty-five FFPE tissues from 11 RCC patients were included in this study. Consensus and HPyV-specific primers were used to screen for HPyVs. Both PCR approaches revealed that HPyV is frequently detected in the tissues of RCC kidney resections. A total of 78% (43/55) of the tissues tested were positive for at least one HPyV (i.e., MCPyV, HPyV6, HPyV7, BKPyV, JCPyV, or WUyV). Additionally, 25 tissues (45%) were positive for only one HPyV, 14 (25%) for two HPyVs, 3 (5%) for three HPyVs, and 1 one (1%) tissue specimen was positive for four HPyVs. Eleven (20%) RCC specimens were completely devoid of HPyV sequences. MCPyV was found in 24/55 RCC tissues, HPyV7 in 19, and HPyV6 in 8. The presence of MCPyV and HPyV6 was confirmed by specific FISH or RNA-ISH. In addition, we aimed to confirm HPyV gene expression by IHC. Our results strongly indicate that these HPyVs infect RCC and nontumor tissues, possibly indicating that kidney tissues serve as a reservoir for HPyV latency. Whether HPyVs possibly contribute to the etiopathogenesis of RCC remains to be elucidated.
Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Polyomavirus , Humans , Carcinoma, Renal Cell/virology , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/virology , Female , Male , Polyomavirus/genetics , Polyomavirus/isolation & purification , Aged , Middle Aged , Polyomavirus Infections/virology , Aged, 80 and over , In Situ Hybridization, Fluorescence , AdultABSTRACT
Several studies reported the presence of a recently discovered polyomavirus (PyV), Lyon IARC PyV (LIPyV), in human and domestic animal specimens. LIPyV has some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV (MCPyV), respectively. In this study, we demonstrate that LIPyV early proteins immortalize human foreskin keratinocytes. LIPyV LT binds pRb, accordingly cell cycle checkpoints are altered in primary human fibroblasts and keratinocytes expressing LIPyV early genes. Mutation of the pRb binding site in LT strongly affected the ability of LIPyV ER to induced HFK immortalization. LIPyV LT also binds p53 and alters p53 functions activated by cellular stresses. Finally, LIPyV early proteins activate telomerase reverse transcriptase (hTERT) gene expression, via accumulation of the Sp1 transcription factor. Sp1 recruitment to the hTERT promoter is controlled by its phosphorylation, which is mediated by ERK1 and CDK2. Together, these data highlight the transforming properties of LIPyV in in vitro experimental models, supporting its possible oncogenic nature. IMPORTANCE Lyon IARC PyV is a recently discovered polyomavirus that shows some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV, respectively. Here, we show the capability of LIPyV to efficiently promote cellular transformation of primary human cells, suggesting a possible oncogenic role of this virus in domestic animals and/or humans. Our study identified a novel virus-mediated mechanism of activation of telomerase reverse transcriptase gene expression, via accumulation of the Sp1 transcription factor. In addition, because the persistence of infection is a key event in virus-mediated carcinogenesis, it will be important to determine whether LIPyV can deregulate immune-related pathways, similarly to the well-established oncogenic viruses.
Subject(s)
Polyomavirus Infections , Polyomavirus , Animals , Carcinogenesis , Fibroblasts/virology , Humans , Keratinocytes/virology , Merkel cell polyomavirus/genetics , Polyomavirus/genetics , Polyomavirus/metabolism , Polyomavirus Infections/virology , Sp1 Transcription Factor/metabolism , Telomerase/genetics , Tumor Suppressor Protein p53/metabolismABSTRACT
Herpes-Simplex Virus 1 (HSV-1) infects most humans when they are young, sometimes with fatal consequences. Gene expression occurs in a temporal order upon lytic HSV-1 infection: immediate early (IE) genes are expressed, then early (E) genes, followed by late (L) genes. During this infection cycle, the HSV-1 genome has the potential for exposure to APOBEC3 (A3) proteins, a family of cytidine deaminases that cause C>U mutations on single-stranded DNA (ssDNA), often resulting in a C>T transition. We developed a computational model for the mutational pressure of A3 on the lytic cycle of HSV-1 to determine which viral kinetic gene class is most vulnerable to A3 mutations. Using in silico stochastic methods, we simulated the infectious cycle under varying intensities of A3 mutational pressure. We found that the IE and E genes are more vulnerable to A3 than L genes. We validated this model by analyzing the A3 evolutionary footprints in 25 HSV-1 isolates. We find that IE and E genes have evolved to underrepresent A3 hotspot motifs more so than L genes, consistent with greater selection pressure on IE and E genes. We extend this model to two-step infections, such as those of polyomavirus, and find that the same pattern holds for over 25 human Polyomavirus (HPyVs) genomes. Genes expressed earlier during infection are more vulnerable to mutations than those expressed later.
Subject(s)
APOBEC Deaminases/physiology , Herpesvirus 1, Human/physiology , Immediate-Early Proteins/genetics , Mutagenesis/genetics , Polyomavirus/physiology , Algorithms , Gene Expression Regulation, Viral , Genes, Immediate-Early/genetics , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Host-Pathogen Interactions/genetics , Humans , Models, Theoretical , Mutation , Polyomavirus/genetics , Polyomavirus/pathogenicity , Polyomavirus Infections/genetics , Polyomavirus Infections/virology , Virus Replication/geneticsABSTRACT
Several human polyomaviruses (HPyVs) have been described in the last 15 years. This work aimed to characterize a novel HPyV with cutaneous tropism. Swabs of healthy skin (forehead) of 75 immunocompetent individuals from Argentina were screened for HPyV through sequence amplification techniques. Publicly available metagenomic data sets were also analyzed. A previously unknown polyomavirus sequence was detected in two skin swab samples. A nearly identical sequence was detected in public data sets representing metagenomic surveys of human skin and feces. Further analyses showed that the new polyomavirus diverges from its nearest relative, human polyomavirus 6 (HPyV6), by 17.3%-17.7% (in nucleotides for the large T antigen), which meets criteria for a new species designation in the genus Deltapolyomavirus. The screening also revealed more distant HPyV6 relatives in macaque genital and chimpanzee fecal data sets. Since polyomaviruses are generally thought to cospeciate with mammalian hosts, the high degree of similarity to HPyV6 suggests the new polyomavirus species is human-tropic. Therefore, a novel polyomavirus was identified and characterized from samples of distinct populations and tissues. We suggest the common name human polyomavirus 16 (HPyV16).
Subject(s)
Polyomavirus Infections , Polyomavirus , Humans , Argentina , Polyomavirus/genetics , SkinABSTRACT
Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.
Subject(s)
COVID-19 , Polyomavirus Infections , Polyomavirus , Respiratory Tract Infections , Viruses , Infant , Child , Humans , Metagenomics , Brazil/epidemiology , Malawi/epidemiology , Phylogeny , SARS-CoV-2 , Polyomavirus Infections/epidemiology , Polyomavirus/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiologyABSTRACT
Etiology of vestibular schwannoma (VS) is unknown. Viruses can infect and reside in neural tissues for decades, and new viruses with unknown tumorigenic potential have been discovered. The presence of herpesvirus, polyomavirus, parvovirus, and anellovirus DNA was analyzed by quantitative PCR in 46 formalin-fixed paraffin-embedded VS samples. Five samples were analyzed by targeted next-generation sequencing. Viral DNA was detected altogether in 24/46 (52%) tumor samples, mostly representing anelloviruses (46%). Our findings show frequent persistence of anelloviruses, considered normal virome, in VS. None of the other viruses showed an extensive presence, thereby suggesting insignificant role in VS.
Subject(s)
Anelloviridae , Herpesviridae , Neuroma, Acoustic , Parvovirus , Polyomavirus , Humans , Polyomavirus/genetics , Anelloviridae/genetics , Neuroma, Acoustic/genetics , Herpesviridae/genetics , Parvovirus/genetics , DNA, Viral/geneticsABSTRACT
Members of the family Polyomaviridae have a circular double-stranded DNA genome that have been identified in various hosts ranging from mammals to arachnids. Here we report the identification and analysis of a complete genome sequence of a novel polyomavirus, Raja clavata polyomavirus (RcPyV1), from a cartilaginous fish, the thornback skate (Raja clavata). The genome sequence was determined using a metagenomics approach with an aim to provide baseline viral data in cartilaginous fish in different ecosystems. The RcPyV1 genome (4,195 nucleotides) had typical organization of polyomavirus, including early antigens (small T; Large T) encoded on one strand and late viral proteins (VP1; VP2) on the complementary strand. Maximum-likelihood phylogenetic analysis of the large T-antigen revealed that RcPyV1 clusters with a polyomavirus obtained from another cartilaginous fish, the guitarfish polyomavirus 1 (GfPyV1). These two share ~ 56% pairwise identity in LT and VP1 protein sequences. These analyses support the hypothesis that cartilaginous fishes have a specific lineage of polyomaviruses.
Subject(s)
Polyomavirus , Skates, Fish , Animals , Polyomavirus/genetics , Ecosystem , Phylogeny , Polyomaviridae , MammalsABSTRACT
BACKGROUND AND OBJECTIVES: A spectrum of blood-borne infectious agents may be transmitted through transfusion of blood components from asymptomatic donors. Despite the persistence of polyomaviruses in blood cells, no studies have been conducted in Argentina to assess the risk of transfusion infection. MATERIALS AND METHODS: We investigated BKPyV and JCPyV in 720 blood donors, using polymerase chain reaction (PCR) for a region of T antigen common to both viruses. Positive T-antigen samples were subjected to two additional PCR assays targeting the VP1 region. Viral genotypes were characterized by phylogenetic analysis. RESULTS: Polyomaviruses were detected in 1.25% (9/720) of the blood samples selected; JCPyV was identified in 0.97% (7/720) and BKPyV in 0.28% (2/720) of them. Phylogenetic analysis showed that the JCPyV sequences clustered with 2A genotype and Ia of BKPyV. CONCLUSION: This study describes for the first time the prevalence of polyomavirus DNA in blood donors of Córdoba, Argentina. The polyomavirus DNAemia in healthy populations suggests that those viruses are present in blood components eligible for transfusion. Therefore, the epidemiological surveillance of polyomavirus in blood banks might be incorporated into haemovigilance programmes, to determine the infectious risk and implement newer interventions to ensure the safety of blood supplies, if required.
Subject(s)
BK Virus , JC Virus , Polyomavirus Infections , Polyomavirus , Humans , Polyomavirus/genetics , JC Virus/genetics , BK Virus/genetics , Blood Donors , Argentina/epidemiology , Phylogeny , Polyomavirus Infections/epidemiologyABSTRACT
Rodents are the largest and most diverse group of mammals. Covering a wide range of structural and functional adaptations, rodents successfully occupy virtually every terrestrial habitat, and they are often found in close association with humans, domestic animals, and wildlife. Although a significant amount of research has focused on rodents' prominence as known reservoirs of zoonotic viruses, there has been less emphasis on the viral ecology of rodents in general. Here, we utilized a viral metagenomics approach to investigate polyomaviruses in wild rodents from the Baja California peninsula, Mexico, using fecal samples. We identified a novel polyomavirus in fecal samples from two rodent species, a spiny pocket mouse (Chaetodipus spinatus) and a Dulzura kangaroo rat (Dipodomys simulans). These two polyomaviruses represent a new species in the genus Betapolyomavirus. Sequences of this polyomavirus cluster phylogenetically with those of other rodent polyomaviruses and two other non-rodent polyomaviruses (WU and KI) that have been identified in the human respiratory tract. Through our continued work on seven species of rodents, we endeavor to explore the viral diversity associated with wild rodents on the Baja California peninsula and expand on current knowledge of rodent viral ecology and evolution.
Subject(s)
Polyomavirus , Rodentia , Animals , Humans , Mice , Polyomavirus/genetics , Mexico , Polyomaviridae , Animals, DomesticABSTRACT
Polyomaviruses are oncogenic viruses that are generally thought to have co-evolved with their hosts. While primate and rodent polyomaviruses are increasingly well-studied, less is known about polyomaviruses that infect other mammals. In an effort to gain insight into polyomaviruses associated with carnivores, we surveyed fecal samples collected in the USA from bobcats (Lynx rufus), pumas (Puma concolor), Canada lynxes (Lynx canadensis), and grizzly bears (Ursus arctos). Using a viral metagenomic approach, we identified six novel polyomavirus genomes. Surprisingly, four of the six genomes showed a phylogenetic relationship to polyomaviruses found in prey animals. These included a putative rabbit polyomavirus from a bobcat fecal sample and two possible deer-trophic polyomaviruses from Canada lynx feces. One polyomavirus found in a grizzly bear sample was found to be phylogenetically distant from previously identified polyomaviruses. Further analysis of the grizzly bear fecal sample showed that it contained anelloviruses that are known to infect pigs, suggesting that the bear might have preyed on a wild or domestic pig. Interestingly, a polyomavirus genome identified in a puma fecal sample was found to be closely related both to raccoon polyomavirus 1 and to Lyon-IARC polyomavirus, the latter of which was originally identified in human saliva and skin swab specimens but has since been found in samples from domestic cats (Felis catus).
Subject(s)
Deer , Lynx , Polyomavirus , Puma , Ursidae , Rabbits , Animals , Cats , Humans , Swine , Polyomavirus/genetics , Phylogeny , FecesABSTRACT
BACKGROUND: Viral infection is an oncogenic factor in many hematolymphoid malignancies. We sought to determine the diagnostic yield of aligning off-target reads incidentally obtained during targeted hematolymphoid next-generation sequencing to a large database of viral genomes to screen for viral sequences within tumor specimens. METHODS: Alignment of off-target reads to viral genomes was performed using magicBLAST. Localization of Merkel cell polyomavirus (MCPyV) RNA was confirmed by RNAScope in situ hybridization. Integration analysis was performed using Virus-Clip. RESULTS: Four cases of post-cardiac-transplant folliculotropic mycosis fungoides (fMF) and one case of peripheral T-cell lymphoma (PTCL) were positive in off-target reads for MCPyV DNA. Two of the four cases of posttransplant fMF and the case of PTCL showed localization of MCPyV RNA to malignant lymphocytes, whereas the remaining two cases of posttransplant fMF showed MCPyV RNA in keratinocytes. CONCLUSIONS: Our findings raise the question of whether MCPyV may play a role in rare cases of T-lymphoproliferative disorders, particularly in the skin and in the heavily immunosuppressed posttransplant setting.
Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Mycosis Fungoides , Polyomavirus Infections , Polyomavirus , Skin Neoplasms , Tumor Virus Infections , Humans , Merkel cell polyomavirus/genetics , Carcinoma, Merkel Cell/pathology , Skin Neoplasms/pathology , Polyomavirus Infections/complications , Polyomavirus Infections/pathology , DNA, Viral/analysis , In Situ Hybridization , Tumor Virus Infections/pathology , Polyomavirus/geneticsABSTRACT
Hamster polyomavirus (HaPyV) infection has been associated with lymphomas in Syrian hamsters. In the present study, 14 cases of lymphoma in pet Syrian hamsters were pathologically examined and the involvement of HaPyV was investigated. Among 14 cases, 11 were abdominal and 3 were cutaneous lymphomas. The average ages of hamsters with abdominal lymphoma and cutaneous lymphoma were 7 months (range: 4-12 months) and 14 months (range: 6-23 months), respectively. Histologically, abdominal lymphomas were characterized by the diffuse growth of tumor cells with intermediate or large nuclei, low mitotic rates, the presence of tingible body macrophages, and the T-cell immunophenotype. Furthermore, 4/11 abdominal lymphomas were immunopositive for T-cell intracellular antigen-1, suggesting cytotoxic T-cell lymphomas. Cutaneous lymphomas were diagnosed as nonepitheliotropic T-cell lymphoma. Polymerase chain reaction (PCR) detected HaPyV DNA in 12/14 samples, and a sequence analysis of PCR amplicons confirmed >99% nucleotide identity to the published HaPyV sequences. In situ hybridization (ISH) for HaPyV DNA resulted in diffuse nuclear signals within tumor cells in 10/14 cases. Consistent with previous findings, all HaPyV-associated lymphomas were observed in the abdominal cavity of young hamsters. Polymerase chain reaction and ISH were useful for identifying the involvement of HaPyV in lymphomas, and ISH results indicated the presence of episomal HaPyV in neoplastic lymphocytes. The present study suggests that HaPyV infection is highly involved in abdominal lymphomas in young pet Syrian hamsters in Japan and provides diagnostic information on HaPyV-associated lymphoma.
Subject(s)
Lymphoma, T-Cell, Cutaneous , Lymphoma, T-Cell , Polyomavirus Infections , Polyomavirus , Rodent Diseases , Skin Neoplasms , Cricetinae , Animals , Mesocricetus , Polyomavirus/genetics , Polyomavirus Infections/pathology , Polyomavirus Infections/veterinary , Lymphoma, T-Cell/veterinary , Skin Neoplasms/veterinary , Lymphoma, T-Cell, Cutaneous/veterinaryABSTRACT
BACKGROUND: Cutaneous human papillomaviruses (cuHPV) and polyomaviruses (HPyV) have been implicated in skin cancers; however, interpretation of findings across studies is complicated by limited understanding of the natural history of these infections across normal tissue types. METHODS: In total, 675 eyebrow hair (EBH) and skin swab (SSW) samples were collected from 71 skin cancer screening patients every 6 months over 2 years and measured for presence of ß-HPV, γ-HPV, and HPyV. Incidence, persistence, and clearance of cuHPV/HPyV were estimated, and risk factors associated with infection were examined. RESULTS: Prevalence, incidence, and persistence of ß-HPV, γ-HPV, and HPyV were consistently higher in SSW than in EBH, with types 5, 24, 49, 76 and Merkel cell polyomavirus (MCPyV) having incidence rates greater than 20 per 1000 person-months. Prevalent γ-HPV EBH infections persisted more often in women (Pâ =â .024), incident ß-HPV EBH infections persisted less often among individuals with history of blistering sunburn (Pâ =â .019), and prevalent MCPyV SSW infections persisted more often in those with a history of skin cancer (Pâ =â .033). CONCLUSIONS: Incidence and persistence of cuHPV/HPyV were observed in SSW and EBH; however, none of the risk factors examined were commonly associated with cuHPV/HPyV infections across normal tissue types.