Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.833
Filter
Add more filters

Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R121-R133, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38047314

ABSTRACT

Although Gaussian white noise (GWN) inputs offer a theoretical framework for identifying higher-order nonlinearity, an actual application to the data of the neural arc of the carotid sinus baroreflex did not succeed in fully predicting the well-known sigmoidal nonlinearity. In the present study, we assumed that the neural arc can be approximated by a cascade of a linear dynamic (LD) component and a nonlinear static (NS) component. We analyzed the data obtained using GWN inputs with a mean of 120 mmHg and standard deviations (SDs) of 10, 20, and 30 mmHg for 15 min each in anesthetized rats (n = 7). We first estimated the linear transfer function from carotid sinus pressure to sympathetic nerve activity (SNA) and then plotted the measured SNA against the linearly predicted SNA. The predicted and measured data pairs exhibited an inverse sigmoidal distribution when grouped into 10 bins based on the size of the linearly predicted SNA. The sigmoidal nonlinearity estimated via the LD-NS model showed a midpoint pressure (104.1 ± 4.4 mmHg for SD of 30 mmHg) lower than that estimated by a conventional stepwise input (135.8 ± 3.9 mmHg, P < 0.001). This suggests that the NS component is more likely to reflect the nonlinearity observed during pulsatile inputs that are physiological to baroreceptors. Furthermore, the LD-NS model yielded higher R2 values compared with the linear model and the previously suggested second-order Uryson model in the testing dataset.NEW & NOTEWORTHY We examined the input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. A linear dynamic-static nonlinear model yielded higher R2 values compared with a linear model and captured the well-known sigmoidal nonlinearity of the neural arc, indicating that the nonlinear dynamics contributed to determining sympathetic nerve activity. Ignoring such nonlinear dynamics might reduce our ability to explain underlying physiology and significantly limit the interpretation of experimental data.


Subject(s)
Baroreflex , Pressoreceptors , Rats , Animals , Baroreflex/physiology , Blood Pressure/physiology , Pressoreceptors/physiology , Sympathetic Nervous System/physiology , Carotid Sinus/innervation
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R88-R96, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842517

ABSTRACT

The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean ± SD, 70 ± 6 yr) and 11 younger females (20 ± 1 yr) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0°), and their lower limbs were passively lifted at 10°, 20°, 30°, and 40° (3 min at each angle). Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. The central venous pressure was estimated based on peripheral venous pressure (eCVP), which was monitored using a cannula in the right large antecubital vein. Baseline MSNA was higher in older females than in younger females. MSNA burst frequency (BF) decreased during the PLR test in both older and younger females, but the magnitude of the decrease in MSNA BF was smaller in older females than in younger females (older, -3.5 ± 1.5 vs. younger, -6.3 ± 1.5 bursts/min at 40° from baseline, P = 0.014). The eCVP increased during the PLR in both groups, and there was no difference in the changes in eCVP between the two groups (older, +1.07 ± 0.37 vs. younger, +1.12 ± 0.33 mmHg at 40° from baseline, P = 0.941). These results suggest that inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age in females.NEW & NOTEWORTHY There were no available data concerning the effect of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. The magnitude of the decrease in muscle sympathetic nerve activity during passive leg raising (10°-40°) was smaller in older females than in young females. In females, inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age.


Subject(s)
Aging , Baroreflex , Pressoreceptors , Sympathetic Nervous System , Humans , Female , Sympathetic Nervous System/physiology , Pressoreceptors/physiology , Aged , Aging/physiology , Young Adult , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Age Factors , Blood Pressure/physiology , Middle Aged , Lung/innervation , Lung/physiology , Neural Inhibition
3.
Cell ; 139(3): 587-96, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19879844

ABSTRACT

Autosomal-dominant polycystic kidney disease, the most frequent monogenic cause of kidney failure, is induced by mutations in the PKD1 or PKD2 genes, encoding polycystins TRPP1 and TRPP2, respectively. Polycystins are proposed to form a flow-sensitive ion channel complex in the primary cilium of both epithelial and endothelial cells. However, how polycystins contribute to cellular mechanosensitivity remains obscure. Here, we show that TRPP2 inhibits stretch-activated ion channels (SACs). This specific effect is reversed by coexpression with TRPP1, indicating that the TRPP1/TRPP2 ratio regulates pressure sensing. Moreover, deletion of TRPP1 in smooth muscle cells reduces SAC activity and the arterial myogenic tone. Inversely, depletion of TRPP2 in TRPP1-deficient arteries rescues both SAC opening and the myogenic response. Finally, we show that TRPP2 interacts with filamin A and demonstrate that this actin crosslinking protein is critical for SAC regulation. This work uncovers a role for polycystins in regulating pressure sensing.


Subject(s)
Pressure , TRPP Cation Channels/metabolism , Actins/metabolism , Animals , Contractile Proteins/metabolism , Filamins , Mechanotransduction, Cellular , Mice , Microfilament Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pressoreceptors/metabolism
4.
Pflugers Arch ; 475(1): 77-87, 2023 01.
Article in English | MEDLINE | ID: mdl-35396959

ABSTRACT

Recent investigations emphasized the importance of neural control of cardiovascular adjustments in complex behaviors, including stress, exercise, arousal, sleep-wake states, and different tasks. Baroreceptor feedback is an essential component of this system acting on different time scales from maintaining stable levels of cardiovascular parameters on the long-term to rapid alterations according to behavior. The baroreceptor input is essentially rhythmic, reflecting periodic fluctuations in arterial blood pressure. Cardiac rhythm is a prominent feature of the autonomic control system, present on different levels, including neuron activity in central circuits. The mechanism of rhythmic entrainment of neuron firing by the baroreceptor input was studied in great detail under anesthesia, but recordings of sympathetic-related neuron firing in freely moving animals remain extremely scarce. In this study, we recorded multiple single neuron activity in the reticular formation of the medulla in freely moving rats during natural behavior. Neurons firing in synchrony with the cardiac rhythm were detected in each experiment (n = 4). In agreement with prior observations in anesthetized cats, we found that neurons in this area exhibited high neuron-to-neuron variability and temporal flexibility in their coupling to cardiac rhythm in freely moving rats, as well. This included firing in bursts at multiples of cardiac cycles, but not directly coupled to the heartbeat, supporting the concept of baroreceptor input entraining intrinsic neural oscillations rather than imposing a rhythm of solely external origin on these networks. It may also point to a mechanism of maintaining the basic characteristics of sympathetic neuron activity, i.e., burst discharge and cardiac-related rhythmicity, on the background of behavior-related adjustments in their firing rate.


Subject(s)
Neurons , Pressoreceptors , Rats , Animals , Pressoreceptors/physiology , Neurons/physiology , Medulla Oblongata/physiology , Cardiovascular Physiological Phenomena
5.
Pflugers Arch ; 475(8): 933-944, 2023 08.
Article in English | MEDLINE | ID: mdl-37219603

ABSTRACT

Reflex summation in the expression of left and right aortic baroreflex control of hemodynamic functions was investigated. In anesthetized Sprague-Dawley rats, mean arterial pressure (MAP), heart rate (HR), and mesenteric vascular resistance (MVR) were recorded following left, right, and bilateral stimulation of the aortic depressor nerve (ADN). Stimulation frequency was varied between low (1 Hz), moderate (5 Hz), and high (20 Hz). At 1 Hz, left and right ADN stimulation evoked similar depressor, bradycardic and MVR responses, whereas bilateral stimulation induced larger MAP, HR, and MVR reductions compared with stimulations of either side. The sum of the separate and combined stimulation effects on MAP, HR, and MVR was similar, indicating an additive summation. A similar additive summation was observed with HR responses at 5 and 20 Hz. Left-sided and bilateral stimulation produced greater depressor and MVR responses than right-sided stimulation, with responses of the bilateral stimulation mimicking those of the left side. The bilateral MAP or MVR response was smaller than the sum of the separate responses, suggesting an inhibitory summation. In conclusion, reflex summation of the left and right aortic baroreceptor afferent input is differentially expressed in relation to the frequency of the input signal. Summation of baroreflex control of HR is always additive and independent of stimulation frequency. Summation of baroreflex control of MAP is additive when the frequency input is small and inhibitory when the frequency input is moderate to high, with MAP changes mainly driven by parallel baroreflex-triggered changes in vascular resistance.


Subject(s)
Pressoreceptors , Reflex , Rats , Animals , Pressoreceptors/physiology , Rats, Sprague-Dawley , Blood Pressure , Electric Stimulation , Baroreflex , Heart Rate/physiology
6.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R568-R575, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37694334

ABSTRACT

The purpose of these experiments was to determine if the increase in vascular conductance following a single muscle contraction (50% of maximal voluntary contraction) (6 male and 6 female subjects) was altered during baroceptor loading and unloading. Rapid onset vasodilation (ROV) was determined by measuring brachial artery blood flow (Doppler ultrasound) and blood pressure (Finapress monitor). Brachial artery vascular conductance was calculated by dividing blood flow by mean arterial pressure. ROV was described by the area under the Δvascular conductance (VC)-time curve during the 30 s following muscle contraction. ROV was determined using chamber pressures of +20, +10, 0, -10, -20, and -40 mmHg (lower body positive and negative pressure, LBPP, and LBNP). We tested the hypothesis that the impact of baroreceptor loading and unloading produces a proportion change in ROV. The level of ROV following each contraction was proportional to the peak force (r2 = 0.393, P = 0.0001). Peak force was therefore used as a covariate in further analysis. ROV during application of -40 mmHg LBNP (0.345 ± 0.229 mL·mmHg-1) was lower than that observed at Control (0.532 ± 0.284 mL·mmHg-1, P = 0.034) and +20 mmHg LBPP (0.658 ± 0.364 mL·mmHg-1, P = 0.0008). ROV was linearly related to chamber pressure from -40 to +20 mmHg chamber pressure (r2 = 0.512, P = 0.022, n = 69) and from -20 to +10 mmHg chamber pressure (r2= 0.973, P < 0.0425, n = 45), Overall, vasoconstrictor tone altered with physiologically relevant baroreceptor loading and unloading resulted in a proportion change in ROV.NEW & NOTEWORTHY Rapid onset vasodilation (ROV) was linearly related to the peak force of each single 1-s muscle contraction. In addition, ROV is reduced by baroreceptor unloading (LBNP: -10, -120, and -40 mmHg) and increased by baroreceptor loading (LBPP: +10 and +20 mmHg). Without accounting for peak force and the level of baroreceptor engagement makes comparison of ROV in subjects of differing muscle size or strength untenable.


Subject(s)
Pressoreceptors , Vasodilation , Humans , Male , Female , Pressoreceptors/physiology , Vasodilation/physiology , Hemodynamics , Blood Pressure/physiology , Lower Body Negative Pressure , Heart Rate/physiology
7.
Exp Physiol ; 108(10): 1245-1249, 2023 10.
Article in English | MEDLINE | ID: mdl-37031381

ABSTRACT

NEW FINDINGS: What is the topic of this review? We review barosensory vessel mechanics and their role in blood pressure regulation across the lifespan. What advances does it highlight? In young normotensive men, aortic unloading mechanics contribute to the resting operating point of the vascular sympathetic baroreflex; however, with advancing age, this contribution is removed. This suggests that barosensory vessel unloading mechanics are not driving the well-documented age-related increase in resting muscle sympathetic nerve activity. ABSTRACT: An age-associated increase in arterial blood pressure is evident for apparently healthy humans. This is frequently attributed to stiffening of the central arteries and a concurrent increase in sympathetic outflow, potentially mediated by a reduced ability of the baroreceptive vessels to distend. This is supported, in part, by a reduced mechanical component of the vascular sympathetic baroreflex (i.e., a reduction in distension for a given pressure). Previous characterization of the mechanical component has assessed only carotid artery distension; however, evidence suggests that both the aortic and carotid baroreflexes are integral to blood pressure regulation. In addition, given that baroreceptors are located in the vessel wall, the change in wall tension, comprising diameter, pressure and vessel wall thickness, and the mechanics of this change might provide a better index of the baroreceptor stimulus than the previous method used to characterize the mechanical component that relies on diameter alone. This brief review summarizes the data using this new method of assessing barosensory vessel mechanics and their influence on the vascular sympathetic baroreflex across the lifespan.


Subject(s)
Baroreflex , Pressoreceptors , Male , Humans , Baroreflex/physiology , Blood Pressure , Pressoreceptors/physiology , Carotid Arteries/physiology , Sympathetic Nervous System/physiology , Homeostasis , Heart Rate/physiology
9.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108199

ABSTRACT

Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of things. The scientific debate about one of the measures of heart rate variability, i.e., what low-frequency power is reflecting, has been ongoing for decades. Some schools reason that it represents the sympathetic loading, while an even more compelling reasoning is that it measures how the baroreflex modulates the cardiac autonomic outflow. However, the current opinion manuscript proposes that the discovery of the more precise molecular characteristics of baroreceptors, i.e., that the Piezo2 ion channel containing vagal afferents could invoke the baroreflex, may possibly resolve this debate. It is long known that medium- to high-intensity exercise diminishes low-frequency power to almost undetectable values. Moreover, it is also demonstrated that the stretch- and force-gated Piezo2 ion channels are inactivated in a prolonged hyperexcited state in order to prevent pathological hyperexcitation. Accordingly, the current author suggests that the almost undetectable value of low-frequency power at medium- to high-intensity exercise reflects the inactivation of Piezo2 from vagal afferents in the baroreceptors with some Piezo1 residual activity contribution. Consequently, this opinion paper highlights how low-frequency power of the heart rate variability could represent the activity level of Piezo2 in baroreceptors.


Subject(s)
Heart , Pressoreceptors , Pressoreceptors/physiology , Heart Rate/physiology , Heart/physiology , Autonomic Nervous System , Baroreflex/physiology
10.
Clin Exp Rheumatol ; 40(10): 1964-1969, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35916301

ABSTRACT

OBJECTIVES: Systemic sclerosis (SSc) is an autoimmune disease characterised by diffuse vasculopathy and fibrosis of skin and visceral organs. Moreover, autonomic dysfunction is also suggested as an important step during the multifactorial SSc pathogenesis. Baroreceptors are responsible for maintaining blood pressure by means of autonomic system modulation. Considering that autonomic dysfunction and arteriosclerosis can both reduce baroreceptor sensitivity (BRS), in this cross-sectional study we investigated BRS in SSc patients. METHODS: Twenty-one SSc patients (mean age 55±10 years, 18 females) and 147 age/sex-matched healthy controls were recruited for the study. BRS (ms/mmHg) was measured by a Finapres® Midi device (Finapres Medical Systems, Amsterdam, The Netherlands). Other parameters were measured: blood pressure, heart rate, heart rate variability triangular index (HRVI), intima-media thickness (IMT), carotid distensibility and pulse wave velocity (PWV). RESULTS: BRS was significantly lower in SSc patients compared to controls (6.3±3.3 vs. 10.7±6.8 ms/mmHg; p=0.004). IMT was comparable between SSc and controls, whereas carotid distensibility was lower in SSc (20.1±7.6 vs. 26.6±13.3 KPa-1·10-3; p=0.02) and PWV higher in SSc (8.4±1.3 vs. 7.1±1.1 m/sec; p=0.01). Furthermore, HRVI was lower in SSc (4.5±2.1 vs. 7.5±2.8; p<0.001). BRS impairment was independent from age and carotid distensibility in SSc patients, suggesting that BRS dysfunction could be only partially a consequence of SSc vasculopathy. CONCLUSIONS: BRS was reduced in SSc patients compared with healthy controls. This finding could represent a SSc-related alteration involving the autonomic system, besides being the mere consequence of sclerodermic vasculopathy.


Subject(s)
Scleroderma, Systemic , Vascular Diseases , Female , Humans , Middle Aged , Aged , Pressoreceptors , Pulse Wave Analysis , Carotid Intima-Media Thickness , Cross-Sectional Studies , Carotid Arteries/diagnostic imaging , Scleroderma, Systemic/complications
11.
Acta Pharmacol Sin ; 43(9): 2313-2324, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35132193

ABSTRACT

Recent studies suggest that melatonin (Mel) plays an important role in the regulation of blood pressure (BP) via the aortic baroreflex pathway. In this study, we investigated the interaction between the baroreflex afferent pathway and Mel-mediated BP regulation in rats under physiological and hypertensive conditions. Mel (0.1, 0.3, and 1.0 mg/mL) was microinjected into the nodose ganglia (NG) of rats. We showed that Mel-induced reduction of mean arterial pressure in female rats was significantly greater than that in male and in ovariectomized rats under physiological condition. Consistently, the expression of Mel receptors (MTNRs) in the NG of female rats was significantly higher than that of males. In L-NAME-induced hypertensive and spontaneously hypertensive rat models, MTNRs were upregulated in males but downregulated in female models. Interestingly, Mel-induced BP reduction was found in male hypertensive models. In whole-cell recording from identified baroreceptor neurons (BRNs) in female rats, we found that Mel (0.1 µM) significantly increased the excitability of a female-specific subpopulation of Ah-type BRNs by increasing the Nav1.9 current density via a PKC-mediated pathway. Similar results were observed in baroreceptive neurons of the nucleus tractus solitarius, showing the facilitation of spontaneous and evoked excitatory post-synaptic currents in Ah-type neurons. Collectively, this study reveals the estrogen-dependent effect of Mel/MTNRs under physiological and hypertensive conditions is mainly mediated by Ah-type BRNs, which may provide new theoretical basis and strategies for the gender-specific anti-hypertensive treatment in clinical practice.


Subject(s)
Hypertension , Melatonin , Animals , Baroreflex , Blood Pressure , Estrogens/metabolism , Estrogens/pharmacology , Female , Hypertension/drug therapy , Male , Melatonin/pharmacology , Pressoreceptors/metabolism , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley
12.
Bioelectromagnetics ; 43(7): 413-425, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36403257

ABSTRACT

Mounting evidence suggests enhanced blood pressure (BP) variability (BPV) independent role in cardiovascular (CV) damage. The goal was to estimate the effect of the carotid baroreceptor (CB) magnetic stimulation on sudden high BP elevation. Mean femoral arterial BP (MAP), heart rate (HR), baroreflex sensitivity (BRS), and ear lobe skin microcirculatory blood flow, by microphotoelectric plethysmography (MPPG), were simultaneously recorded in conscious rabbits sedated by pentobarbital intravenous (i.v.) infusion (5 mg/kg/h) after 40 min CB exposure to 350 mT static magnetic field (SMF), by Nd2 -Fe14 -B magnets (n = 14), or sham magnets exposure (n = 14). BRS was assessed from HR and MAP responses to abrupt hypotension induced by i.v. bolus injections of nitroprusside (Ni) and abrupt MAP elevation (MAPAE ) by i.v. bolus of phenylephrine (Ph). Beat-to-beat BPV was estimated by MAP standard deviation. SMF CB exposure significantly increased BRSNi (74.5 ± 17.8%, P < 0.001) and microcirculation (23.8% ± 11.0%, P = 0.039); decreased MAP (-5.7 ± 1.7%, P < 0.014) and phenylephrine-induced MAPAE (-19.1%, P = 0.043). MAPAE positively correlated with resting MAP (r = 0.342, P = 0.0383) and MAP SD (r = 0.383, P = 0.0194), and inversely with BRSPh (r = -0.47, P = 0.0156). SMF CB exposure enhanced the nitroprusside, which acts by releasing nitric oxide (NO), vasodilatory effect. This indicates arterial baroreflex to improve vessel sensitivity to NO, which is a new physiology with BP buffering effect. A positive correlation of MAP SD to phenylephrine BP ramps suggests a causal relationship and BPV prognostic significance to forecast abrupt BP elevation. Mechano/baroreceptor magneto-sensing property proposed to be the basic physiology by which SMFs boost CV autonomic regulation with potential implementation in high CV risk labile arterial hypertensive disease. © 2022 Bioelectromagnetics Society.


Subject(s)
Hypertension , Pressoreceptors , Animals , Rabbits , Pressoreceptors/physiology , Blood Pressure/physiology , Microcirculation , Nitroprusside/pharmacology , Phenylephrine/pharmacology , Magnetic Fields
13.
Pediatr Cardiol ; 43(5): 1011-1019, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35089394

ABSTRACT

The arterial baroreceptor reflex in children and adolescents has not been well studied in the current literature with a lack of agreed upon normal values, particularly in postural orthostatic tachycardia syndrome (POTS) or neurocardiogenic syncope (NCS). We used the sequence method and head-up tilt test (HUTT) to evaluate baroreceptor function in 3 phases: baseline supine position for 10 min, head-up position at 70° for 30 min or until syncope, and post-tilt supine reposition for 10 min. We measured the number of baroreceptor events, baroreceptor effectiveness index (BEI), and the magnitude of sensitivity of the events at each phase of HUTT. We studied 198 individuals (49 normal subjects, 67 POTS, 82 NCS) with age ranges from 8 to 21 years. The data show a statistically significant decrease in slope and BEI in patients with POTS and NCS during the head-up phase, with an increase in activity in the lag 1 and 2 portions of all phases in patients with POTS. This study provides terminology to describe baroreceptor function and identifies the slope and BEI portions of the baroreceptor reflex as the most useful objective measures to differentiate pediatric patients with POTS and NCS from normal subjects.


Subject(s)
Postural Orthostatic Tachycardia Syndrome , Syncope, Vasovagal , Adolescent , Adult , Blood Pressure/physiology , Child , Heart Rate/physiology , Humans , Pressoreceptors , Syncope, Vasovagal/diagnosis , Tachycardia , Tilt-Table Test , Young Adult
14.
Adv Physiol Educ ; 46(2): 282-285, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35201919

ABSTRACT

While the effects of changing heart rate and systemic vascular resistance have been generally understood and appreciated, the effects of changes in left ventricular contractility on end-systolic volume may have been less understood and appreciated and the effects of changes in venous capacitance on end-diastolic volume may have been unknown to many readers. Herein, we have provided a brief review for the medical student and beginning graduate student highlighting these sometimes-complex relationships.


Subject(s)
Heart Ventricles , Pressoreceptors , Blood Pressure , Heart Rate , Humans , Pressoreceptors/physiology , Vascular Resistance/physiology
15.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R317-R330, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33296277

ABSTRACT

Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder that is associated with many cardiovascular complications. Similar to OSA, chronic intermittent hypoxia (CIH) (a model for OSA) leads to oxidative stress and impairs baroreflex control of the heart rate (HR) in rodents. The baroreflex arc includes the aortic depressor nerve (ADN), vagal efferent, and central neurons. In this study, we used mice as a model to examine the effects of CIH on baroreflex sensitivity, aortic baroreceptor afferents, and central and vagal efferent components of the baroreflex circuitry. Furthermore, we tested whether human Cu/Zn Superoxide Dismutase (SOD1) overexpression in transgenic mice offers protection against CIH-induced deficit of the baroreflex arc. Wild-type C57BL/6J and SOD1 mice were exposed to room air (RA) or CIH and were then anesthetized, ventilated, and catheterized for measurement of mean arterial pressure (MAP) and HR. Compared with wild-type RA control, CIH impaired baroreflex sensitivity but increased maximum baroreceptor gain and bradycardic response to vagal efferent stimulation. Additionally, CIH reduced the bradycardic response to ADN stimulation, indicating a diminished central regulation of bradycardia. Interestingly, SOD1 overexpression prevented CIH-induced attenuation of HR responses to ADN stimulation and preserved HR responses to vagal efferent stimulation in transgenic mice. We suggest that CIH decreased central mediation of the baroreflex and SOD1 overexpression may prevent the CIH-induced central deficit.


Subject(s)
Baroreflex , Bradycardia/prevention & control , Brain/enzymology , Cardiovascular System/innervation , Heart Rate , Pressoreceptors/physiopathology , Superoxide Dismutase-1/metabolism , Vagus Nerve/physiopathology , Animals , Arterial Pressure , Bradycardia/enzymology , Bradycardia/etiology , Bradycardia/physiopathology , Brain/physiopathology , Chronic Disease , Disease Models, Animal , Electric Stimulation , Humans , Hypoxia/complications , Hypoxia/enzymology , Hypoxia/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Superoxide Dismutase-1/genetics , Up-Regulation
16.
FASEB J ; 34(11): 15431-15447, 2020 11.
Article in English | MEDLINE | ID: mdl-32954572

ABSTRACT

This study was designed to clarify whether the irradiation of carotid baroreceptor (CB) with low-intensity pulsed ultrasound (LIPUS) protects against obesity by rebalancing the autonomic nervous system (ANS). Obesity was induced using a high-fat diet (HFD) for 8 weeks in Sprague-Dawley rats. Irradiation with LIPUS was daily (20 minutes a day) applied to the right CB. In our study, LIPUS significantly ameliorated metabolic disorders in obese rats. LIPUS partly restored norepinephrine (NE) and acetylcholine (ACH) levels in the perirenal white adipose tissue (PWAT), epididymal white adipose tissue (EWAT), interscapular brown adipose tissue (IBAT), and plasma of obese rats. LIPUS partially rectified the dysregulated AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor (PPAR) α/É£ pathway in the PWAT, EWAT, and IBAT of obese rats. PPARγ and PPARγ target genes respond more sensitively to HFD and LIPUS in PWAT and EWAT than in IBAT. NE, ACH, uncoupling protein-1, phosphorylated AMPK, PPARα, and PPARα target genes respond more sensitively to HFD and LIPUS in IBAT than in PWAT and EWAT. Conclusion: LIPUS irradiation of CB exerts different metabolic protection in PWAT, EWAT, and IBAT by rebalancing the ANS and rectifying the AMPK/PPARα/É£ pathway in obese rats.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Carotid Sinus/metabolism , Metabolic Diseases/prevention & control , Obesity/prevention & control , Pressoreceptors/metabolism , Ultrasonic Waves , Adipose Tissue, Brown/radiation effects , Adipose Tissue, White/radiation effects , Animals , Carotid Sinus/radiation effects , Diet, High-Fat/adverse effects , Epididymis/metabolism , Epididymis/radiation effects , Male , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Pressoreceptors/radiation effects , Rats , Rats, Sprague-Dawley
17.
Exp Physiol ; 106(5): 1181-1195, 2021 05.
Article in English | MEDLINE | ID: mdl-33749038

ABSTRACT

NEW FINDINGS: Cardio-ventilatory coupling refers to the onset of inspiration occurring at a preferential latency following the last heartbeat (HB) in expiration. According to the cardiac-trigger hypothesis, the pulse pressure initiates an inspiration via baroreceptor activation. However, the central neural substrate mediating this coupling remains undefined. Using a combination of animal data, human data and mathematical modelling, this study tests the hypothesis that the HB, by way of pulsatile baroreflex activation, controls the initiation of inspiration that occurs through a rapid neural activation loop from the carotid baroreceptors to Bötzinger complex expiratory neurons. ABSTRACT: Cardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency prior to the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulate brainstem expiratory neuronal activity and delay the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram and blood pressure during 20-min epochs of baseline, slow-deep breathing and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between a HB and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration, thus delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.


Subject(s)
Pressoreceptors , Respiration , Animals , Baroreflex , Blood Pressure , Heart Rate , Humans , Male , Pressoreceptors/physiology
18.
Pharmacol Res ; 164: 105391, 2021 02.
Article in English | MEDLINE | ID: mdl-33352230

ABSTRACT

Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.


Subject(s)
Hypertension/physiopathology , Ion Channels/physiology , Nedd4 Ubiquitin Protein Ligases/physiology , Neurons/physiology , Nodose Ganglion/physiology , Pressoreceptors/physiology , Animals , Aorta, Thoracic/innervation , Baroreflex , Cells, Cultured , Humans , Male , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction
19.
BMC Cardiovasc Disord ; 21(1): 155, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771104

ABSTRACT

BACKGROUND: The study evaluated the cost of baroreflex activation therapy plus guideline directed therapy (BAT + GDT) compared to GDT alone for HF patients with reduced ejection fraction and New York Heart Association Class III or II (with a recent history of III). Baroreflex activation therapy (BAT) is delivered by an implantable device that stimulates the baroreceptors through an electrode attached to the outside of the carotid artery, which rebalances the autonomic nervous system to regain cardiovascular (CV) homeostasis. The BeAT-HF trial evaluated the safety and effectiveness of BAT. METHODS: A cost impact model was developed from a U.S. health care payer or integrated delivery network perspective over a 3-year period for BAT + GDT versus GDT alone. Expected costs were calculated by utilizing 6-month data from the BeAT-HF trial and existing literature. HF hospitalization rates were extrapolated based on improvement in NT-proBNP. RESULTS: At baseline the expected cost of BAT + GDT were $29,526 per patient more than GDT alone due to BAT device and implantation costs. After 3 years, the predicted cost per patient was $9521 less expensive for BAT + GDT versus GDT alone due to lower rates of significant HF hospitalizations, CV non-HF hospitalizations, and resource intensive late-stage procedures (LVADs and heart transplants) among the BAT + GDT group. CONCLUSIONS: BAT + GDT treatment becomes less costly than GDT alone beginning between years 1 and 2 and becomes less costly cumulatively between years 2 and 3, potentially providing significant savings over time. As additional BeAT-HF trial data become available, the model can be updated to show longer term effects.


Subject(s)
Baroreflex , Electric Stimulation Therapy/economics , Health Care Costs , Heart Failure/economics , Heart Failure/therapy , Outcome and Process Assessment, Health Care/economics , Pressoreceptors/physiopathology , Chronic Disease , Cost Savings , Cost-Benefit Analysis , Electric Stimulation Therapy/adverse effects , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Models, Economic , Time Factors , Treatment Outcome , United States
20.
Acta Pharmacol Sin ; 42(12): 2173-2180, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34267344

ABSTRACT

Female-specific subpopulation of myelinated Ah-type baroreceptor neurons (BRNs) in nodose ganglia is the neuroanatomical base of sexual-dimorphic autonomic control of blood pressure regulation, and KCa1.1 is a key player in modulating the neuroexcitation in nodose ganglia. In this study we investigated the exact mechanisms underlying KCa1.1-mediated neuroexcitation of myelinated Ah-type BRNs in the presence or absence of estrogen. BRNs were isolated from adult ovary intact (OVI) or ovariectomized (OVX) female rats, and identified electrophysiologically and fluorescently. Action potential (AP) and potassium currents were recorded using whole-cell recording. Consistently, myelinated Ah-type BRNs displayed a characteristic discharge pattern and significantly reduced excitability after OVX with narrowed AP duration and faster repolarization largely due to an upregulated iberiotoxin (IbTX)-sensitive component; the changes in AP waveform and repetitive discharge of Ah-types from OVX female rats were reversed by G1 (a selective agonist for estrogen membrane receptor GPR30, 100 nM) and/or IbTX (100 nM). In addition, the effect of G1 on repetitive discharge could be completely blocked by G15 (a selective antagonist for estrogen membrane receptor GPR30, 3 µM). These data suggest that estrogen deficiency by removing ovaries upregulates KCa1.1 channel protein in Ah-type BRNs, and subsequently increases AP repolarization and blunts neuroexcitation through estrogen membrane receptor signaling. Intriguingly, this upregulated KCa1.1 predicted electrophysiologically was confirmed by increased mean fluorescent intensity that was abolished by estrogen treatment. These electrophysiological findings combined with immunostaining and pharmacological manipulations reveal the crucial role of KCa1.1 in modulation of neuroexcitation especially in female-specific subpopulation of myelinated Ah-type BRNs and extend our current understanding of sexual dimorphism of neurocontrol of BP regulation.


Subject(s)
Estrogens/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Neurons/metabolism , Nodose Ganglion/metabolism , Pressoreceptors/metabolism , Animals , Estrogens/deficiency , Female , Neurons/drug effects , Ovariectomy , Ovary/cytology , Ovary/surgery , Pressoreceptors/drug effects , Quinolines/pharmacology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL