Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.478
Filter
Add more filters

Publication year range
1.
Cell ; 178(3): 653-671.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348890

ABSTRACT

Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin. Fiber photometry recordings during progressive ratio operant behavior revealed pnVTAPnoc neurons become most active when mice stop seeking natural rewards. Selective pnVTAPnoc neuron ablation, inhibition, and conditional VTA nociceptin receptor (NOPR) deletion increased operant responding, revealing that the pnVTAPnoc nucleus and VTA NOPR signaling are necessary for regulating reward motivation. Additionally, optogenetic and chemogenetic activation of this pnVTAPnoc nucleus caused avoidance and decreased motivation for rewards. These findings provide insight into neuromodulatory circuits that regulate motivated behaviors through identification of a previously unknown neuropeptide-containing pnVTA nucleus that limits motivation for rewards.


Subject(s)
Motivation/drug effects , Opioid Peptides/pharmacology , Reward , Ventral Tegmental Area/metabolism , Action Potentials , Animals , Behavior, Animal/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Patch-Clamp Techniques , Protein Precursors/genetics , Receptors, Opioid/agonists , Receptors, Opioid/deficiency , Receptors, Opioid/genetics , Nociceptin Receptor , Nociceptin
2.
Cell ; 174(1): 156-171.e16, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29909984

ABSTRACT

Extracellular proTGF-ß is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-ß is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVß8-dependent TGF-ß activation. Lrrc33-/- mice lack CNS vascular abnormalities associated with deficiency in TGF-ß-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33-/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33-/- microglia in the same brain suggest that there is little spreading of TGF-ß activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-ß provide localized and selective activation of TGF-ß.


Subject(s)
Carrier Proteins/metabolism , Microglia/metabolism , Nervous System/metabolism , Transforming Growth Factor beta/metabolism , Animals , Axons/metabolism , Bone Marrow Transplantation , Brain/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Cells, Cultured , Integrins/metabolism , Kaplan-Meier Estimate , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Mutagenesis, Site-Directed , Neurodegenerative Diseases/mortality , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Phylogeny , Protein Binding , Protein Precursors/genetics , Protein Precursors/metabolism , Transforming Growth Factor beta/genetics
3.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29775595

ABSTRACT

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Subject(s)
Brain/metabolism , Neurokinin B/metabolism , Protein Precursors/metabolism , Social Isolation , Stress, Psychological , Tachykinins/metabolism , Animals , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Brain/pathology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neurokinin B/genetics , Neurons/cytology , Neurons/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Precursors/antagonists & inhibitors , Protein Precursors/genetics , RNA Interference , RNA, Small Interfering/genetics , Receptors, Tachykinin/antagonists & inhibitors , Receptors, Tachykinin/metabolism , Tachykinins/antagonists & inhibitors , Tachykinins/genetics , Up-Regulation/drug effects
4.
Annu Rev Biochem ; 86: 685-714, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28301740

ABSTRACT

Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.


Subject(s)
Carrier Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Protein Precursors/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Gene Expression , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mitochondria/ultrastructure , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/ultrastructure , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Organelle Biogenesis , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Transport
5.
Cell ; 162(2): 363-374, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186190

ABSTRACT

Animals learn to avoid harmful situations by associating a neutral stimulus with a painful one, resulting in a stable threat memory. In mammals, this form of learning requires the amygdala. Although pain is the main driver of aversive learning, the mechanism that transmits pain signals to the amygdala is not well resolved. Here, we show that neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus are critical for relaying pain signals to the central nucleus of amygdala and that this pathway may transduce the affective motivational aspects of pain. Genetic silencing of CGRP neurons blocks pain responses and memory formation, whereas their optogenetic stimulation produces defensive responses and a threat memory. The pain-recipient neurons in the central amygdala expressing CGRP receptors are also critical for establishing a threat memory. The identification of the neural circuit conveying affective pain signals may be pertinent for treating pain conditions with psychiatric comorbidities.


Subject(s)
Amygdala/physiology , Neural Pathways , Neurons/physiology , Pain/physiopathology , Animals , Behavior, Animal , Calcitonin/genetics , Calcitonin Gene-Related Peptide/metabolism , Conditioning, Psychological , Learning , Parabrachial Nucleus/physiology , Protein Precursors/genetics
6.
Cell ; 155(6): 1323-36, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24315101

ABSTRACT

Circulating glucocorticoid levels oscillate with a robust circadian rhythm, yet the physiological relevance of this rhythmicity remains unclear. Here, we show that modulation of circadian glucocorticoid oscillation by enhancing its amplitude leads to anxiolytic-like behavior. We observed that mice with adrenal subcapsular cell hyperplasia (SCH), a common histological change in the adrenals, are less anxious than mice without SCH. This behavioral change was found to be dependent on the higher amplitude of glucocorticoid oscillation, although the total glucocorticoid secretion is not increased in these mice. Genetic and pharmacologic experiments demonstrated that intermediate opioid peptides secreted from SCH activate CXCR7, a ß-arrestin-biased G-protein-coupled receptor (GPCR), to augment circadian oscillation of glucocorticoid levels in a paracrine manner. Furthermore, recapitulating this paracrine axis by subcutaneous administration of a synthetic CXCR7 ligand is sufficient to induce anxiolytic-like behavior. Adrenocortical ß-arrestin-biased GPCR signaling is a potential target for modulating circadian glucocorticoid oscillation and emotional behavior.


Subject(s)
Anxiety/metabolism , Circadian Rhythm , Glucocorticoids/metabolism , Receptors, CXCR/metabolism , Adrenal Glands/cytology , Adrenal Glands/metabolism , Adrenal Glands/pathology , Amino Acid Sequence , Animals , Enkephalins/chemistry , Enkephalins/genetics , Enkephalins/metabolism , Female , Humans , Male , Mice , Mice, Knockout , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Proprotein Convertase 2/genetics , Proprotein Convertase 2/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Sequence Alignment
7.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917015

ABSTRACT

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Subject(s)
Lamin Type A , Lamin Type B , Nuclear Lamina , Nuclear Lamina/metabolism , Lamin Type A/metabolism , Lamin Type A/genetics , Lamin Type B/metabolism , Lamin Type B/genetics , Humans , Progeria/metabolism , Progeria/genetics , Progeria/pathology , Animals , Protein Precursors/metabolism , Protein Precursors/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice
8.
Nature ; 580(7803): 376-380, 2020 04.
Article in English | MEDLINE | ID: mdl-32296182

ABSTRACT

Mechanosensory feedback from the digestive tract to the brain is critical for limiting excessive food and water intake, but the underlying gut-brain communication pathways and mechanisms remain poorly understood1-12. Here we show that, in mice, neurons in the parabrachial nucleus that express the prodynorphin gene (hereafter, PBPdyn neurons) monitor the intake of both fluids and solids, using mechanosensory signals that arise from the upper digestive tract. Most individual PBPdyn neurons are activated by ingestion as well as the stimulation of the mouth and stomach, which indicates the representation of integrated sensory signals across distinct parts of the digestive tract. PBPdyn neurons are anatomically connected to the digestive periphery via cranial and spinal pathways; we show that, among these pathways, the vagus nerve conveys stomach-distension signals to PBPdyn neurons. Upon receipt of these signals, these neurons produce aversive and sustained appetite-suppressing signals, which discourages the initiation of feeding and drinking (fully recapitulating the symptoms of gastric distension) in part via signalling to the paraventricular hypothalamus. By contrast, inhibiting the same population of PBPdyn neurons induces overconsumption only if a drive for ingestion exists, which confirms that these neurons mediate negative feedback signalling. Our findings reveal a neural mechanism that underlies the mechanosensory monitoring of ingestion and negative feedback control of intake behaviours upon distension of the digestive tract.


Subject(s)
Eating , Feedback , Neurons/physiology , Animals , Enkephalins/genetics , Enkephalins/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Precursors/genetics , Protein Precursors/metabolism , Upper Gastrointestinal Tract/physiology
9.
J Virol ; 98(8): e0192923, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39078152

ABSTRACT

Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins containing preS1/preS2/S, preS2/S, and S domain alone, respectively. S and preS1 domains mediate sequential virion attachment to heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP), respectively, which can be blocked by anti-S and anti-preS1 antibodies. How anti-preS2 antibodies neutralize HBV infectivity remains enigmatic. The late stage of chronic HBV infection often selects for mutated preS2 translation initiation codon to prevent M protein expression, or in-frame preS2 deletions to shorten both L and M proteins. When introduced to infectious clone of genotype C or D, both M-minus mutations and most 5' preS2 deletions sustained virion production. Such mutant progeny viral particles were infectious in NTCP-reconstituted HepG2 cells. Neutralization experiments were performed on the genotype D clone. Although remaining susceptible to anti-preS1 and anti-S neutralizing antibodies, M-minus mutants were only partially neutralized by two anti-preS2 antibodies tested while preS2 deletion mutants were resistant. By infection experiments using viral particles with lost versus increased M protein expression, or a neutralization escaping preS2 deletion only present on L or M protein, we found that both full-length L and M proteins contributed to virus neutralization by the two anti-preS2 antibodies. Thus, immune escape could be a driving force for the selection of M-minus mutations, and especially preS2 deletions. The fact that both L and M proteins could mediate neutralization by anti-preS2 antibodies may shed light on the underlying molecular mechanism.IMPORTANCEThe large (L), middle (M), and small (S) envelope proteins of hepatitis B virus (HBV) contain preS1/preS2/S, preS2/S, and S domain alone, respectively. The discovery of heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP) as the low- and high-affinity HBV receptors could explain neutralizing potential of anti-S and anti-preS1 antibodies, respectively, but how anti-preS2 neutralizing antibodies work remains enigmatic. In this study, we found two M-minus mutants in the context of genotype D partially escaped two anti-preS2 neutralizing antibodies in NTCP-reconstituted HepG2 cells, while several naturally occurring preS2 deletion mutants escaped both antibodies. By point mutations to eliminate or enhance M protein expression, and by introducing preS2 deletion selectively to L or M protein, we found binding of anti-preS2 antibodies to both L and M proteins contributed to neutralization of wild-type HBV infectivity. Our finding may shed light on the possible mechanism(s) whereby anti-preS2 antibodies neutralize HBV infectivity.


Subject(s)
Antibodies, Neutralizing , Hepatitis B Surface Antigens , Hepatitis B virus , Viral Envelope Proteins , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Humans , Hepatitis B Surface Antigens/immunology , Hepatitis B Surface Antigens/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Antibodies, Neutralizing/immunology , Hep G2 Cells , Sequence Deletion , Symporters/immunology , Symporters/genetics , Protein Precursors/immunology , Protein Precursors/genetics , Hepatitis B Antibodies/immunology , Hepatitis B/immunology , Hepatitis B/virology , Genotype , Immune Evasion , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/immunology , Organic Anion Transporters, Sodium-Dependent/metabolism , Virion/immunology
10.
Nature ; 565(7737): 86-90, 2019 01.
Article in English | MEDLINE | ID: mdl-30532001

ABSTRACT

Animals and humans display two types of response to noxious stimuli. The first includes reflexive defensive responses that prevent or limit injury; a well-known example of these responses is the quick withdrawal of one's hand upon touching a hot object. When the first-line response fails to prevent tissue damage (for example, a finger is burnt), the resulting pain invokes a second-line coping response-such as licking the injured area to soothe suffering. However, the underlying neural circuits that drive these two strings of behaviour remain poorly understood. Here we show in mice that spinal neurons marked by coexpression of TAC1Cre and LBX1Flpo drive coping responses associated with pain. Ablation of these spinal neurons led to the loss of both persistent licking and conditioned aversion evoked by stimuli (including skin pinching and burn injury) that-in humans-produce sustained pain, without affecting any of the reflexive defensive reactions that we tested. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei1-3. Consistently, spinal TAC1-lineage neurons are connected to medial thalamic nuclei by direct projections and via indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal level also applies to primary sensory neurons. For example, in response to noxious mechanical stimuli, MRGPRD- and TRPV1-positive nociceptors are required to elicit reflexive and coping responses, respectively. Our study therefore reveals a fundamental subdivision within the cutaneous somatosensory system, and challenges the validity of using reflexive defensive responses to measure sustained pain.


Subject(s)
Adaptation, Psychological/physiology , Chronic Pain/physiopathology , Chronic Pain/psychology , Neural Pathways/physiology , Animals , Avoidance Learning , Conditioning, Classical , Female , Humans , Male , Mediodorsal Thalamic Nucleus/cytology , Mediodorsal Thalamic Nucleus/physiology , Mice , Neurons, Afferent/physiology , Parabrachial Nucleus/cytology , Parabrachial Nucleus/physiology , Protein Precursors/genetics , Protein Precursors/metabolism , Receptors, G-Protein-Coupled/metabolism , TRPV Cation Channels/metabolism , Tachykinins/genetics , Tachykinins/metabolism
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35121658

ABSTRACT

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Subject(s)
Genetic Variation/genetics , Protein Precursors/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Proteins/genetics , rab5 GTP-Binding Proteins/genetics , Alveolar Epithelial Cells/metabolism , Animals , Caenorhabditis elegans/genetics , Humans , Lung/metabolism , Lung Diseases, Interstitial/genetics , Pulmonary Surfactants/metabolism
12.
Proteins ; 92(10): 1206-1219, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38775337

ABSTRACT

A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.


Subject(s)
Models, Molecular , Protein Conformation , Computational Biology/methods , Databases, Protein , Protein Folding , Amino Acid Sequence , Protein Precursors/chemistry , Protein Precursors/metabolism , Protein Precursors/genetics , Proteolysis , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Processing, Post-Translational
13.
RNA ; 28(3): 371-389, 2022 03.
Article in English | MEDLINE | ID: mdl-34934010

ABSTRACT

The two subunits of the eukaryotic ribosome are produced through quasi-independent pathways involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. One of the earliest intermediates of the small subunit (SSU or 40S) is the SSU processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors could induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S.


Subject(s)
Methyltransferases/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Methyltransferases/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics
14.
Plant Cell ; 33(8): 2794-2811, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34235541

ABSTRACT

Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.


Subject(s)
Concanavalin A/chemistry , Concanavalin A/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Protein Precursors/metabolism , Binding Sites , Canavalia/enzymology , Catalytic Domain , Circular Dichroism , Concanavalin A/genetics , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Hydrogen-Ion Concentration , Methylmannosides/metabolism , Models, Molecular , Protein Conformation , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Stability , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solutions
15.
Calcif Tissue Int ; 114(5): 524-534, 2024 May.
Article in English | MEDLINE | ID: mdl-38506955

ABSTRACT

Pre-proenkephalin 1 (Penk1) is a pro-neuropeptide that belongs to the typical opioid peptide's family, having analgesic properties. We previously found Penk1 to be the most downregulated gene in a whole gene profiling analysis performed in osteoblasts subjected to microgravity as a model of mechanical unloading. In this work, Penk1 downregulation was confirmed in the bones of two in vivo models of mechanical unloading: tail-suspended and botulinum toxin A (botox)-injected mice. Consistently, in the sera from healthy volunteers subjected to bed rest, we observed an inverse correlation between PENK1 and bed rest duration. These results prompted us to investigate a role for this factor in bone. Penk1 was highly expressed in mouse bone, but its global deletion failed to impact bone metabolism in vivo. Indeed, Penk1 knock out (Penk1-/-) mice did not show an overt bone phenotype compared to the WT littermates. Conversely, in vitro Penk1 gene expression progressively increased during osteoblast differentiation and its transient silencing in mature osteoblasts by siRNAs upregulated the transcription of the Sost1 gene encoding sclerostin, and decreased Wnt3a and Col1a1 mRNAs, suggesting an altered osteoblast activity due to an impairment of the Wnt pathway. In line with this, osteoblasts treated with the Penk1 encoded peptide, Met-enkephalin, showed an increase of Osx and Col1a1 mRNAs and enhanced nodule mineralization. Interestingly, primary osteoblasts isolated from Penk1-/- mice showed lower metabolic activity, ALP activity, and nodule mineralization, as well as a lower number of CFU-F compared to osteoblasts isolated from WT mice, suggesting that, unlike the transient inhibition, the chronic Penk1 deletion affects both osteoblast differentiation and activity. Taken together, these results highlight a role for Penk1 in the regulation of the response of the bone to mechanical unloading, potentially acting on osteoblast differentiation and activity in a cell-autonomous manner.


Subject(s)
Down-Regulation , Enkephalins , Mice, Knockout , Osteoblasts , Animals , Osteoblasts/metabolism , Osteoblasts/drug effects , Enkephalins/metabolism , Enkephalins/genetics , Mice , Humans , Male , Cell Differentiation , Protein Precursors/metabolism , Protein Precursors/genetics , Mice, Inbred C57BL , Adult
16.
Immunity ; 42(4): 640-53, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25862090

ABSTRACT

Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.


Subject(s)
Interleukin-1alpha/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/drug effects , Receptors, Purinergic P2X7/immunology , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Adenosine Triphosphate/metabolism , Animals , Cadherins/genetics , Cadherins/immunology , Calcium/metabolism , Capillary Permeability/immunology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/pathology , Gene Expression Regulation , HEK293 Cells , Humans , Interleukin-1alpha/genetics , Intubation, Intratracheal , Lipopolysaccharide Receptors/genetics , Lung/drug effects , Lung/immunology , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Mice , Mice, Transgenic , Necrosis/chemically induced , Necrosis/immunology , Necrosis/pathology , Neutrophil Infiltration , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/pathology , Protein Precursors/genetics , Protein Precursors/immunology , Receptors, Purinergic P2X7/genetics , Signal Transduction
17.
J Pept Sci ; 30(4): e3554, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009400

ABSTRACT

The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.


Subject(s)
Conotoxins , Conus Snail , Animals , Mollusk Venoms/chemistry , Mollusk Venoms/genetics , Mollusk Venoms/metabolism , Conotoxins/chemistry , Peptides/chemistry , Conus Snail/chemistry , Protein Precursors/genetics , Protein Precursors/metabolism
18.
Biol Pharm Bull ; 47(6): 1231-1238, 2024.
Article in English | MEDLINE | ID: mdl-38945844

ABSTRACT

Porcine placental extract (PPE) is commonly used in various health foods and cosmetics. PPE use in cosmetics predominantly consist of the water-soluble fraction derived from the entire placenta. In this report, we examined the effect of the hydrophobic constituents of the PPE, specifically the sphingolipid-enriched fraction designated as the sphingolipid-enriched porcine placental extract (SLPPE), on the expression of genes associated with skin function in cultured normal human epidermal keratinocytes. Using quantitative RT-PCR (qRT-PCR) analysis, we found that SLPPE concentrations ranging from 25 to 100 µg/mL upregulated the gene expression of key components associated with the cornified envelope structure (filaggrin (FLG), involucrin (IVL) and loricrin (LOR)), cornification enzymes (transglutaminase 1 (TGM1) and TGM5) and the desquamation enzymes (kallikrein 5 (KLK5) and KLK7). Additionally, KLK5p and FLG protein (FLGp) were detected in the culture supernatants of keratinocytes treated with SLPPE at these concentrations. These findings suggest that SLPPE is possible to promote the cornification and desquamation in epidermal keratinocytes, and it may offer potential benefits in cosmetics.


Subject(s)
Filaggrin Proteins , Kallikreins , Keratinocytes , Sphingolipids , Transglutaminases , Keratinocytes/drug effects , Keratinocytes/metabolism , Humans , Animals , Transglutaminases/metabolism , Transglutaminases/genetics , Swine , Sphingolipids/metabolism , Kallikreins/metabolism , Kallikreins/genetics , Placental Extracts/pharmacology , Cells, Cultured , Female , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Pregnancy
19.
Mediators Inflamm ; 2024: 5821996, 2024.
Article in English | MEDLINE | ID: mdl-39045230

ABSTRACT

Background: Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods: Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results: The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion: According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.


Subject(s)
Cathelicidins , Disease Models, Animal , Enkephalins , Imiquimod , Mice, Inbred C57BL , Protein Precursors , Psoriasis , beta-Defensins , Psoriasis/chemically induced , Psoriasis/metabolism , Animals , Mice , Female , beta-Defensins/metabolism , beta-Defensins/genetics , Protein Precursors/metabolism , Protein Precursors/genetics , Enkephalins/metabolism , Enkephalins/genetics , Antimicrobial Cationic Peptides/metabolism , Skin/metabolism , Skin/pathology , Skin/drug effects , Biomarkers/metabolism
20.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526678

ABSTRACT

Mitochondrial protein import requires outer membrane receptors that evolved independently in different lineages. Here we used quantitative proteomics and in vitro binding assays to investigate the substrate preferences of ATOM46 and ATOM69, the two mitochondrial import receptors of Trypanosoma brucei The results show that ATOM46 prefers presequence-containing, hydrophilic proteins that lack transmembrane domains (TMDs), whereas ATOM69 prefers presequence-lacking, hydrophobic substrates that have TMDs. Thus, the ATOM46/yeast Tom20 and the ATOM69/yeast Tom70 pairs have similar substrate preferences. However, ATOM46 mainly uses electrostatic, and Tom20 hydrophobic, interactions for substrate binding. In vivo replacement of T. brucei ATOM46 by yeast Tom20 did not restore import. However, replacement of ATOM69 by the recently discovered Tom36 receptor of Trichomonas hydrogenosomes, while not allowing for growth, restored import of a large subset of trypanosomal proteins that lack TMDs. Thus, even though ATOM69 and Tom36 share the same domain structure and topology, they have different substrate preferences. The study establishes complementation experiments, combined with quantitative proteomics, as a highly versatile and sensitive method to compare in vivo preferences of protein import receptors. Moreover, it illustrates the role determinism and contingencies played in the evolution of mitochondrial protein import receptors.


Subject(s)
Evolution, Molecular , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Animals , Carrier Proteins/genetics , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Protein Binding , Protein Precursors/genetics , Protein Transport/genetics , Saccharomyces cerevisiae/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL