Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.137
Filter
Add more filters

Publication year range
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38518773

ABSTRACT

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lung , Polysaccharides, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Female , Male , Mice , Biofilms , Escherichia coli/physiology , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas aeruginosa/physiology , Sensory Receptor Cells , Polysaccharides, Bacterial/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Nociceptors/metabolism
2.
Cell ; 186(23): 5098-5113.e19, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37918395

ABSTRACT

Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.


Subject(s)
Antibodies, Bacterial , Antibodies, Neutralizing , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Antibodies, Bacterial/pharmacology , Cryoelectron Microscopy , Immunoglobulins/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas Infections/drug therapy
3.
Annu Rev Biochem ; 89: 741-768, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569526

ABSTRACT

Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Glycolipids/biosynthesis , O Antigens/biosynthesis , Polyprenols/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Carbon-Oxygen Ligases/chemistry , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Protein Structure, Secondary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Teichoic Acids/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
4.
Cell ; 183(1): 110-125.e11, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32888431

ABSTRACT

During respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened. However, this would translate to omnipresent persistent inflammation. Developing in vivo real-time intravital imaging of alveoli revealed AMs crawling in and between alveoli using the pores of Kohn. Importantly, these macrophages sensed, chemotaxed, and, with high efficiency, phagocytosed inhaled bacterial pathogens such as P. aeruginosa and S. aureus, cloaking the bacteria from neutrophils. Impairing AM chemotaxis toward bacteria induced superfluous neutrophil recruitment, leading to inappropriate inflammation and injury. In a disease context, influenza A virus infection impaired AM crawling via the type II interferon signaling pathway, and this greatly increased secondary bacterial co-infection.


Subject(s)
Bacteria/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Animals , Female , Homeostasis , Humans , Lung/immunology , Lung/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Neutrophils/immunology , Phagocytosis/immunology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/pathogenicity , Pulmonary Alveoli , Signal Transduction , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity
5.
Cell ; 182(4): 919-932.e19, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32763156

ABSTRACT

Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.


Subject(s)
Biofilms/growth & development , DNA/chemistry , Pseudomonas aeruginosa/physiology , Pyocyanine/chemistry , DNA/metabolism , Electrochemical Techniques , Electrodes , Electron Transport/drug effects , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Phenazines/chemistry , Phenazines/metabolism , Phenazines/pharmacology , Pyocyanine/metabolism
6.
Cell ; 181(7): 1518-1532.e14, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32497502

ABSTRACT

The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.


Subject(s)
Gram-Negative Bacteria/drug effects , Pyrroles/metabolism , Pyrroles/pharmacology , Quinazolines/metabolism , Quinazolines/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Female , Folic Acid/metabolism , Gram-Positive Bacteria/drug effects , HEK293 Cells , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Ovariectomy , Proteomics , Pseudomonas aeruginosa/drug effects
7.
Nat Immunol ; 23(1): 75-85, 2022 01.
Article in English | MEDLINE | ID: mdl-34937930

ABSTRACT

We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in two kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including tumor-necrosis factor and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia, whereas infection with Citrobacter rodentium caused worse inflammatory colitis than in wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.


Subject(s)
ADAM17 Protein/genetics , Carrier Proteins/genetics , Primary Immunodeficiency Diseases/genetics , A549 Cells , Animals , Child , Child, Preschool , Citrobacter rodentium/pathogenicity , Colitis/genetics , Cytokines/genetics , Enterobacteriaceae Infections/genetics , Female , HEK293 Cells , Humans , Infant, Newborn , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/pathogenicity , Signal Transduction/genetics
8.
Cell ; 178(6): 1452-1464.e13, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474367

ABSTRACT

Phages express anti-CRISPR (Acr) proteins to inhibit CRISPR-Cas systems that would otherwise destroy their genomes. Most acr genes are located adjacent to anti-CRISPR-associated (aca) genes, which encode proteins with a helix-turn-helix DNA-binding motif. The conservation of aca genes has served as a signpost for the identification of acr genes, but the function of the proteins encoded by these genes has not been investigated. Here we reveal that an acr-associated promoter drives high levels of acr transcription immediately after phage DNA injection and that Aca proteins subsequently repress this transcription. Without Aca activity, this strong transcription is lethal to a phage. Our results demonstrate how sufficient levels of Acr proteins accumulate early in the infection process to inhibit existing CRISPR-Cas complexes in the host cell. They also imply that the conserved role of Aca proteins is to mitigate the deleterious effects of strong constitutive transcription from acr promoters.


Subject(s)
Bacteriophages/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Viral Proteins/genetics , CRISPR-Associated Proteins/genetics , Escherichia coli/virology , Promoter Regions, Genetic/genetics , Pseudomonas aeruginosa/virology , Transcription Factors/genetics , Transcription, Genetic
9.
Cell ; 177(7): 1827-1841.e12, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31178117

ABSTRACT

The ability to inherit learned information from parents could be evolutionarily beneficial, enabling progeny to better survive dangerous conditions. We discovered that, after C. elegans have learned to avoid the pathogenic bacteria Pseudomonas aeruginosa (PA14), they pass this learned behavior on to their progeny, through either the male or female germline, persisting through the fourth generation. Expression of the TGF-ß ligand DAF-7 in the ASI sensory neurons correlates with and is required for this transgenerational avoidance behavior. Additionally, the Piwi Argonaute homolog PRG-1 and its downstream molecular components are required for transgenerational inheritance of both avoidance behavior and ASI daf-7 expression. Animals whose parents have learned to avoid PA14 display a PA14 avoidance-based survival advantage that is also prg-1 dependent, suggesting an adaptive response. Transgenerational epigenetic inheritance of pathogenic learning may optimize progeny decisions to increase survival in fluctuating environmental conditions.


Subject(s)
Argonaute Proteins , Avoidance Learning , Behavior, Animal , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Epigenesis, Genetic , Transforming Growth Factor beta , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Pseudomonas aeruginosa , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
10.
Cell ; 174(4): 908-916.e12, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30033365

ABSTRACT

Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.


Subject(s)
Bacteriophages/immunology , CRISPR-Cas Systems/immunology , Immunosuppression Therapy , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , Evolution, Molecular , Models, Theoretical , Pseudomonas aeruginosa/genetics
11.
Cell ; 174(4): 917-925.e10, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30033364

ABSTRACT

Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.


Subject(s)
Bacteriophages/immunology , CRISPR-Cas Systems/immunology , Host-Pathogen Interactions/immunology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , Viral Proteins/immunology , Evolution, Molecular , Pseudomonas aeruginosa/genetics , Viral Proteins/metabolism
12.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307490

ABSTRACT

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Subject(s)
Cystic Fibrosis/microbiology , Drug Resistance, Bacterial , Evolution, Molecular , Phenotype , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Cystic Fibrosis/complications , DNA-Binding Proteins/genetics , Humans , Male , Middle Aged , Mutation , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Selection, Genetic , Transcription Factors/genetics
13.
Cell ; 173(4): 920-933.e13, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29576451

ABSTRACT

Inflammasome activation is critical for host defenses against various microbial infections. Activation of the NLRC4 inflammasome requires detection of flagellin or type III secretion system (T3SS) components by NLR family apoptosis inhibitory proteins (NAIPs); yet how this pathway is regulated is unknown. Here, we found that interferon regulatory factor 8 (IRF8) is required for optimal activation of the NLRC4 inflammasome in bone-marrow-derived macrophages infected with Salmonella Typhimurium, Burkholderia thailandensis, or Pseudomonas aeruginosa but is dispensable for activation of the canonical and non-canonical NLRP3, AIM2, and Pyrin inflammasomes. IRF8 governs the transcription of Naips to allow detection of flagellin or T3SS proteins to mediate NLRC4 inflammasome activation. Furthermore, we found that IRF8 confers protection against bacterial infection in vivo, owing to its role in inflammasome-dependent cytokine production and pyroptosis. Altogether, our findings suggest that IRF8 is a critical regulator of NAIPs and NLRC4 inflammasome activation for defense against bacterial infection.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Inflammasomes/metabolism , Interferon Regulatory Factors/metabolism , Neuronal Apoptosis-Inhibitory Protein/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Calcium-Binding Proteins/genetics , Cells, Cultured , Cytokines/metabolism , Electrophoretic Mobility Shift Assay , Flagellin/metabolism , Interferon Regulatory Factors/antagonists & inhibitors , Interferon Regulatory Factors/genetics , Macrophages/cytology , Macrophages/metabolism , Macrophages/microbiology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuronal Apoptosis-Inhibitory Protein/genetics , Promoter Regions, Genetic , Protein Binding , Pseudomonas aeruginosa/pathogenicity , Pyroptosis , RNA Interference , RNA, Small Interfering/metabolism , Salmonella typhimurium/pathogenicity , Transcription, Genetic
14.
Annu Rev Biochem ; 86: 799-823, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28426241

ABSTRACT

Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Cell Membrane/drug effects , Heme/antagonists & inhibitors , Iron/metabolism , Pseudomonas aeruginosa/drug effects , Receptors, Cell Surface/antagonists & inhibitors , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport/drug effects , Cell Membrane/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Gene Expression , Heme/metabolism , Metalloporphyrins/chemical synthesis , Metalloporphyrins/pharmacology , Models, Molecular , Protein Conformation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Siderophores/antagonists & inhibitors , Siderophores/biosynthesis , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
15.
Annu Rev Biochem ; 86: 777-797, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28654321

ABSTRACT

Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.


Subject(s)
Biofilms/growth & development , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Membrane Proteins/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Spores, Bacterial/metabolism , Aliivibrio fischeri/genetics , Aliivibrio fischeri/growth & development , Aliivibrio fischeri/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Caulobacter crescentus/genetics , Caulobacter crescentus/growth & development , Caulobacter crescentus/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Glutathione/metabolism , Membrane Proteins/genetics , Oxidation-Reduction , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Signal Transduction , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Streptomyces/genetics , Streptomyces/growth & development , Streptomyces/metabolism
16.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36804958

ABSTRACT

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Receptors, Cytoplasmic and Nuclear/metabolism , Immunity, Innate , Bacteria , Pseudomonas aeruginosa/metabolism
17.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985564

ABSTRACT

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Cryoelectron Microscopy , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/immunology , Bacteriophages/genetics , Bacteriophages/immunology , CRISPR-Associated Proteins/immunology , CRISPR-Associated Proteins/ultrastructure , DNA, Viral/chemistry , Models, Chemical , Models, Molecular , Multiprotein Complexes/chemistry , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/ultrastructure
18.
Cell ; 169(1): 47-57.e11, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340349

ABSTRACT

Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.


Subject(s)
Bacteriophages/chemistry , CRISPR-Associated Proteins/chemistry , Clustered Regularly Interspaced Short Palindromic Repeats , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , RNA, Bacterial/chemistry , Viral Proteins/chemistry , Bacteriophages/classification , Bacteriophages/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Immunologic Surveillance , Models, Molecular , Pseudomonas aeruginosa/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/ultrastructure , Viral Proteins/ultrastructure
19.
Cell ; 168(1-2): 200-209.e12, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086091

ABSTRACT

Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PAPERCLIP.


Subject(s)
Bacillus subtilis/physiology , Biofilms , Electrophysiological Phenomena , Pseudomonas aeruginosa/physiology , Biofilms/classification , Membrane Potentials , Microfluidic Analytical Techniques , Models, Biological , Potassium/metabolism
20.
Immunity ; 55(5): 824-826, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545032

ABSTRACT

The mechanisms of how infectious diseases contribute to allergy remain unanswered. In this issue of Immunity, Agaronyan et al. (2022) show that Pseudomonas aeruginosa drives immune deviation through induction of type 2 immune responses, resulting in niche remodeling that incites allergic responses to innocuous antigens.


Subject(s)
Hypersensitivity , Pseudomonas Infections , Humans , Pseudomonas , Pseudomonas aeruginosa , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL