Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Publication year range
1.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731636

ABSTRACT

Plant in vitro cultures can be an effective tool in obtaining desired specialized metabolites. The purpose of this study was to evaluate the effect of light-emitting diodes (LEDs) on phenolic compounds in Rhaponticum carthamoides shoots cultured in vitro. R. carthamoides is an endemic and medicinal plant at risk of extinction due to the massive harvesting of its roots and rhizomes from the natural environment. The shoots were cultured on an agar-solidified and liquid-agitated Murashige and Skoog's medium supplemented with 0.1 mg/L of indole-3-acetic acid (IAA) and 0.5 mg/L of 6-benzyladenine (BA). The effect of the medium and different treatments of LED lights (blue (BL), red (RL), white (WL), and a combination of red and blue (R:BL; 7:3)) on R. carthamoides shoot growth and its biosynthetic potential was observed. Medium type and the duration of LED light exposure did not affect the proliferation rate of shoots, but they altered the shoot morphology and specialized metabolite accumulation. The liquid medium and BL light were the most beneficial for the caffeoylquinic acid derivatives (CQAs) production, shoot growth, and biomass increment. The liquid medium and BL light enhanced the content of the sum of all identified CQAs (6 mg/g DW) about three-fold compared to WL light and control, fluorescent lamps. HPLC-UV analysis confirmed that chlorogenic acid (5-CQA) was the primary compound in shoot extracts regardless of the type of culture and the light conditions (1.19-3.25 mg/g DW), with the highest level under R:BL light. BL and RL lights were equally effective. The abundant component was also 3,5-di-O-caffeoylquinic acid, accompanied by 4,5-di-O-caffeoylquinic acid, a tentatively identified dicaffeoylquinic acid derivative, and a tricaffeoylquinic acid derivative 2, the contents of which depended on the LED light conditions.


Subject(s)
Flavonoids , Light , Plant Shoots , Quinic Acid , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/metabolism , Quinic Acid/chemistry , Flavonoids/metabolism , Flavonoids/chemistry , Indoleacetic Acids/metabolism
2.
J Sci Food Agric ; 103(1): 420-427, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36373791

ABSTRACT

BACKGROUND: Spent coffee grounds (SCGs) are a good source of chlorogenic acid (CGA), which can be hydrolyzed to quinic acid (QA) and caffeic acid (CA). These molecules have antioxidant and neuroprotective capacities, benefiting human health. The hydrolysis of CGA can be done by biotechnological processes, such as solid-state fermentation (SSF). This work evaluated the use of SSF with Aspergillus sp. for the joint release of the three molecules from SCGs. RESULTS: Hydroalcoholic extraction of the total phenolic compounds (TPCs) from SCGs was optimized, obtaining 28.9 ± 1.97 g gallic acid equivalent (GAE) kg-1 SCGs using 0.67 L ethanol per 1 L, a 1:9 solid/liquid ratio, and a 63 min extraction time. Subsequently, SSF was performed for 30 days, achieving the maximum yields for CGA, QA, and TPCs on the 16th day: 7.12 ± 0.01 g kg-1 , 4.68 ± 0.11 g kg-1 , and 54.96 ± 0.49 g GAE kg-1 respectively. CA reached its maximum value on the 23rd day, at 4.94 ± 0.04 g kg-1 . The maximum antioxidant capacity was 635.7 mmol Trolox equivalents kg-1 on the 14th day. Compared with unfermented SCGs extracts, TPCs and CGA increase their maximum values 2.3-fold, 18.6-fold for CA, 14.2 for QA, and 6.4-fold for antioxidant capacity. Additionally, different extracts' profiles were obtained throughout the SSF process, allowing us to adjust the type of enriched extract to be produced based on the SSF time. CONCLUSION: SSF represents an alternative to produce extracts with different compositions and, consequently, different antioxidant capacities, which is a potentially attractive fermentation process for different applications. © 2022 Society of Chemical Industry.


Subject(s)
Antioxidants , Coffee , Humans , Coffee/chemistry , Fermentation , Antioxidants/chemistry , Caffeic Acids/chemistry , Chlorogenic Acid/analysis , Quinic Acid/analysis , Quinic Acid/chemistry , Phenols , Plant Extracts
3.
Plant J ; 107(5): 1299-1319, 2021 09.
Article in English | MEDLINE | ID: mdl-34171156

ABSTRACT

Caffeoylquinic acids (CQAs) are specialized plant metabolites we encounter in our daily life. Humans consume CQAs in mg-to-gram quantities through dietary consumption of plant products. CQAs are considered beneficial for human health, mainly due to their anti-inflammatory and antioxidant properties. Recently, new biosynthetic pathways via a peroxidase-type p-coumaric acid 3-hydroxylase enzyme were discovered. More recently, a new GDSL lipase-like enzyme able to transform monoCQAs into diCQA was identified in Ipomoea batatas. CQAs were recently linked to memory improvement; they seem to be strong indirect antioxidants via Nrf2 activation. However, there is a prevalent confusion in the designation and nomenclature of different CQA isomers. Such inconsistencies are critical and complicate bioactivity assessment since different isomers differ in bioactivity and potency. A detailed explanation regarding the origin of such confusion is provided, and a recommendation to unify nomenclature is suggested. Furthermore, for studies on CQA bioactivity, plant-based laboratory animal diets contain CQAs, which makes it difficult to include proper control groups for comparison. Therefore, a synthetic diet free of CQAs is advised to avoid interferences since some CQAs may produce bioactivity even at nanomolar levels. Biotransformation of CQAs by gut microbiota, the discovery of new enzymatic biosynthetic and metabolic pathways, dietary assessment, and assessment of biological properties with potential for drug development are areas of active, ongoing research. This review is focused on the chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity recently reported for mono-, di-, tri-, and tetraCQAs.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Cognitive Dysfunction/prevention & control , Neuroprotective Agents/chemistry , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Quinic Acid/analogs & derivatives , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Biosynthetic Pathways , Brachypodium/enzymology , Dietary Supplements , Humans , Ipomoea batatas/enzymology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Quinic Acid/chemistry , Quinic Acid/metabolism , Quinic Acid/pharmacology , Terminology as Topic
4.
Chembiochem ; 23(3): e202100539, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34850523

ABSTRACT

The discovery of a bioactive inhibitor tool for human polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts), the initiating enzyme for mucin-type O-glycosylation, remains challenging. In the present study, we identified an array of quinic acid derivatives, including four new glycerates (1-4) from Tussilago farfara, a traditional Chinese medicinal plant, as active inhibitors of GalNAc-T2 using a combined screening approach with a cell-based T2-specific sensor and purified enzyme assay. These inhibitors dose-dependently inhibited human GalNAc-T2 but did not affect O-linked N-acetylglucosamine transferase (OGT), the other type of glycosyltransferase. Importantly, they are not cytotoxic and retain inhibitory activity in cells lacking elongated O-glycans, which are eliminated by the CRISPR/Cas9 gene editing tool. A structure-activity relationship study unveiled a novel quinic acid-caffeic acid conjugate pharmacophore that directs inhibition. Overall, these new natural product inhibitors could serve as a basis for developing an inhibitor tool for GalNAc-T2.


Subject(s)
Enzyme Inhibitors/pharmacology , N-Acetylgalactosaminyltransferases/antagonists & inhibitors , Quinic Acid/pharmacology , Tussilago/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Flowers/chemistry , Flowers/metabolism , Glycosylation , HEK293 Cells , Humans , Molecular Conformation , N-Acetylgalactosaminyltransferases/isolation & purification , N-Acetylgalactosaminyltransferases/metabolism , Quinic Acid/chemistry , Quinic Acid/metabolism , Structure-Activity Relationship , Tussilago/metabolism , Polypeptide N-acetylgalactosaminyltransferase
5.
J Chem Inf Model ; 62(23): 6133-6147, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36398926

ABSTRACT

Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.


Subject(s)
Chlorogenic Acid , Quinic Acid , Ovalbumin , Quinic Acid/chemistry , Quinic Acid/pharmacology , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Fluorescence , Protein Binding , Binding Sites , Molecular Docking Simulation , Thermodynamics
6.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164118

ABSTRACT

Diabetes mellitus is a chronic disease affecting the globe and its incidence is increasing pandemically. The use of plant-derived natural products for diabetes management is of great interest. Polar fraction of Artemisia annua L. leaves has shown antidiabetic activity in vivo. In the present study, three major compounds were isolated from this polar fraction; namely, 3,5-dicaffeoylquinic acid (1); 4,5-dicaffeoylquinic acid (2), and 3,4- dicaffeoylquinic acid methyl ester (3), using VLC-RP-18 and HPLC techniques. The potential protective effects of these compounds against diabetes and its complications were investigated by employing various in vitro enzyme inhibition assays. Furthermore, their antioxidant and wound healing effectiveness were evaluated. Results declared that these dicaffeoylquinic acids greatly inhibited DPPIV enzyme while moderately inhibited α-glucosidase enzyme, where compounds 1 and 3 displayed the most prominent effects. In addition, compound 3 showed pronounced inhibition of α-amylase enzyme. Moreover, these compounds markedly inhibited aldose reductase enzyme and exerted powerful antioxidant effects, among which compound 3 exhibited the highest activity implying a notable potentiality in impeding diabetes complications. Interestingly, compounds 2 and 3 moderately accelerated scratch wound healing. Our findings suggest that these dicaffeoylquinic acids can be promising therapeutic agents for managing diabetes and its complications.


Subject(s)
Artemisia annua/chemistry , Diabetes Complications/prevention & control , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Plant Leaves/chemistry , Quinic Acid/analogs & derivatives , Cell Line , Diabetes Complications/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology
7.
Biosci Biotechnol Biochem ; 85(2): 369-377, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33604640

ABSTRACT

Oenanthe javanica is a vegetable grown in East Asia and Australia in which the roots and aerial parts are boiled together to make certain traditional dishes. Nineteen compounds (1-19) were isolated from O. javanica roots and the chemical structures of 2 new norlignans were determined. The inhibitory effects of the compounds on hyaluronidase and degranulation in RBL-2H3 cells were evaluated to determine antiallergic and antiinflammation activities. Saponins (2-4) and the new norlignan seric acid G (12) were among the active compounds identified. Seric acid G (12), a methoxy derivative of seric acid F (11), was obtained as an interconverting mixture of 3:1 trans-cis isomers. Seric acids F and G (11, 12) were derived from seric acids C (10) and E, respectively, by decarboxylation and dehydration reactions that occurred during heating. It was confirmed by HPLC analysis that all eleven of the O. javanica cultivars contained seric acid C (10).


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hot Temperature , Hyaluronoglucosaminidase/antagonists & inhibitors , Oenanthe/chemistry , Plant Roots/chemistry , Propanols/chemistry , Cell Line , Quinic Acid/chemistry , Saponins/chemistry
8.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946775

ABSTRACT

Bioactive compounds in fruit and vegetables influence each other's antioxidant activity. Pure standards, and mixtures of the common plant compounds, namely ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside (sum 0.3 mM), in the presence and absence of iron, were analyzed pre- and post-thermal processing in an aqueous solution. Antioxidant activity was measured by total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (TEAC) radical-scavenging assays. Ionic ferrous iron (Fe2+) and ferric iron (Fe3+) were measured photometrically. For qualification and quantification of reaction products, HPLC was used. Results showed that thermal processing does not necessarily lead to a decreased antioxidant activity, even if the compound concentrations decreased, as then degradation products themselves have an antioxidant activity. In all used antioxidant assays the 2:1 ratio of ascorbic acid and 5-caffeoylquinic acid in the presence of iron had strong synergistic effects, while the 1:2 ratio had strong antagonistic effects. The pro-oxidant iron positively influenced the antioxidant activity in combination with the used antioxidants, while ferrous iron itself interacted with common in vitro assays for total antioxidant activity. These results indicate that the antioxidant activity of compounds is influenced by factors such as interaction with other molecules, temperature, and the minerals present.


Subject(s)
Antioxidants/chemistry , Ascorbic Acid/chemistry , Hot Temperature , Iron/chemistry , Quinic Acid/analogs & derivatives , Rutin/chemistry , Quinic Acid/chemistry
9.
Molecules ; 26(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435516

ABSTRACT

Owing to their antioxidant properties, caffeoylquinic acid (CQA)-derivatives could potentially improve the impaired metabolism in hepatic cells, however, their effect on mitochondrial function has not been demonstrated yet. Here, we evaluated the impact of three CQA-derivatives extracted from purple sweet potato, namely 5-CQA, 3,4- and 4,5-diCQA, on mitochondrial activity in primary hepatocytes using an extracellular flux analyzer. Notably, an increase of maximal respiration and spare respiratory capacity were observed when 5-CQA and 3,4-diCQA were added to the system indicating the improved mitochondrial function. Moreover, 3,4-diCQA was shown to considerably increase glycolytic reserve which is a measure of cell capability to respond to an energy demand through glycolysis. Conversely, 4,5-diCQA did not modify mitochondrial activity but increased glycolysis at low concentration in primary hepatocytes. All compounds tested improved cellular capacity to oxidize fatty acids. Overall, our results demonstrated the potential of test CQA-derivatives to modify mitochondrial function in hepatic cells. It is especially relevant in case of dysfunctional mitochondria in hepatocytes linked to hepatic steatosis during obesity, diabetes, and metabolic syndrome.


Subject(s)
Hepatocytes/drug effects , Ipomoea batatas/chemistry , Mitochondria/drug effects , Plant Extracts/pharmacology , Quinic Acid/analogs & derivatives , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology
10.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34500636

ABSTRACT

The African pumpkin (Momordica balsamina) contains bioactive phenolic compounds that may assist in reducing oxidative stress in the human body. The leaves are mainly consumed after boiling in water for a specific time; this hydrothermal process and conditions of the gastrointestinal tract may affect the presence and bioactivity of phenolics either positively or negatively. In this study, the effects of hydrothermal processing (boiling) and in vitro simulated human digestion on the phenolic composition, bioaccessibility and bioactivity in African pumpkin were investigated in comparison with those of spinach (Spinacia oleracea). A high-resolution ultra-performance liquid chromatography, coupled with diode array detection, quadrupole time-of-flight and mass spectrometer (UPLC-DAD-QTOF-MS) was used to profile phenolic metabolites. Metabolites such as 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were highly concentrated in the boiled vegetable extracts compared to the raw undigested and all digested samples. The majority of African pumpkin and spinach extracts (non-digested and digested) protected Deoxyribonucleic acid (DNA), (mouse fibroblast) L929 and human epithelial colorectal adenocarcinoma (Caco-2) cells from 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. From these results, the consumption of boiled African pumpkin leaves, as well as spinach, could be encouraged, as bioactive metabolites present may reduce oxidative stress in the body.


Subject(s)
Cucurbita/chemistry , Digestion/drug effects , Momordica/chemistry , Phenols/chemistry , Phenols/pharmacology , Plant Leaves/chemistry , Animals , Antioxidants/chemistry , Caco-2 Cells , Cell Line, Tumor , Flavonoids/chemistry , Humans , Mice , Oxidation-Reduction/drug effects , Plant Extracts/chemistry , Polyphenols/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Spinacia oleracea/chemistry , Vegetables/chemistry
11.
Mediators Inflamm ; 2020: 4620251, 2020.
Article in English | MEDLINE | ID: mdl-32410853

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the anti-inflammatory effects of the crude extract (CE), derived fraction, and isolated compounds from Calea pinnatifida leaves in a mouse model of pulmonary neutrophilia. METHODS: The CE and derived fractions, hexane, ethyl acetate, and methanol, were obtained from C. pinnatifida leaves. The compounds 3,5- and 4,5-di-O-E-caffeoylquinic acids were isolated from the EtOAc fraction using chromatography and were identified using infrared spectroscopic data and nuclear magnetic resonance (1H and 13C NMR). Leukocytes count, protein concentration of the exudate, myeloperoxidase (MPO) and adenosine deaminase (ADA), and nitrate/nitrite (NO x ), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1ß), and interleukin-17A (IL-17A) levels were determined in the pleural fluid leakage after 4 h of pleurisy induction. We also analyzed the effects of isolated compounds on the phosphorylation of both p65 and p38 in the lung tissue. RESULTS: The CE, its fractions, and isolated compounds inhibited leukocyte activation, protein concentration of the exudate, and MPO, ADA, NO x , TNF-α, IL-1ß, and IL-17A levels. 3,5- and 4,5-di-O-E-caffeoylquinic acids also inhibited phosphorylation of both p65 and p38 (P < 0.05). CONCLUSION: This study demonstrated that C. pinnatifida presents important anti-inflammatory properties by inhibiting activated leukocytes and protein concentration of the exudate. These effects were related to the inhibition of proinflammatory mediators. The dicaffeoylquinic acids may be partially responsible for these anti-inflammatory properties through the inhibition of nuclear transcription factor kappa B and mitogen-activated protein kinase pathways.


Subject(s)
Asteraceae/chemistry , Inflammation/drug therapy , Leukocyte Disorders/drug therapy , Lung Diseases/drug therapy , Neutrophils/drug effects , Plant Extracts/pharmacology , Adenosine Deaminase/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Carrageenan , Disease Models, Animal , Female , Inflammation/chemically induced , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Leukocyte Disorders/chemically induced , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Diseases/chemically induced , Mice , Nitrates/chemistry , Nitrites/chemistry , Peroxidase/metabolism , Phosphorylation , Pleurisy/drug therapy , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Biomed Chromatogr ; 34(2): e4726, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31654585

ABSTRACT

Multicompound determination for the quality control of traditional Chinese medicine (TCM) may often be inadequate, since these compounds may not be associated with, or fully represent, the clinical effects of TCM. Moreover, the individual contributions of each constituent to the pharmacological effect are often not considered. In China, Porana sinensis is widely used as a substitute for Erycibe sources to treat joint pain and rheumatoid arthritis. The existing quality control methods for P. sinensis neither consider the individual contributions of various compounds nor control the actual quality associated with different clinical efficacies. In the present study, a novel efficacy-oriented approach, named the effect-constituent index (ECI), was established for P. sinensis. Analyses of the spectrum-effect relationship and components in rat plasma were conducted to systematically and scientifically select quality markers. Quantitative analysis of multicomponents via a single marker method was introduced to enhance the practical application value of the established ECI. The established ECI shows a good ability to distinguish and predict the bioeffect-based quality of P. sinensis. The present study also provides a reference for the establishment and application of ECI as a quality control method for TCMs.


Subject(s)
Convolvulaceae/chemistry , Drugs, Chinese Herbal , Animals , Chlorogenic Acid/blood , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacokinetics , Chromatography, High Pressure Liquid , Coumarins/blood , Coumarins/chemistry , Coumarins/pharmacokinetics , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/standards , Glucosides/blood , Glucosides/chemistry , Glucosides/pharmacokinetics , Linear Models , Medicine, Chinese Traditional , Quality Control , Quinic Acid/analogs & derivatives , Quinic Acid/blood , Quinic Acid/chemistry , Quinic Acid/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of Results
13.
Chem Biodivers ; 17(4): e2000051, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32187453

ABSTRACT

Chlorogenic (5-CQA), 1,5-, 3,5-, 4,5- and 3,4-dicaffeoylquinic (DCQA) acids were identified and quantified in the methanol extracts of Inula oculus-christi L., I. bifrons L., I. aschersoniana Janka var. aschersoniana, I. ensifolia L., I. conyza (Griess.) DC. and I. germanica L. by HPLC analysis. The amount of 5-CQA varied from 5.48 to 28.44 mg/g DE and the highest content was detected in I. ensifolia. 1,5-DCQA (4.05-55.25 mg/g DE) was the most abundant dicaffeoyl ester of quinic acid followed by 3,5-DCQA, 4,5-DCQA and 3,4-DCQA. The extract of I. ensifolia showed the highest total phenolic content (119.92±0.95 mg GAE/g DE) and exhibited the strongest DPPH radical scavenging activity (69.41±0.55 %). I. bifrons extract was found to be the most active sample against ABTS.+ (TEAC 0.257±0.012 mg/mL) and the best tyrosinase inhibitor. The studied extracts demonstrated a low inhibitory effect towards acetylcholinesterase and possessed low cytotoxicity in concentration range from 10 to 300 µg/mL toward non-cancer (MDCK II) and cancer (A 549) cells.


Subject(s)
Acetylcholinesterase/chemistry , Antioxidants/chemistry , Enzyme Inhibitors/chemistry , Inula/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Quinic Acid/analogs & derivatives , Acetylcholinesterase/metabolism , Animals , Bulgaria , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Dogs , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Flowers/chemistry , Flowers/metabolism , Humans , Inula/metabolism , Madin Darby Canine Kidney Cells , Monophenol Monooxygenase/metabolism , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology
14.
Molecules ; 25(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722270

ABSTRACT

Studies on hydroglycolic (HG) extracts of Achillea biebersteinii (AB)-a less investigated representative of the genus-were performed to determine their potential for cosmetic applications compared to the well-known Achillea millefolium (AM). Three types of water:polyethylene glycol extracts (1:1, 4:1, 6:1 v/v) were obtained from both species and analyzed for their composition by high performance liquid chromatography coupled with mass spectrometry (HPLC-ESI-Q-TOF-MS) and assayed for their biological activities. The study led to the identification of 11 metabolites from different natural product classes with the highest share corresponding to 5-caffeoylquinic acid, axillarin, coumaroylquinic acid isomers and 3-caffeoylquinic acid. The highest antiradical capacity in DPPH and ABTS scavenging assays was shown for HG 4:1 of AB and AM extracts. HG 1:1 extracts from both species inhibited monophenolase and diphenolase activity of tyrosinase, whereas AB HG 4:1 extract showed significant monophenolase inhibition. The highest sun protection factor (SPF) was determined for AM HG 4:1 extract, equal to 14.04 ± 0.17. The AB extracts were cytotoxic for both human keratinocytes HaCaT and A375 melanoma, however HG 1:1 and 4:1 extracts were more cytotoxic for cancer than for noncancerous cells. In conclusion, AB HG 1:1 and 4:1 extracts display significant potential as active cosmetic ingredients.


Subject(s)
Achillea/chemistry , Cosmetics/chemistry , Cosmetics/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Achillea/classification , Cell Line , Cell Survival/drug effects , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chromatography, Liquid , Flavonoids/chemistry , Flavonoids/pharmacology , Glycolysis , Humans , Mass Spectrometry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Polyethylene Glycols/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Quinic Acid/pharmacology , Water/chemistry
15.
Molecules ; 25(6)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197466

ABSTRACT

Neochlorogenic acid (nCGA) is a phenolic compound isolated from mulberry leaf (Morus alba L.), which possesses multiple pharmacological activities containing antioxidant and anti-inflammatory effects. However, the role of nCGA in the treatment of acute pneumonia and the underlying molecular mechanism are still unclear. Hence, the aim of study is to investigate the anti-inflammatory properties of nCGA on LPS-stimulated inflammation in A549 cells. In the present study, results reported that nCGA without cytotoxicity significantly reduced the production of TNF-α, IL-6, and NO, and further suppressed the proteins of iNOS, COX2, TNF-α, IL-6 expression. Furthermore, nCGA also inhibited NF-κB activation and blocked MAPKs signaling pathway phosphorylation. In addition, we found nCGA significantly increased the expression of HO-1 via activating the AMPK/Nrf2 signaling pathway to attenuate the inflammatory response, whereas this protective effect of nCGA was reversed by pre-treatment with compound C (C.C, an AMPK inhibitor). Therefore, all these results indicated that nCGA might act as a natural anti-inflammatory agent for the treatment of acute pneumonia.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Anti-Inflammatory Agents , Chlorogenic Acid/analogs & derivatives , Morus/chemistry , NF-E2-Related Factor 2/metabolism , Plant Extracts , Plant Leaves/chemistry , Quinic Acid/analogs & derivatives , Signal Transduction/drug effects , A549 Cells , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Chlorogenic Acid/chemistry , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Quinic Acid/chemistry
16.
Molecules ; 25(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422967

ABSTRACT

Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antihypertensive Agents/chemistry , Hibiscus/chemistry , Liquid-Liquid Extraction/methods , Methanol/chemistry , Peptidyl-Dipeptidase A/chemistry , Solvents/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Antihypertensive Agents/isolation & purification , Chlorogenic Acid/chemistry , Chlorogenic Acid/isolation & purification , Chromatography, High Pressure Liquid , Citric Acid/chemistry , Citric Acid/isolation & purification , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Enzyme Assays , Humans , Kaempferols/chemistry , Kaempferols/isolation & purification , Metabolome , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Secondary Metabolism/physiology , Solutions , Structure-Activity Relationship , Tandem Mass Spectrometry
17.
Chem Biodivers ; 16(7): e1900093, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31095892

ABSTRACT

Twelve chlorogenic acid derivatives and two flavones were isolated from Moquiniastrum floribundum (Asteraceae, other name: Gochnatia floribunda). Compounds were evaluated in relation to their cytotoxicity and antiradical properties. Cytotoxicity was not observed for compounds, however, chlorogenic acid derivatives showed antiradical activity and were more active than the Trolox standard. Quinic acid esterified with caffeoyl group at C-4 position showed higher antiradical activity compared to acylation at C-3 or C-5 positions. Additional caffeoyl groups esterified in quinic acid increase the antiradical activity observed for 4-caffeoylquinic acid. Excepted to 3,4-dicaffeoylquinic acid methyl ester, methyl ester derivatives show higher capacity of trapping radicals than their respective acids. Consequently, the presence of caffeoyl group at C-4 position of quinic acid is suggested as fundamental to obtain the highest antiradical activity.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Asteraceae/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates/antagonists & inhibitors , Quinic Acid/analogs & derivatives , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , HCT116 Cells , Humans , Molecular Structure , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology , Structure-Activity Relationship
18.
Int J Mol Sci ; 20(3)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678313

ABSTRACT

Eleutherococcus senticosus Maxim. belongs to the Araliaceae family. Phytochemical studies reveal that E. senticosus leaves contain triterpene glycosides along with organic acid derivatives and flavonoid compounds. It is believed that E. senticosus is similar to ginseng because they come from same family and both contain triterpene saponins. E. senticosus leaves have been developed as a functional beverage called ci-wu-jia tea in recent years. Triterpene glycosides are difficult to identify by ultraviolet (UV) detection and contents of these compounds are low in E. senticosus leaves. In this study, a sensitive ultra-high performance liquid chromatographic (UHPLC) method combining UV and tandem mass spectrometry (MS/MS) was developed to characterize the triterpene glycosides from E. senticosus leaves and related commercial products. Fragmentation patterns of three sub-groups of triterpene glycosides in E. senticosus leaves were investigated. Additionally, fragmentation pathways and UV characteristics of organic acid derivatives and flavonoids were also characterized. A compound screening library, including 241 compounds reported in the literature, was created and used to confirm the compounds in the samples. In this study, a total of 24 samples, including 13 plant samples of E. senticosus and 11 ci-wu-jia tea products, were analyzed. Out of the 11 commercial products, three products were discovered to contain green tea (Camellia sinensis) that was considered to be an adulterant since it was not an ingredient on the labels. The developed UHPLC-UV-MS/MS analytical method combined with the UNIFI processing method can simultaneously characterize organic acid derivatives, flavonoids, and triterpene saponins from E. senticosus. It provides a simple and sensitive way to perform quality control of E. senticosus and related ci-wu-jia tea products.


Subject(s)
Chromatography, High Pressure Liquid/methods , Eleutherococcus/chemistry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Flavonoids/chemistry , Glycosides/chemistry , Quinic Acid/chemistry , Triterpenes/chemistry
19.
Molecules ; 24(5)2019 Mar 09.
Article in English | MEDLINE | ID: mdl-30857274

ABSTRACT

A series of novel caffeoylquinic acid derivatives of chlorogenic acid have been designed and synthesized. Biological evaluation indicated that several synthesized derivatives exhibited moderate to good lipid-lowering effects on oleic acid-elicited lipid accumulation in HepG2 liver cells. Particularly, derivatives 3d, 3g, 4c and 4d exhibited more potential lipid-lowering effect than the positive control simvastatin and chlorogenic acid. Further studies on the mechanism of 3d, 3g, 4c and 4d revealed that the lipid-lowering effects were related to their regulation of TG levels and merit further investigation.


Subject(s)
Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/pharmacology , Oleic Acid/pharmacology , Quinic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Hep G2 Cells , Humans , Hypolipidemic Agents/chemistry , Lipid Metabolism/drug effects , Quinic Acid/chemical synthesis , Quinic Acid/chemistry , Quinic Acid/pharmacology , Simvastatin/pharmacology
20.
Molecules ; 24(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823375

ABSTRACT

The Chrysanthemum morifolium flower is widely used in China and Japan as a food, beverage, and medicine for many diseases. In our work, two new caffeoylquinic acid derivatives (1, 2), a new flavanone glycoside (3), and six reported flavanones (4⁻9) were isolated and identified from the flowers of C. morifolium. The chemical structures of all isolates were elucidated by the analysis of comprehensive spectroscopic data as well as by comparison with previously reported data. The isolated constituents 1⁻8 were evaluated for their neuroprotective activity, and compounds 3 and 4 displayed neuroprotective effects against hydrogen peroxide-induced neurotoxicity in human neuroblastoma SH-SY5Y cells.


Subject(s)
Chrysanthemum/chemistry , Flavanones , Flowers/classification , Glycosides , Neuroprotective Agents , Quinic Acid/analogs & derivatives , Flavanones/chemistry , Flavanones/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Hep G2 Cells , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Quinic Acid/chemistry , Quinic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL