Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.111
Filter
Add more filters

Publication year range
1.
Mutagenesis ; 39(1): 32-42, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37877816

ABSTRACT

The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.


Subject(s)
Alkaloids , Sophora , Matrines , Reproducibility of Results , Alkaloids/toxicity , Alkaloids/analysis , Quinolizines/toxicity , Quinolizines/analysis , Mutation
2.
Arch Microbiol ; 206(7): 292, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849633

ABSTRACT

In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Berberine , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Gentamicins , Matrines , Microbial Sensitivity Tests , Poultry Diseases , Quinolizines , Animals , Gentamicins/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Berberine/pharmacology , Anti-Bacterial Agents/pharmacology , Quinolizines/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Alkaloids/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Virulence/drug effects , Drug Synergism
3.
Bioorg Med Chem ; 108: 117776, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38852257

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) is a common cardiovascular disease that seriously affects the quality of life and prognosis of patients. In recent years, matrine has attracted widespread attention in the treatment of cardiovascular diseases. This study designed, synthesized, and characterized 20 new matrine derivatives and studied their protective effects on ischemia-reperfusion injury through in vivo and in vitro experiments. Based on cellular assays, most newly synthesized derivatives have a certain protective effect on Hypoxia/Reoxygenation (H/R) induced H9C2 cell damage, with compound 22 having the best activity and effectively reducing cell apoptosis and necrosis. In vitro experimental data shows that compound 22 can significantly reduce the infarct size of rat myocardium and improve cardiac function after MI/R injury. In summary, compound 22 is a new potential cardioprotective agent that can promote angiogenesis and enhance antioxidant activity by activating ADCY5, CREB3l4, and VEGFA, thereby protecting myocardial cell apoptosis and necrosis induced by MI/R.


Subject(s)
Alkaloids , Apoptosis , Drug Design , Matrines , Myocardial Reperfusion Injury , Quinolizines , Rats, Sprague-Dawley , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Animals , Quinolizines/pharmacology , Quinolizines/chemical synthesis , Quinolizines/chemistry , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Rats , Apoptosis/drug effects , Male , Structure-Activity Relationship , Molecular Structure , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Dose-Response Relationship, Drug , Cell Line , Neovascularization, Physiologic/drug effects , Angiogenesis
4.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845211

ABSTRACT

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Subject(s)
Alkaloids , HMGB1 Protein , Inflammation , Lipopolysaccharides , NF-kappa B , Quinolizines , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Alkaloids/pharmacology , Alkaloids/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , NF-kappa B/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , THP-1 Cells , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Matrines
5.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928319

ABSTRACT

Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.


Subject(s)
Alkaloids , Dextran Sulfate , Gastrointestinal Microbiome , Matrines , Oxidative Stress , Quinolizines , T-Lymphocytes, Regulatory , Animals , Alkaloids/pharmacology , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Quinolizines/pharmacology , Quinolizines/therapeutic use , Mice , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Male , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/microbiology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Zonula Occludens-1 Protein/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Th17 Cells/drug effects , Th17 Cells/metabolism , Th17 Cells/immunology , Disease Models, Animal , Cytokines/metabolism , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Occludin/metabolism
6.
Vet Anaesth Analg ; 51(2): 144-151, 2024.
Article in English | MEDLINE | ID: mdl-38103967

ABSTRACT

OBJECTIVE: To assess the effects of an α2-adrenoceptor agonist (detomidine) constant rate infusion (CRI) with and without an α2-adrenoceptor antagonist (vatinoxan) CRI on blood insulin and glucose concentrations, heart rate, intestinal borborygmi, and sedation during and after infusion in horses. STUDY DESIGN: Randomized, blinded, crossover, experimental study. ANIMALS: A total of nine healthy, adult Finnhorse mares. METHODS: Horses were treated with an intravenous (IV) detomidine loading dose (0.01 mg kg-1), followed by CRI (0.015 mg kg-1 hour-1), and the same doses of detomidine combined with an IV vatinoxan loading dose (0.15 mg kg-1), followed by CRI (detomidine and vatinoxan; 0.05 mg kg-1 hour-1) with an 18 day washout period. Infusion time was 60 minutes and horses were monitored for 240 minutes after the infusion. Heart rate, borborygmi score and sedation were assessed, and blood glucose, insulin and triglyceride concentrations were measured. Data were analyzed using repeated measures ancova and Wilcoxon signed-rank tests. Values of p < 0.05 were considered statistically significant. RESULTS: Insulin concentration decreased during (median nadir 1.7, range 0.0-2.9 µIU mL-1 at 60 minutes, p < 0.0001) and increased after detomidine CRI (median 36.6, range 11.7-78.4 µIU mL-1 at 180 minutes, p = 0.0001) significantly compared with detomidine and vatinoxan CRI. A significant elevation of blood glucose (peak 11.5 ± 1.6 mmol L-1 at 60 minutes, p < 0.0001) was detected during detomidine CRI. Vatinoxan alleviated the insulin changes and abolished the significant increase in blood glucose. Vatinoxan alleviated the decrease in heart rate (p = 0.0001) during detomidine infusion. No significant differences were detected in sedation scores between treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Vatinoxan attenuated the negative adverse effects of detomidine CRI and thus is potentially beneficial when used in combination with an α2-adrenoceptor agonist CRI in horses.


Subject(s)
Hypnotics and Sedatives , Imidazoles , Insulin , Quinolizines , Horses , Animals , Female , Blood Glucose , Adrenergic alpha-2 Receptor Agonists/pharmacology , Receptors, Adrenergic , Cross-Over Studies
7.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675664

ABSTRACT

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Subject(s)
Alkaloids , Glutathione , Indoles , Isoindoles , Matrines , Quinolizines , Reactive Oxygen Species , Alkaloids/chemistry , Alkaloids/pharmacology , Reactive Oxygen Species/metabolism , Quinolizines/chemistry , Quinolizines/pharmacology , Glutathione/metabolism , Humans , Animals , Indoles/chemistry , Indoles/pharmacology , Mice , Cell Line, Tumor , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Proteolysis , Nanoparticles/chemistry
8.
Vet Anaesth Analg ; 51(3): 244-252, 2024.
Article in English | MEDLINE | ID: mdl-38555213

ABSTRACT

OBJECTIVE: To evaluate the effect of oral tasipimidine on dog handling, ease of catheter placement and propofol and isoflurane requirements for anaesthesia. STUDY DESIGN: Placebo-controlled, randomized, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 13.1 ± 2.7 kg with a mean age of 18.6 ± 1 months. METHODS: The dogs underwent four treatments before induction of anaesthesia with propofol. PP: placebo orally (PO) 60 minutes before induction of anaesthesia followed by placebo (NaCl 0.9%) intravenously (IV). TP: tasipimidine 30 µg kg-1 (PO) 60 minutes before induction of anaesthesia followed by placebo (NaCl 0.9%) IV. TMP: tasipimidine 30 µg kg-1 PO 60 minutes before induction of anaesthesia followed by methadone 0.2 mg kg-1 IV. TMPD: tasipimidine 30 µg kg-1 PO 60 minutes before induction of anaesthesia followed by methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by a dexmedetomidine constant rate infusion of 1 µg kg-1 hour-1. Sedation, response to catheter placement, intubation quality, time to loss of consciousness, time to intubation, required dose of propofol and minimum alveolar isoflurane concentration preventing motor movement (MACNM) were determined. A mixed-model analysis or the Friedman and Mann-Whitney test were used; p-value < 0.05. RESULTS: Response to catheter placement did not differ between treatments. Tasipimidine alone reduced the propofol dose by 30%. Addition of methadone or methadone and dexmedetomidine reduced the propofol dose by 48% and 50%, respectively. Isoflurane MACNM was reduced by 19% in tasipimidine-medicated dogs, whereas in combination with methadone or methadone and dexmedetomidine, isoflurane MACNM was reduced by 35%. CONCLUSIONS AND CLINICAL RELEVANCE: An anxiolytic dose of tasipimidine induced mild signs of sedation in dogs and reduced propofol and isoflurane requirements to induce and maintain anaesthesia, which needs to be considered in an anaesthetic plan.


Subject(s)
Anti-Anxiety Agents , Imidazoles , Propofol , Animals , Dogs , Male , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Female , Isoflurane/administration & dosage , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacology , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Quinolizines/administration & dosage , Quinolizines/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology
9.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930963

ABSTRACT

Ulcerative colitis (UC) is difficult to cure and easy to relapse, leading to poor quality of life for patients. Oxymatrine (OMT) is one of the main alkaloids of Sophora flavescens Aiton, which has many effects, such as anti-inflammation, anti-oxidative stress, and immunosuppression. This study aimed to investigate whether OMT could attenuate ulcerative colitis by inhibiting the NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptosis. In this study, the UC rat models were established by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) in vivo, while RAW264.7 cells and peritoneal macrophages were stimulated with Lipopolysaccharides/Adenosine Triphosphate (LPS/ATP) in vitro to simulate pyroptosis models, and Western blotting (WB) and other detection techniques were applied to analyze proteins involved in the NLRP3 inflammasome pathway. Our results showed that OMT alleviated colitis ulcers and pathological damage in the TNBS-induced UC rats and exhibited an inhibitory effect on pyroptosis at the early stage of UC. In the model group, the pyroptosis reached the peak at 24 h after modeling with the contents of active-cysteine-aspartic proteases-1 (caspase-1), Gasdermin D (GSDMD)-N, and cleaved-interleukin-1 beta (IL-1ß) to the highest expression level. Meanwhile, we found that OMT (80 mg kg-1) remarkably decreased the expression levels of NLRP3, active-caspase-1, and cleaved-IL-1ß at 24 h in the lesion tissue from UC rats. Further experiments on cells demonstrated that OMT at concentrations of 100 and 250 µM significantly inhibited cell death caused by NLRP3 inflammasome activation (p < 0.05), downregulated caspase-1, GSDMD, and decreased the levels of active-caspase-1, GSDMD-N, cleaved-IL-1ß in RAW326.7 cells, and peritoneal macrophages. In summary, these results indicated that OMT could attenuate ulcerative colitis through inhibiting pyroptosis mediated by the NLRP3 inflammasome. The inhibition of the NLRP3 inflammasome may be a potential strategy for UC.


Subject(s)
Alkaloids , Colitis, Ulcerative , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Quinolizines , Animals , Quinolizines/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Alkaloids/pharmacology , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Rats , Inflammasomes/metabolism , Inflammasomes/drug effects , RAW 264.7 Cells , Male , Disease Models, Animal , Rats, Sprague-Dawley , Trinitrobenzenesulfonic Acid , Lipopolysaccharides , Matrines
10.
Vet Anaesth Analg ; 51(3): 253-265, 2024.
Article in English | MEDLINE | ID: mdl-38580536

ABSTRACT

OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.


Subject(s)
Dexmedetomidine , Isoflurane , Methadone , Propofol , Pyrazoles , Animals , Dogs , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Methadone/administration & dosage , Methadone/pharmacology , Female , Isoflurane/administration & dosage , Isoflurane/pharmacology , Heart Rate/drug effects , Male , Blood Pressure/drug effects , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Premedication/veterinary
11.
Pharm Dev Technol ; 29(5): 457-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629738

ABSTRACT

This experiment aimed to investigate the feasibility of cytisine (CYT) in treating eye diseases with ocular topical application. An in vitro cytotoxicity test, a hen's egg test-chorioallantoic membrane (HET-CAM), and a mouse eye tolerance test were used to fully reveal the ocular safety profiles of CYT. For the efficacy evaluations, CYT's effects on cell wound healing, against H2O2-induced oxidative stress damages on cells, and on benzalkonium chloride (BAC)-induced dry eye disease (DED) in mice were evaluated. Results showed that CYT did not show any cytotoxicities at concentrations no higher than 250 µg/ml, while lipoic acid (α-LA) at 250 µg/ml and BAC at 1.25 µg/ml showed significant cytotoxicities within 48 h incubation. The HET-CAM and mouse eye tolerance test confirmed that 0.5% CYT eye drops demonstrated good safety characteristics. Efficacy evaluations showed that CTY significantly promoted cell migration and wound healing. CYT significantly improved cell survival against H2O2-induced oxidative stress damage by reversing the imbalance between the reactive oxygen species (ROS) and antioxidant defense mechanisms. The animal evaluation of the BAC-induced dry eye model revealed that CYT demonstrated a strong treatment effect, including reversing ocular surface damages, recovering corneal sensitivity, and inhibiting neovascularization; HMGB1/NF-κB signaling was involved in this DED treatment by CTY. In conclusion, CYT had strong experimental treatment efficacy against DED with good ocular safety profiles, and it might be a novel and promising drug for DED.


Subject(s)
Alkaloids , Azocines , Benzalkonium Compounds , Dry Eye Syndromes , Ophthalmic Solutions , Oxidative Stress , Quinolizines , Animals , Quinolizines/administration & dosage , Quinolizines/pharmacology , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/chemically induced , Benzalkonium Compounds/administration & dosage , Mice , Ophthalmic Solutions/administration & dosage , Alkaloids/pharmacology , Alkaloids/administration & dosage , Oxidative Stress/drug effects , Azocines/administration & dosage , Azocines/pharmacology , Humans , Cell Survival/drug effects , Hydrogen Peroxide , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Female , Antioxidants/pharmacology , Antioxidants/administration & dosage , Chorioallantoic Membrane/drug effects , Male , Quinolizidine Alkaloids
12.
J Zoo Wildl Med ; 55(1): 136-142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453496

ABSTRACT

A mixture of butorphanol, azaperone, and medetomidine (BAM) is frequently used for immobilization of North American hoofstock. Common adverse effects include respiratory depression, hypoxemia, and bradycardia. In this nonblinded crossover study the efficacy of two a-2 adrenergic antagonists, tolazoline and vatinoxan, were evaluated in alleviating adverse effects of BAM in Rocky Mountain elk (Cervus canadensis). Early administration of these antagonists was hypothesized to cause an increase in heart rate, respiratory rate, partial pressure of oxygen (PaO2) and hemoglobin oxygen saturation (SpO2), as well as reduction in mean arterial blood pressure without affecting sedation levels. Eight captive adult female elk were immobilized on three separate occasions at least 14 d apart with 0.15 mg/kg butorphanol, 0.05 mg/kg azaperone, and 0.06 mg/kg medetomidine. Tolazoline (2 mg/kg IM), vatinoxan (3 mg/mg medetomidine IV) or sterile saline (2 ml IM) were administered 20 min postinduction. The BAM caused hypoxemia, bradycardia, and moderate hypertension, and because of the severe hypoxemia observed, all animals received intratracheal oxygen throughout immobilization. Heart rate, respiratory rate, rectal temperature, SpO2, PaO2, and systolic, diastolic, and mean arterial blood pressure were monitored every 5 min throughout the immobilization. Intramuscular tolazoline caused a brief but significant drop in mean arterial pressure compared with controls and a brief but nonsignificant increase in heart rate. Vatinoxan caused a significant drop in blood pressure and a brief significant increase in heart rate. Changes in respiratory rates and PaO2 were not observed with either antagonist; however, all animals received oxygen, which may have influenced this result. The depth of sedation was unchanged after administration of either drug.


Subject(s)
Hypnotics and Sedatives , Quinolizines , Tolazoline , Animals , Female , Azaperone/adverse effects , Bradycardia/veterinary , Butorphanol/adverse effects , Cross-Over Studies , Heart Rate , Hypnotics and Sedatives/adverse effects , Hypoxia/veterinary , Immobilization/veterinary , Medetomidine/adverse effects , Oxygen , Quinolizines/pharmacology , Tolazoline/pharmacology
13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 313-320, 2024 Apr 25.
Article in Zh | MEDLINE | ID: mdl-38686412

ABSTRACT

Targeting p21-activated kinase 1 (PAK1) is a novel strategy for pancreatic cancer treatment. Compound Kushen injection contains many anti-pancreatic cancer components, but the specific targets are unknown. In this study, 14α-hydroxymatrine, an active component of Kushen injection, was found to possess high binding free energy with the allosteric site of PAK1 by molecular docking based virtual screening. Molecular dynamics simulations suggested that 14α-hydroxymatrine caused the α1 and α2 helices of the allosteric site of PAK1 to extend outward to form a deep allosteric regulatory pocket. Meanwhile, 14α-hydroxymatrine induced the ß-folding region at the adenosine triphosphate (ATP)-binding pocket of PAK1 to close inward, resulting in the ATP-binding pocket in a "semi-closed" state which caused the inactivation of PAK1. After removal of 14α-hydroxymatrine, PAK1 showed a tendency to change from the inactive conformation to the active conformation. We supposed that 14α-hydroxymatrine of compound Kushen injection might be a reversible allosteric inhibitor of PAK1. This study used modern technologies and methods to study the active components of traditional Chinese medicine, which laid a foundation for the development and utilization of natural products and the search for new treatments for pancreatic cancer.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , p21-Activated Kinases , p21-Activated Kinases/metabolism , p21-Activated Kinases/antagonists & inhibitors , Humans , Allosteric Site , Pancreatic Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Quinolizines/pharmacology , Quinolizines/chemistry
14.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33876189

ABSTRACT

Targeting tumor microenvironment (TME), such as immune checkpoint blockade (ICB), has achieved increased overall response rates in many advanced cancers, such as non-small cell lung cancer (NSCLC), however, only in a fraction of patients. To improve the overall and durable response rates, combining other therapeutics, such as natural products, with ICB therapy is under investigation. Unfortunately, due to the lack of systematic methods to characterize the relationship between TME and ICB, development of rational immune-combination therapy is a critical challenge. Here, we proposed a systems pharmacology strategy to identify resistance regulators of PD-1/PD-L1 blockade and develop its combinatorial drug by integrating multidimensional omics and pharmacological methods. First, a high-resolution TME cell atlas was inferred from bulk sequencing data by referring to a high-resolution single-cell data and was used to predict potential resistance regulators of PD-1/PD-L1 blockade through TME stratification analysis. Second, to explore the drug targeting the resistance regulator, we carried out the large-scale target fishing and the network analysis between multi-target drug and the resistance regulator. Finally, we predicted and verified that oxymatrine significantly enhances the infiltration of CD8+ T cells into TME and is a powerful combination agent to enhance the therapeutic effect of anti-PD-L1 in a mouse model of lung adenocarcinoma. Overall, the systems pharmacology strategy offers a paradigm to identify combinatorial drugs for ICB therapy with a systems biology perspective of drug-target-pathway-TME phenotype-ICB combination.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Plant Extracts/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Therapy, Combination , Female , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Inbred C57BL , Plant Extracts/pharmacology , Quinolizines/pharmacology , Quinolizines/therapeutic use , Sophora/chemistry , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
15.
Org Biomol Chem ; 21(9): 1958-1966, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36762516

ABSTRACT

A disulfide-functionalized bis-benzo[b]quinolizinium is presented that is transformed quantitatively into its cyclomers in a fast intramolecular [4 + 4] photocycloaddition. Both the bis-quinolizinium and the photocyclomers react with glutathione (GSH) or dithiothreitol (DTT) to give 9-(sulfanylmethyl)benzo[b]quinolizinium as the only product. As all components of this reaction sequence have different DNA-binding properties, it enables the external control and switching of DNA association. Hence, the bis-benzo[b]quinolizinium binds strongly to DNA and is deactivated upon photocycloaddition to the non-binding cyclomers. In turn, the subsequent cleavage of the cyclomers with DTT regains a DNA-intercalating benzoquinolizinium ligand. Notably, this sequence of controlled deactivation and recovery of DNA-binding properties can be performed directly in the presence of DNA.


Subject(s)
DNA , Quinolizines , Quinolizines/chemistry , Ligands , Oxidation-Reduction , DNA/chemistry
16.
Nicotine Tob Res ; 25(9): 1547-1555, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37291049

ABSTRACT

INTRODUCTION: A smoking-cessation program was implemented as a randomized non-inferiority trial in primary care practices in Croatia and Slovenia to investigate whether a standard 4-week treatment with cytisine was at least as effective and feasible as a standard 12-week treatment with varenicline in helping smokers quit. AIMS AND METHODS: Out of 982 surveyed smokers, 377 were recruited to the non-inferiority trial: 186 were randomly assigned to cytisine and 191 to varenicline treatment. The primary cessation outcome was 7-day abstinence after 24 weeks, while the primary feasibility outcome was defined by adherence to the treatment plan. We also compared the rates of adverse events between the two treatment groups. RESULTS: The cessation rate after 24 weeks was 32.46% (62/191) in the varenicline group and 23.12% (43/186) in the cytisine group (odds ratio [OR]: 95%, credible interval [CI]: 0.39 to 0.98). Of 191 participants assigned to varenicline treatment 59.16% (113) were adherent, while 70.43% (131 of 186) were adherent in the cytisine group (OR: 1.65, 95% CI: 1.07 to 2.56). Participants assigned to cytisine experienced fewer total (incidence rate ratio [IRR]: 0.59, 95% CI: 0.43 to 0.81) and fewer severe or more extreme adverse events (IRR: 0.72, 95% CI: 0.35 to 1.47). CONCLUSIONS: This randomized non-inferiority trial (n = 377) found the standard 4-week cytisine treatment to be less effective than the standard 12-week varenicline treatment for smoking cessation. However, adherence to the treatment plan, ie, feasibility, was higher, and the rate of adverse events was lower among participants assigned to cytisine treatment. IMPLICATIONS: The present study found the standard 12 weeks of varenicline treatment to be more effective than the standard 4 weeks of cytisine treatment for smoking cessation in a primary care setting in Croatia and Slovenia. Participants assigned to cytisine, however, had a higher adherence to the treatment plan and a lower rate of adverse events. Estimates from the present study may be especially suitable for generalizations to high-smoking prevalence populations in Europe. Given the much lower cost of cytisine treatment, its lower rate of adverse events, and higher feasibility (but its likely lower effectiveness with the standard dosage regimen), future analyses should assess the cost-effectiveness of the two treatments for health policy considerations.


Subject(s)
Alkaloids , Smoking Cessation , Humans , Alkaloids/therapeutic use , Azocines/therapeutic use , Benzazepines/adverse effects , Nicotine/adverse effects , Nicotinic Agonists/adverse effects , Primary Health Care , Quinolizines/therapeutic use , Treatment Outcome , Varenicline/therapeutic use
17.
J Nat Prod ; 86(5): 1179-1188, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37115657

ABSTRACT

Apigenin (APG) is a well-known dietary flavonoid with multiple bioactivities, but its poor aqueous solubility may result in low oral bioavailability and thus compromised therapeutic effects. In the present study, APG was complexed with oxymatrine (OMT), a natural quinolizidine alkaloid, for enhanced anti-inflammatory activity, and the related mechanisms in the interaction of APG with OMT were investigated. Fourier transform-infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy characterizations demonstrated the occurrence of an APG-OMT complex formed at a molar ratio of 1:2. Then, molecular dynamics simulations and quantum chemical calculations were utilized to elucidate that hydrogen bonding, van der Waals forces, and hydrophobic effects were the main forces acting in the formation of the APG-OMT complex. Pharmacokinetic studies in rats demonstrated that the oral bioavailability of APG in the APG-OMT complex was significantly higher than that of APG alone. Finally, bioactivity evaluation in the lipopolysaccharide-induced acute inflammatory injury mouse models showed that the APG-OMT complex exhibited more potent anti-inflammatory effects than APG alone. This study confirmed that APG and OMT exerted enhanced anti-inflammatory effects through self-complexation, which may provide a novel strategy for improving the bioavailability and bioactivity of natural product mixtures.


Subject(s)
Alkaloids , Apigenin , Mice , Rats , Animals , Apigenin/pharmacology , Apigenin/chemistry , Alkaloids/pharmacokinetics , Matrines , Anti-Inflammatory Agents/pharmacology , Quinolizines/pharmacokinetics
18.
J Asian Nat Prod Res ; 25(2): 163-170, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35675145

ABSTRACT

Two new isoflavones (1 and 2), as well as eight known ones were isolated from the roots of Sophora tonkinensis Gagnep. Compound 1 represents an unprecedented polymerization pattern constructed by isoflavone and cytisine. Their structures were elucidated by comprehensive spectroscopic data analysis, combined with ECD calculations. Compound 1 displayed significant anti-tobacco mosaic virus (TMV) activity compared with the positive control ningnanmycin. Moreover, compound 6 exhibited potent α-glucosidase inhibitory activity with IC50 value of 47.4 mg/L.


Subject(s)
Alkaloids , Isoflavones , Sophora , Isoflavones/pharmacology , Sophora/chemistry , Plant Roots/chemistry , Alkaloids/chemistry , Quinolizines/analysis
19.
JAMA ; 330(2): 152-160, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37432430

ABSTRACT

Importance: Cytisinicline (cytisine) is a plant-based alkaloid that, like varenicline, binds selectively to α4ß2 nicotinic acetylcholine receptors, which mediate nicotine dependence. Although not licensed in the US, cytisinicline is used in some European countries to aid smoking cessation, but its traditional dosing regimen and treatment duration may not be optimal. Objective: To evaluate the efficacy and tolerability of cytisinicline for smoking cessation when administered in a novel pharmacokinetically based dosing regimen for 6 or 12 weeks vs placebo. Design, Setting, and Participants: A 3-group, double-blind, placebo-controlled, randomized trial (ORCA-2) compared 2 durations of cytisinicline treatment (6 or 12 weeks) vs placebo, with follow-up to 24 weeks, among 810 adults who smoked cigarettes daily and wanted to quit. It was conducted at 17 US sites from October 2020 to December 2021. Interventions: Participants were randomized (1:1:1) to cytisinicline, 3 mg, 3 times daily for 12 weeks (n = 270); cytisinicline, 3 mg, 3 times daily for 6 weeks then placebo 3 times daily for 6 weeks (n = 269); or placebo 3 times daily for 12 weeks (n = 271). All participants received behavioral support. Main Outcomes and Measures: Biochemically verified continuous smoking abstinence for the last 4 weeks of cytisinicline treatment vs placebo (primary) and from end of treatment to 24 weeks (secondary). Results: Of 810 randomized participants (mean age, 52.5 years; 54.6% female; mean of 19.4 cigarettes smoked daily), 618 (76.3%) completed the trial. For the 6-week course of cytisinicline vs placebo, continuous abstinence rates were 25.3% vs 4.4% during weeks 3 to 6 (odds ratio [OR], 8.0 [95% CI, 3.9-16.3]; P < .001) and 8.9% vs 2.6% during weeks 3 to 24 (OR, 3.7 [95% CI, 1.5-10.2]; P = .002). For the 12-week course of cytisinicline vs placebo, continuous abstinence rates were 32.6% vs 7.0% for weeks 9 to 12 (OR, 6.3 [95% CI, 3.7-11.6]; P < .001) and 21.1% vs 4.8% during weeks 9 to 24 (OR, 5.3 [95% CI, 2.8-11.1]; P < .001). Nausea, abnormal dreams, and insomnia occurred in less than 10% of each group. Sixteen participants (2.9%) discontinued cytisinicline due to an adverse event. No drug-related serious adverse events occurred. Conclusions and Relevance: Both 6- and 12-week cytisinicline schedules, with behavioral support, demonstrated smoking cessation efficacy and excellent tolerability, offering new nicotine dependence treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04576949.


Subject(s)
Cigarette Smoking , Quinolizidine Alkaloids , Smoking Cessation Agents , Smoking Cessation , Tobacco Use Disorder , Humans , Middle Aged , Alkaloids , Azocines , Duration of Therapy , Quinolizines , Smoking Cessation/methods , Tobacco Use Disorder/drug therapy , Smoking Cessation Agents/administration & dosage , Smoking Cessation Agents/adverse effects , Smoking Cessation Agents/therapeutic use , Double-Blind Method , Treatment Outcome , Male , Female , Quinolizidine Alkaloids/administration & dosage , Quinolizidine Alkaloids/adverse effects , Quinolizidine Alkaloids/pharmacokinetics , Quinolizidine Alkaloids/therapeutic use , Nicotine/antagonists & inhibitors , Receptors, Nicotinic/drug effects , Cigarette Smoking/drug therapy
20.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569468

ABSTRACT

Tobacco smoking is one of the most serious health problems. Potentially lethal effects of nicotine for adults can occur with as little as 30 to 60 mg, although severe symptoms can arise with lower doses. Furthermore, the route of administration also influences the toxicity. Cytisine is one of the most popular medications in nicotinism treatment. Like nicotine, cytisine is a plant alkaloid, signaling through nicotinic acetylcholine receptors. Our study evaluated the effects of cytisine in nicotine-induced embryotoxic effects using zebrafish larvae. We examined the teratogenicity of nicotine and cytisine alone or in combination. Nicotine increased mortality and delayed hatching of zebrafish larvae in a dose-dependent manner. Cytisine did not affect mortality in a wide range of concentrations, and hatching delay was observed only at the highest concentrations, above 2 mM. Administering compounds together partially reduced the adverse teratogenic effect induced by nicotine alone. The protective effect of cytisine against the nicotine effect, observed in zebrafish, will contribute to future studies or treatments related to nicotine addiction or prenatal nicotine exposure in humans.


Subject(s)
Alkaloids , Receptors, Nicotinic , Humans , Animals , Nicotine/adverse effects , Zebrafish , Nicotinic Agonists/pharmacology , Varenicline , Benzazepines/pharmacology , Quinoxalines/pharmacology , Alkaloids/pharmacology , Alkaloids/therapeutic use , Azocines/toxicity , Quinolizines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL