Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.590
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 349-375, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30673536

ABSTRACT

Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.


Subject(s)
Immunity, Innate/genetics , RNA, Double-Stranded/genetics , Virus Diseases/immunology , 2',5'-Oligoadenylate Synthetase/metabolism , Animals , DEAD Box Protein 58/metabolism , Humans , Immunomodulation , Mammals , Nucleotide Deaminases/metabolism , RNA Interference , eIF-2 Kinase/metabolism
2.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34363756

ABSTRACT

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Subject(s)
DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Inheritance Patterns/genetics , Memory/physiology , Animals , Avoidance Learning , Behavior, Animal , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Extracellular Vesicles/metabolism , Gene Expression Regulation , Genome , Germ Cells/metabolism , RNA/metabolism , RNA Interference , Virion/metabolism
3.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33306959

ABSTRACT

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Cell Phone/instrumentation , Optical Imaging/methods , RNA, Viral/analysis , Viral Load/methods , Animals , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/instrumentation , CRISPR-Cas Systems , Cell Line , Coronavirus Nucleocapsid Proteins/genetics , Humans , Nasopharynx/virology , Optical Imaging/instrumentation , Phosphoproteins/genetics , Point-of-Care Testing , RNA Interference , RNA, Viral/genetics , Sensitivity and Specificity , Viral Load/economics , Viral Load/instrumentation
4.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33740419

ABSTRACT

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , GPI-Linked Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Cell Adhesion Molecules, Neuronal/chemistry , Cell Movement , DCC Receptor/deficiency , DCC Receptor/genetics , GPI-Linked Proteins/chemistry , Growth Cones/physiology , Humans , Lateral Ventricles/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Neurons/cytology , Neurons/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction
5.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33770502

ABSTRACT

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Subject(s)
Hemiptera/genetics , Insect Proteins/metabolism , Solanum lycopersicum/genetics , Toxins, Biological/metabolism , Animals , Gene Transfer, Horizontal , Genes, Plant , Glucosides/chemistry , Glucosides/metabolism , Hemiptera/physiology , Herbivory , Insect Proteins/antagonists & inhibitors , Insect Proteins/classification , Insect Proteins/genetics , Intestinal Mucosa/metabolism , Solanum lycopersicum/metabolism , Malonyl Coenzyme A/metabolism , Phylogeny , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , Toxins, Biological/chemistry
6.
Cell ; 184(1): 92-105.e16, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33147445

ABSTRACT

To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.


Subject(s)
COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , A549 Cells , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , Biosynthetic Pathways , COVID-19/metabolism , Cholesterol/biosynthesis , Clustered Regularly Interspaced Short Palindromic Repeats , Endosomes/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Gene Knockout Techniques/methods , Genome-Wide Association Study , Host-Pathogen Interactions/drug effects , Humans , RNA Interference , SARS-CoV-2/growth & development , Single-Cell Analysis , Viral Load/drug effects , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
7.
Cell ; 182(5): 1186-1197.e12, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32841602

ABSTRACT

Experiences trigger transgenerational small RNA-based responses in C. elegans nematodes. Dedicated machinery ensures that heritable effects are reset, but how the responses segregate in the population is unknown. We show that isogenic individuals differ dramatically in the persistence of transgenerational responses. By examining lineages of more than 20,000 worms, three principles emerge: (1) The silencing each mother initiates is distributed evenly among her descendants; heritable RNAi dissipates but is uniform in every generation. (2) Differences between lineages arise because the mothers that initiate heritable responses stochastically assume different "inheritance states" that determine the progeny's fate. (3) The likelihood that an RNAi response would continue to be inherited increases the more generations it lasts. The inheritance states are determined by HSF-1, which regulates silencing factors and, accordingly, small RNA levels. We found that, based on the parents' inheritance state, the descendants' developmental rate in response to stress can be predicted.


Subject(s)
Caenorhabditis elegans/genetics , Inheritance Patterns/genetics , RNA, Small Interfering/genetics , Animals , Caenorhabditis elegans Proteins/genetics , RNA Interference/physiology
8.
Cell ; 181(6): 1246-1262.e22, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32442405

ABSTRACT

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Thinness/genetics , Adipose Tissue/metabolism , Adult , Animals , Cell Line , Cohort Studies , Drosophila/genetics , Estonia , Female , Humans , Leptin/genetics , Lipolysis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , RNA Interference/physiology , Young Adult
9.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916131

ABSTRACT

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Subject(s)
Brain Neoplasms/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Mitochondrial Dynamics , NAD/metabolism , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Oxidative Phosphorylation , Animals , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Citric Acid Cycle/genetics , Computational Biology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glycolysis/genetics , Mass Spectrometry , Metabolomics , Microscopy, Electron, Transmission , Multigene Family , Neural Stem Cells/pathology , Oxygen Consumption/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Single-Cell Analysis , Transcriptome/genetics
10.
Cell ; 182(2): 404-416.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32610081

ABSTRACT

Problems arising during translation of mRNAs lead to ribosome stalling and collisions that trigger a series of quality control events. However, the global cellular response to ribosome collisions has not been explored. Here, we uncover a function for ribosome collisions in signal transduction. Using translation elongation inhibitors and general cellular stress conditions, including amino acid starvation and UV irradiation, we show that ribosome collisions activate the stress-activated protein kinase (SAPK) and GCN2-mediated stress response pathways. We show that the MAPKKK ZAK functions as the sentinel for ribosome collisions and is required for immediate early activation of both SAPK (p38/JNK) and GCN2 signaling pathways. Selective ribosome profiling and biochemistry demonstrate that although ZAK generally associates with elongating ribosomes on polysomal mRNAs, it specifically auto-phosphorylates on the minimal unit of colliding ribosomes, the disome. Together, these results provide molecular insights into how perturbation of translational homeostasis regulates cell fate.


Subject(s)
Ribosomes/metabolism , Stress, Physiological , ATP-Binding Cassette Transporters/metabolism , Anisomycin/pharmacology , Apoptosis/drug effects , DNA Damage/radiation effects , Enzyme Activation , Humans , MAP Kinase Kinase Kinases/deficiency , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Phosphorylation , Polyribosomes/metabolism , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Signal Transduction , Ultraviolet Rays , eIF-2 Kinase/metabolism
11.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32619424

ABSTRACT

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Subject(s)
Immunologic Memory/physiology , Lymphoma, Large B-Cell, Diffuse/pathology , Nuclear Proteins/genetics , Precursor Cells, B-Lymphoid/immunology , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/chemistry , Chromatin/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Histone Deacetylases/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic
12.
Nat Rev Mol Cell Biol ; 23(10): 645-662, 2022 10.
Article in English | MEDLINE | ID: mdl-35710830

ABSTRACT

RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.


Subject(s)
MicroRNAs , RNA, Viral , Antiviral Agents , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Disease Resistance/genetics , MicroRNAs/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , Plant Diseases/genetics , Plant Immunity/genetics , Plants/genetics , RNA Interference , RNA, Plant , RNA, Small Interfering/metabolism
13.
Nat Rev Mol Cell Biol ; 23(3): 185-203, 2022 03.
Article in English | MEDLINE | ID: mdl-34707241

ABSTRACT

Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.


Subject(s)
Argonaute Proteins , MicroRNAs , RNA, Small Interfering , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plants/genetics , Plants/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
14.
Cell ; 178(2): 330-345.e22, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257027

ABSTRACT

For tumors to progress efficiently, cancer cells must overcome barriers of oxidative stress. Although dietary antioxidant supplementation or activation of endogenous antioxidants by NRF2 reduces oxidative stress and promotes early lung tumor progression, little is known about its effect on lung cancer metastasis. Here, we show that long-term supplementation with the antioxidants N-acetylcysteine and vitamin E promotes KRAS-driven lung cancer metastasis. The antioxidants stimulate metastasis by reducing levels of free heme and stabilizing the transcription factor BACH1. BACH1 activates transcription of Hexokinase 2 and Gapdh and increases glucose uptake, glycolysis rates, and lactate secretion, thereby stimulating glycolysis-dependent metastasis of mouse and human lung cancer cells. Targeting BACH1 normalized glycolysis and prevented antioxidant-induced metastasis, while increasing endogenous BACH1 expression stimulated glycolysis and promoted metastasis, also in the absence of antioxidants. We conclude that BACH1 stimulates glycolysis-dependent lung cancer metastasis and that BACH1 is activated under conditions of reduced oxidative stress.


Subject(s)
Antioxidants/pharmacology , Basic-Leucine Zipper Transcription Factors/metabolism , Glycolysis/drug effects , Lung Neoplasms/pathology , Animals , Antioxidants/administration & dosage , Basic-Leucine Zipper Transcription Factors/genetics , Cell Movement/drug effects , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Heme/metabolism , Hexokinase/antagonists & inhibitors , Hexokinase/genetics , Hexokinase/metabolism , Humans , Kaplan-Meier Estimate , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , NF-E2-Related Factor 2/metabolism , Neoplasm Metastasis , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
15.
Cell ; 178(2): 361-373.e12, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31204100

ABSTRACT

Chemotherapy is designed to induce cell death. However, at non-lethal doses, cancer cells can choose to remain proliferative or become senescent. The slow development of senescence makes studying this decision challenging. Here, by analyzing single-cell p21 dynamics before, during, and days after drug treatment, we link three distinct patterns of early p21 dynamics to final cell fate. Surprisingly, while high p21 expression is classically associated with senescence, we find the opposite at early times during drug treatment: most senescence-fated cells express much lower p21 levels than proliferation-fated cells. We demonstrate that these dynamics lead to a p21 "Goldilocks zone" for proliferation, in which modest increases of p21 expression can lead to an undesirable increase of cancer cell proliferation. Our study identifies a counter-intuitive role for early p21 dynamics in the cell-fate decision and pinpoints a source of proliferative cancer cells that can emerge after exposure to non-lethal doses of chemotherapy.


Subject(s)
Cell Proliferation/drug effects , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Doxorubicin/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage/drug effects , Humans , Models, Biological , RNA Interference , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/metabolism
16.
Cell ; 177(3): 722-736.e22, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955890

ABSTRACT

Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.


Subject(s)
Gene Expression Regulation , Genome-Wide Association Study , Receptor, Insulin/metabolism , Animals , Cell Line, Tumor , Chromatin/metabolism , Gene Expression Regulation/drug effects , Host Cell Factor C1/antagonists & inhibitors , Host Cell Factor C1/genetics , Host Cell Factor C1/metabolism , Humans , Insulin/metabolism , Insulin/pharmacology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding , Protein Subunits/metabolism , RNA Interference , RNA Polymerase II/metabolism , RNA, Small Interfering/metabolism , Receptor, Insulin/chemistry , Signal Transduction/drug effects
17.
Cell ; 178(2): 302-315.e23, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31299200

ABSTRACT

Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.


Subject(s)
Apoptosis , DNA/metabolism , Nucleotidyltransferases/metabolism , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Female , Humans , Interferon Regulatory Factor-3/metabolism , Male , Mice , Mice, Inbred NOD , Mitosis , Neoplasms/drug therapy , Neoplasms/mortality , Neoplasms/pathology , Nucleosomes/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , RNA Interference , RNA, Small Interfering/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Signal Transduction , Survival Rate , Transcriptional Activation , bcl-X Protein/metabolism
18.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257023

ABSTRACT

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Cell Movement , F-Box Proteins/antagonists & inhibitors , F-Box Proteins/genetics , F-Box Proteins/metabolism , Female , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Kaplan-Meier Estimate , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Neoplasm Metastasis , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transcriptional Activation
19.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348885

ABSTRACT

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Subject(s)
Benzamides/metabolism , Bridged Bicyclo Compounds/pharmacology , Heptanes/pharmacology , Lysosomes/drug effects , Vesicular Transport Proteins/metabolism , Activating Transcription Factor 6/metabolism , Animals , Benzamides/chemistry , Benzamides/pharmacology , Bridged Bicyclo Compounds/therapeutic use , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Frameshift Mutation , Heptanes/therapeutic use , Humans , Imidazoline Receptors/antagonists & inhibitors , Imidazoline Receptors/genetics , Imidazoline Receptors/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kidney/cytology , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lysosomes/metabolism , Male , Mice , Mice, Transgenic , Mucin-1/chemistry , Mucin-1/genetics , Mucin-1/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Unfolded Protein Response/drug effects , Vesicular Transport Proteins/chemistry
20.
Cell ; 177(3): 572-586.e22, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955884

ABSTRACT

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.


Subject(s)
Adenocarcinoma/pathology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Differentiation , Epigenesis, Genetic , Gene Library , Humans , Mice , Mice, Knockout , Mice, SCID , Neoplastic Stem Cells/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Interleukin-10/antagonists & inhibitors , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL