Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280.659
Filter
Add more filters

Publication year range
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33497611

ABSTRACT

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA Helicases/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Tuberous Sclerosis/metabolism , Amino Acid Sequence , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , DNA Helicases/chemistry , Evolution, Molecular , Female , Humans , Insulin/pharmacology , Lysosomal Membrane Proteins/metabolism , Lysosomes/drug effects , Neurons/drug effects , Neurons/metabolism , Phenotype , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry , Rats, Wistar , Signal Transduction/drug effects , Zebrafish/metabolism
2.
Cell ; 180(2): 311-322.e15, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31883793

ABSTRACT

The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.


Subject(s)
Action Potentials/physiology , Myelin Sheath/physiology , Nerve Fibers, Myelinated/physiology , Ranvier's Nodes/physiology , Animals , Axons/metabolism , Axons/physiology , Male , Models, Neurological , Nerve Fibers, Myelinated/metabolism , Patch-Clamp Techniques/methods , Pyramidal Cells/physiology , Rats , Rats, Wistar
3.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33035452

ABSTRACT

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Subject(s)
Muscle, Skeletal/metabolism , Skeletal Muscle Myosins/drug effects , Skeletal Muscle Myosins/genetics , Adult , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cell Line , Drug Delivery Systems , Female , Humans , Male , Mice , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Muscle, Skeletal/physiology , Myosins/drug effects , Myosins/genetics , Myosins/metabolism , Protein Isoforms , Rats , Rats, Wistar , Skeletal Muscle Myosins/metabolism
4.
Cell ; 182(3): 713-721.e9, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32778225

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health. The development of a vaccine is urgently needed for the prevention and control of COVID-19. Here, we report the pilot-scale production of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) that induces high levels of neutralizing antibodies titers in mice, rats, guinea pigs, rabbits, and nonhuman primates (cynomolgus monkeys and rhesus macaques) to provide protection against SARS-CoV-2. Two-dose immunizations using 2 µg/dose of BBIBP-CorV provided highly efficient protection against SARS-CoV-2 intratracheal challenge in rhesus macaques, without detectable antibody-dependent enhancement of infection. In addition, BBIBP-CorV exhibits efficient productivity and good genetic stability for vaccine manufacture. These results support the further evaluation of BBIBP-CorV in a clinical trial.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Drug Evaluation, Preclinical/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vaccines, Inactivated/therapeutic use , Viral Vaccines/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/virology , Disease Models, Animal , Female , Guinea Pigs , Immunogenicity, Vaccine , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Phylogeny , Pneumonia, Viral/virology , Rabbits , Rats , Rats, Wistar , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Vero Cells , Viral Vaccines/adverse effects
5.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-27916274

ABSTRACT

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Subject(s)
Diabetes Mellitus/drug therapy , Glucagon-Secreting Cells/cytology , Insulin-Secreting Cells/cytology , gamma-Aminobutyric Acid/administration & dosage , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation/drug effects , Diabetes Mellitus/chemically induced , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Glucagon-Secreting Cells/drug effects , Humans , Islets of Langerhans/cytology , Male , Mice , Nerve Tissue Proteins , Rats , Rats, Wistar , gamma-Aminobutyric Acid/pharmacology
6.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33761330

ABSTRACT

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Subject(s)
Complement System Proteins/immunology , Fibroblasts/immunology , Inflammation/immunology , Synovial Membrane/immunology , Adaptive Immunity/immunology , Animals , Arthritis, Rheumatoid/immunology , Cell Line , Dogs , Humans , Inflammation Mediators/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Rats, Wistar , Signal Transduction/immunology
7.
Cell ; 163(2): 456-92, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451489

ABSTRACT

We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP: VIDEO ABSTRACT.


Subject(s)
Computer Simulation , Models, Neurological , Neocortex/cytology , Neurons/classification , Neurons/cytology , Somatosensory Cortex/cytology , Algorithms , Animals , Hindlimb/innervation , Male , Neocortex/physiology , Nerve Net , Neurons/physiology , Rats , Rats, Wistar , Somatosensory Cortex/physiology
8.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
9.
Cell ; 156(1-2): 291-303, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439383

ABSTRACT

Neural stem cells (NSCs) exist in germinal centers of the adult brain and in the carotid body (CB), an oxygen-sensing organ that grows under chronic hypoxemia. How stem cell lineage differentiation into mature glomus cells is coupled with changes in physiological demand is poorly understood. Here, we show that hypoxia does not affect CB NSC proliferation directly. Rather, mature glomus cells expressing endothelin-1, the O2-sensing elements in the CB that secrete neurotransmitters in response to hypoxia, establish abundant synaptic-like contacts with stem cells, which express endothelin receptors, and instruct their growth. Inhibition of glomus cell transmitter release or their selective destruction markedly diminishes CB cell growth during hypoxia, showing that CB NSCs are under the direct "synaptic" control of the mature O2-sensitive cells. Thus, glomus cells not only acutely activate the respiratory center but also induce NSC-dependent CB hypertrophy necessary for acclimatization to chronic hypoxemia.


Subject(s)
Carotid Body/metabolism , Neural Stem Cells/metabolism , Oxygen/metabolism , Respiratory Center/metabolism , Animals , Cell Differentiation , Cell Proliferation , Mice , Mice, Transgenic , Prolyl Hydroxylases/metabolism , Rats , Rats, Wistar
10.
PLoS Biol ; 22(8): e3002768, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39163472

ABSTRACT

According to the synaptic homeostasis hypothesis (SHY), sleep serves to renormalize synaptic connections that have been potentiated during the prior wake phase due to ongoing encoding of information. SHY focuses on glutamatergic synaptic strength and has been supported by numerous studies examining synaptic structure and function in neocortical and hippocampal networks. However, it is unknown whether synaptic down-regulation during sleep occurs in the hypothalamus, i.e., a pivotal center of homeostatic regulation of bodily functions including sleep itself. We show that sleep, in parallel with the synaptic down-regulation in neocortical networks, down-regulates the levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the hypothalamus of rats. Most robust decreases after sleep were observed at both sites for AMPARs containing the GluA1 subunit. Comparing the effects of selective rapid eye movement (REM) sleep and total sleep deprivation, we moreover provide experimental evidence that slow-wave sleep (SWS) is the driving force of the down-regulation of AMPARs in hypothalamus and neocortex, with no additional contributions of REM sleep or the circadian rhythm. SWS-dependent synaptic down-regulation was not linked to EEG slow-wave activity. However, spindle density during SWS predicted relatively increased GluA1 subunit levels in hypothalamic synapses, which is consistent with the role of spindles in the consolidation of memory. Our findings identify SWS as the main driver of the renormalization of synaptic strength during sleep and suggest that SWS-dependent synaptic renormalization is also implicated in homeostatic control processes in the hypothalamus.


Subject(s)
Hypothalamus , Receptors, AMPA , Sleep, Slow-Wave , Synapses , Animals , Receptors, AMPA/metabolism , Hypothalamus/metabolism , Male , Synapses/metabolism , Synapses/physiology , Rats , Sleep, Slow-Wave/physiology , Sleep, REM/physiology , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep/physiology , Neocortex/metabolism , Homeostasis , Rats, Sprague-Dawley , Down-Regulation , Rats, Wistar
11.
Cell ; 150(3): 633-46, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863013

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) are located in neuronal cell membranes at synaptic and extrasynaptic locations, where they are believed to mediate distinct physiological and pathological processes. Activation of NMDARs requires glutamate and a coagonist whose nature and impact on NMDAR physiology remain elusive. We report that synaptic and extrasynaptic NMDARs are gated by different endogenous coagonists, d-serine and glycine, respectively. The regionalized availability of the coagonists matches the preferential affinity of synaptic NMDARs for d-serine and extrasynaptic NMDARs for glycine. Furthermore, glycine and d-serine inhibit NMDAR surface trafficking in a subunit-dependent manner, which is likely to influence NMDARs subcellular location. Taking advantage of this coagonist segregation, we demonstrate that long-term potentiation and NMDA-induced neurotoxicity rely on synaptic NMDARs only. Conversely, long-term depression requires both synaptic and extrasynaptic receptors. Our observations provide key insights into the operating mode of NMDARs, emphasizing functional distinctions between synaptic and extrasynaptic NMDARs in brain physiology.


Subject(s)
Glycine/metabolism , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/agonists , Serine/metabolism , Synapses , Animals , Cell Membrane , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Long-Term Potentiation , Long-Term Synaptic Depression , Neuroglia/metabolism , Neurons/cytology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
12.
EMBO J ; 41(4): e106523, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34935159

ABSTRACT

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Subject(s)
Calcium-Binding Proteins/metabolism , Dendritic Spines/metabolism , Endoplasmic Reticulum/metabolism , Myosin Type V/metabolism , Actins/metabolism , Animals , Calcium-Binding Proteins/genetics , Calmodulin/metabolism , Endoplasmic Reticulum, Smooth/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mass Spectrometry , Mice, Knockout , Myosin Type V/genetics , Protein Interaction Domains and Motifs , Rats, Wistar
13.
Nature ; 586(7828): 287-291, 2020 10.
Article in English | MEDLINE | ID: mdl-32728214

ABSTRACT

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Subject(s)
Electron Transport , Hypoxia/metabolism , Mitochondria/metabolism , Second Messenger Systems , Sodium/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Calcium Phosphates/metabolism , Cell Line, Tumor , Chemical Precipitation , Humans , Male , Membrane Fluidity , Mice, Inbred C57BL , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sodium-Calcium Exchanger/metabolism
14.
Genes Dev ; 32(9-10): 645-657, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29748249

ABSTRACT

Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.


Subject(s)
Cholesterol/biosynthesis , Myelin Sheath/metabolism , Neuregulin-1/metabolism , Proto-Oncogene Proteins c-maf/metabolism , Schwann Cells/metabolism , Signal Transduction , Animals , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Line , Cholesterol/genetics , Gene Expression Regulation , Histone Deacetylases/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Protein Stability , Proto-Oncogene Proteins c-maf/genetics , Rats , Rats, Wistar
15.
J Neurosci ; 44(30)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38937101

ABSTRACT

Many neurons including vasopressin (VP) magnocellular neurosecretory cells (MNCs) of the hypothalamic supraoptic nucleus (SON) generate afterhyperpolarizations (AHPs) during spiking to slow firing, a phenomenon known as spike frequency adaptation. The AHP is underlain by Ca2+-activated K+ currents, and while slow component (sAHP) features are well described, its mechanism remains poorly understood. Previous work demonstrated that Ca2+ influx through N-type Ca2+ channels is a primary source of sAHP activation in SON oxytocin neurons, but no obvious channel coupling was described for VP neurons. Given this, we tested the possibility of an intracellular source of sAHP activation, namely, the Ca2+-handling organelles endoplasmic reticulum (ER) and mitochondria in male and female Wistar rats. We demonstrate that ER Ca2+ depletion greatly inhibits sAHPs without a corresponding decrease in Ca2+ signal. Caffeine sensitized AHP activation by Ca2+ In contrast to ER, disabling mitochondria with CCCP or blocking mitochondria Ca2+ uniporters (MCUs) enhanced sAHP amplitude and duration, implicating mitochondria as a vital buffer for sAHP-activating Ca2+ Block of mitochondria Na+-dependent Ca2+ release via triphenylphosphonium (TPP+) failed to affect sAHPs, indicating that mitochondria Ca2+ does not contribute to sAHP activation. Together, our results suggests that ER Ca2+-induced Ca2+ release activates sAHPs and mitochondria shape the spatiotemporal trajectory of the sAHP via Ca2+ buffering in VP neurons. Overall, this implicates organelle Ca2+, and specifically ER-mitochondria-associated membrane contacts, as an important site of Ca2+ microdomain activity that regulates sAHP signaling pathways. Thus, this site plays a major role in influencing VP firing activity and systemic hormonal release.


Subject(s)
Calcium , Endoplasmic Reticulum , Mitochondria , Neurons , Rats, Wistar , Supraoptic Nucleus , Vasopressins , Animals , Rats , Vasopressins/metabolism , Male , Female , Neurons/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Calcium/metabolism , Supraoptic Nucleus/metabolism , Action Potentials/physiology , Action Potentials/drug effects , Calcium Signaling/physiology
16.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38438259

ABSTRACT

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Subject(s)
Electric Stimulation , Oxytocin , Paraventricular Hypothalamic Nucleus , Rats, Wistar , Receptors, Oxytocin , Synaptic Transmission , Animals , Male , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Rats , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Synaptic Transmission/physiology , Nociceptors/physiology , Nociceptors/metabolism , Nociception/physiology , Action Potentials/physiology , Action Potentials/drug effects , Meninges/physiology , Neural Inhibition/physiology
17.
J Biol Chem ; 300(3): 105712, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309509

ABSTRACT

We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.


Subject(s)
Hepatocytes , Oligosaccharides , Animals , Rats , Hepatocytes/metabolism , Oligosaccharides/blood , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Hep G2 Cells , Humans , Male , Rats, Wistar
18.
J Biol Chem ; 300(5): 107219, 2024 May.
Article in English | MEDLINE | ID: mdl-38522516

ABSTRACT

G-protein-gated inward rectifier K+ (GIRK) channels play a critical role in the regulation of the excitability of cardiomyocytes and neurons and include GIRK1, GIRK2, GIRK3 and GIRK4 subfamily members. BD1047 dihydrobromide (BD1047) is one of the representative antagonists of the multifunctional Sigma-1 receptor (S1R). In the analysis of the effect of BD1047 on the regulation of Gi-coupled receptors by S1R using GIRK channel as an effector, we observed that BD1047, as well as BD1063, directly inhibited GIRK currents even in the absence of S1R and in a voltage-independent manner. Thus, we aimed to clarify the effect of BD1047 on GIRK channels and identify the structural determinants. By electrophysiological recordings in Xenopus oocytes, we observed that BD1047 directly inhibited GIRK channel currents, producing a much stronger inhibition of GIRK4 compared to GIRK2. It also inhibited ACh-induced native GIRK current in isolated rat atrial myocytes. Chimeric and mutagenesis studies of GIRK2 and GIRK4 combined with molecular docking analysis demonstrated the importance of Leu77 and Leu84 within the cytoplasmic, proximal N-terminal region and Glu147 within the pore-forming region of GIRK4 for inhibition by BD1047. The activator of GIRK channels, ivermectin, competed with BD1047 at Leu77 on GIRK4. This study provides us with a novel inhibitor of GIRK channels and information for developing pharmacological treatments for GIRK4-associated diseases.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels , Receptors, sigma , Sigma-1 Receptor , Animals , Rats , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , Molecular Docking Simulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Oocytes/metabolism , Receptors, sigma/metabolism , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/genetics , Receptors, sigma/chemistry , Xenopus laevis , Rats, Wistar
19.
Gastroenterology ; 167(5): 993-1007, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38906512

ABSTRACT

BACKGROUND & AIMS: Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS: PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS: HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS: Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.


Subject(s)
Hypertension, Portal , Mice, Knockout , Portal Pressure , Portal Vein , Receptor, Serotonin, 5-HT1A , Serotonin 5-HT1 Receptor Agonists , Animals , Female , Humans , Male , Mice , Rats , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Cyclic AMP/metabolism , Disease Models, Animal , Hypertension, Portal/metabolism , Hypertension, Portal/genetics , Hypertension, Portal/physiopathology , Hypertension, Portal/etiology , Ligation , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/physiopathology , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Piperazines/pharmacology , Portal Pressure/drug effects , Portal Vein/metabolism , Pyridines/pharmacology , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Serotonin/metabolism , Serotonin/pharmacology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Signal Transduction , Thioacetamide/toxicity
20.
FASEB J ; 38(18): e70025, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39279493

ABSTRACT

Extracellular hydrolysis of the phosphate esters of B vitamins (B1, B2, and B6) is crucial for their cellular uptake and metabolism. Although a few zinc-dependent enzymes have been implicated in these processes, their exact mechanisms of action remain largely unknown. This study investigated the potential involvement of phosphate group hydrolyzing enzymes in the hydrolysis of B vitamin phosphate esters. We evaluated enzyme activity in membrane lysates prepared from cells transiently transfected with these enzymes or those endogenously expressing them. Specifically, we investigated how zinc deficiency affects the rate of hydrolysis of B vitamin phosphate esters in cellular lysates. Assessment of the activities of zinc-dependent ectoenzymes in the lysates prepared from cells cultured in zinc-deficient conditions and in the serum of rats fed zinc-deficient diets revealed that zinc deficiency reduced the extracellular hydrolysis activity of B vitamin phosphate esters. Furthermore, our findings explain the similarities between several symptoms of B vitamin and zinc deficiencies. Collectively, this study provides novel insights into the diverse symptoms of zinc deficiency and could guide the development of appropriate clinical strategies.


Subject(s)
Esters , Zinc , Animals , Zinc/metabolism , Zinc/deficiency , Rats , Hydrolysis , Esters/metabolism , Humans , Male , Vitamin B Complex/metabolism , Phosphates/metabolism , Phosphates/deficiency , Vitamin B 6/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL