Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 568: 62-67, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34186436

ABSTRACT

Erythropoietin producing hepatocellular (Eph) forms the largest family of receptor tyrosine kinases (RTK). As a family, Eph regulates physiological events such as cell-cell interaction, cell migration, and adhesion. The Kinase domain is the catalytic core of the Eph receptor and is highly conserved sequentially. EphA7 has been recently regarded as a cancer driver gene and comprises several clinically important mutations. Three of the EphA7 mutations Gly656Glu, Gly656Arg, and Asp751His, present in the kinase domain, are predicted to be highly pathogenic. Furthermore, Gly656Glu and Gly656Arg are reported to be hotspot mutations. Considering the importance of mutations, crystals structure of EphA7 Gly656Glu, Gly656Arg, and Asp751His mutants has been explored. Changes in folding pattern and intramolecular interactions were observed in mutant structures. Secondary structural changes were observed in the hinge region of EphA7 Gly656Arg and Asp751His structure, affecting the transition of kinase domain between open and closed conformations. EphA7 Asp751His mutant structure shows a distorted nucleotide-binding groove. Differences were observed in hydrogen bonding and hydrophobic interactions between the catalytic and highly conserved DFG motif in the EphA7 mutants, which may influence the catalytic activity of kinase domain.


Subject(s)
Point Mutation , Receptor, EphA7/chemistry , Receptor, EphA7/genetics , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation , Protein Domains
2.
Proteomics ; 6(8): 2365-75, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16548059

ABSTRACT

Macrophages are involved in various important biological processes and their functions are tightly regulated. Hydrophobic proteins are difficult to analyse by 2-DE because of their intrinsic tendency to self-aggregate during the first dimension (IEF). We have compared two protocols for extracting, separating and identifying membrane proteins from human macrophages by MALDI-TOF MS. The first protocol used protein extraction by solvent, followed by 2-DE and allowed us to identify 10% membrane proteins among the proteins identified a being like the peroxisome-activated receptor delta. The second method is based on solubilizing the membranes with Triton X-100, separating the proteins by anion-exchange chromatography followed by SDS-PAGE. This method allowed us to identify 49 membrane proteins, including four integral membrane proteins, ten type I, two type II and one type III membrane proteins. Several receptors were identified, including integrin alpha-3 and ephrin type A receptor 7. Interestingly, several proteins involved in macrophage functions were identified, such as integrin alpha-X and macrophage mannose receptor. These findings show that techniques are available to identify membrane proteins, but that they require large quantities of cells which means that they are not suitable for the limiting amounts of precious samples available from clinical studies.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Isoelectric Focusing/methods , Macrophages/metabolism , Membrane Proteins/chemistry , Proteomics/methods , Detergents/pharmacology , Humans , Integrin alpha3/metabolism , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Octoxynol/pharmacology , Receptor, EphA7/chemistry , Receptors, Cell Surface/metabolism , Reproducibility of Results , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL