Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 50(2): 378-389.e5, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30784579

ABSTRACT

Currently, we lack an understanding of the individual and combinatorial roles for chemokine receptors in the inflammatory process. We report studies on mice with a compound deletion of Ccr1, Ccr2, Ccr3, and Ccr5, which together control monocytic and eosinophilic recruitment to resting and inflamed sites. Analysis of resting tissues from these mice, and mice deficient in each individual receptor, provides clear evidence for redundant use of these receptors in establishing tissue-resident monocytic cell populations. In contrast, analysis of cellular recruitment to inflamed sites provides evidence of specificity of receptor use for distinct leukocyte subtypes and no indication of comprehensive redundancy. We find no evidence of involvement of any of these receptors in the recruitment of neutrophils or lymphocytes to resting or acutely inflamed tissues. Our data shed important light on combinatorial inflammatory chemokine receptor function and highlight Ccr2 as the primary driver of myelomonocytic cell recruitment in acutely inflamed contexts.


Subject(s)
Eosinophils/immunology , Inflammation/immunology , Monocytes/immunology , Receptors, CCR/immunology , Animals , Chemokines/immunology , Chemokines/metabolism , Eosinophils/metabolism , Gene Expression Profiling/methods , Inflammation/genetics , Inflammation/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Receptors, CCR/genetics , Receptors, CCR/metabolism , Receptors, CCR1/immunology , Receptors, CCR1/metabolism , Receptors, CCR2/immunology , Receptors, CCR2/metabolism , Receptors, CCR3/immunology , Receptors, CCR3/metabolism , Receptors, CCR5/immunology , Receptors, CCR5/metabolism
2.
Nature ; 565(7738): 246-250, 2019 01.
Article in English | MEDLINE | ID: mdl-30602786

ABSTRACT

In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3-5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases.


Subject(s)
Astrocytes/pathology , Brain Ischemia/immunology , Brain Ischemia/pathology , Gliosis/pathology , Neuroprotection/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Animals , Brain/cytology , Brain/immunology , Cell Movement , Cell Proliferation , Chemokine CCL1/immunology , Chemokine CCL20/immunology , Interleukin-2/immunology , Interleukin-33/immunology , Interleukin-6/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/immunology , Receptors, CCR/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , STAT3 Transcription Factor/metabolism , Serotonin/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism
3.
Am J Physiol Cell Physiol ; 326(5): C1320-C1333, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38497114

ABSTRACT

Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.


Subject(s)
Adipocytes , Chemokine CCL5 , Myokines , Obesity , Animals , Mice , Chemokine CCL5/genetics , Chemokine CCL5/pharmacology , Ligands , Mice, Obese , Muscle, Skeletal/metabolism , Receptors, CCR/metabolism , Adipocytes/metabolism , Obesity/genetics , Obesity/metabolism , Obesity/pathology
4.
J Med Virol ; 96(9): e29894, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39206838

ABSTRACT

A substantial body of literature, including our own, points to a connection between hepatitis B virus (HBV) infection and the development of drug resistance in hepatocellular carcinoma (HCC), particularly against sorafenib. However, the influence of HBV on resistance to regorafenib, another therapeutic agent, has been less studied. In this study, we used the GEO database (GSE87630) and clinical samples to demonstrate that C-C motif chemokine receptor 9 (CCR9) was highly expressed in HBV-related HCC and predicted poor overall survival. Its overexpression correlated with HBsAg-positive HCC patients. Both univariate and multivariable Cox regression analysis elucidated CCR9 was an independent risk factor for poor overall survival in HCC patients. Our in vitro findings further revealed that HBV structural proteins, small HBV surface antigen (SHBs), triggered an upregulation of CCR9. Functional assays showed that SHBs enhanced HCC cell proliferation, migration, and invasion, increased ABCB1 and ABCC1 expression, and promoted regorafenib resistance via CCR9. Intriguingly, overexpression of HBV plasmid and an AAV-HBV mouse model both exhibited a significant elevation in global N6-methyladenosine (m6A) levels. Further investigations revealed that SHBs elevated these m6A levels, upregulated CCR9 and stabilized CCR9 mRNA through KIAA1429-mediated m6A modification, with sites 1373 and 1496 on CCR9 mRNA being critical for modification. In conclusion, SHBs promoted HCC progression and regorafenib resistance via KIAA1429-mediated m6A modification of CCR9. Our findings suggested that CCR9 could be a potential prognostic biomarker and a valuable molecular therapeutic target of regorafenib resistance in HBV-related HCC.


Subject(s)
Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Hepatitis B Surface Antigens , Liver Neoplasms , Phenylurea Compounds , Pyridines , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/drug therapy , Humans , Liver Neoplasms/virology , Liver Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Animals , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Mice , Male , Female , Receptors, CCR/genetics , Receptors, CCR/metabolism , Cell Line, Tumor , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , Middle Aged , Hepatitis B/virology , Hepatitis B/complications , Hepatitis B/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Adenosine/analogs & derivatives
5.
J Immunol ; 209(12): 2281-2286, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36469843

ABSTRACT

CD8+ T lymphocytes infiltrate the brain during congenital CMV infection and promote viral clearance. However, the mechanisms by which CD8+ T cells are recruited to the brain remain unclear. Using a mouse model of congenital CMV, we found a gut-homing chemokine receptor (CCR9) was preferentially expressed in CD8+ T cells localized in the brain postinfection. In the absence of CCR9 or CCL25 (CCR9's ligand) expression, CD8+ T cells failed to migrate to key sites of infection in the brain and protect the host from severe forms of disease. Interestingly, we found that expression of CCR9 on CD8+ T cells was also responsible for spatial temporal positioning of T cells in the brain. Collectively, our data demonstrate that the CMV-infected brain uses a similar mechanism for CD8+ T cell homing as the small intestine.


Subject(s)
Cytomegalovirus Infections , Receptors, CCR , Humans , Receptors, CCR/metabolism , CD8-Positive T-Lymphocytes/metabolism , Intestine, Small/metabolism , Cytomegalovirus Infections/metabolism , Brain/metabolism
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33875601

ABSTRACT

Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.


Subject(s)
Cell Movement , Chemokine CCL21/metabolism , Dendritic Cells/physiology , Lymph Nodes/metabolism , Receptors, CCR/metabolism , Animals , Mice, Inbred C57BL
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846258

ABSTRACT

Macrophages are the key regulator of T-cell responses depending on their activation state. C-C motif chemokine receptor-like 2 (CCRL2), a nonsignaling atypical receptor originally cloned from LPS-activated macrophages, has recently been shown to regulate immune responses under several inflammatory conditions. However, whether CCRL2 influences macrophage function and regulates tumor immunity remains unknown. Here, we found that tumoral CCRL2 expression is a predictive indicator of robust antitumor T-cell responses in human cancers. CCRL2 is selectively expressed in tumor-associated macrophages (TAM) with immunostimulatory phenotype in humans and mice. Conditioned media from tumor cells could induce CCRL2 expression in macrophages primarily via TLR4, which is negated by immunosuppressive factors. Ccrl2-/- mice exhibit accelerated melanoma growth and impaired antitumor immunity characterized by significant reductions in immunostimulatory macrophages and T-cell responses in tumor. Depletion of CD8+ T cells or macrophages eliminates the difference in tumor growth between WT and Ccrl2-/- mice. Moreover, CCRL2 deficiency impairs immunogenic activation of macrophages, resulting in attenuated antitumor T-cell responses and aggravated tumor growth in a coinjection tumor model. Mechanically, CCRL2 interacts with TLR4 on the cell surface to retain membrane TLR4 expression and further enhance its downstream Myd88-NF-κB inflammatory signaling in macrophages. Similarly, Tlr4-/- mice exhibit reduced CCRL2 expression in TAM and accelerated melanoma growth. Collectively, our study reveals a functional role of CCRL2 in activating immunostimulatory macrophages, thereby potentiating antitumor T-cell response and tumor rejection, and suggests CCLR2 as a potential biomarker candidate and therapeutic target for cancer immunotherapy.


Subject(s)
Macrophage Activation/immunology , Neoplasms/immunology , Receptors, CCR/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , China , Female , Immunization , Macrophage Activation/physiology , Male , Melanoma/metabolism , Mice , NF-kappa B/metabolism , Neoplasms/genetics , Receptors, CCR/genetics , Signal Transduction , T-Lymphocytes/metabolism , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
8.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337509

ABSTRACT

Inflammatory bowel diseases (IBDs) involve chronic inflammation of the gastrointestinal tract, where effector CD4+ T-cells play a central role. Thereby, the recruitment of T-cells into the colonic mucosa represents a key process in IBD. We recently found that CCR9 and DRD5 might form a heteromeric complex on the T-cell surface. The increase in CCL25 production and the reduction in dopamine levels associated with colonic inflammation represent a dual signal stimulating the CCR9:DRD5 heteromer, which promotes the recruitment of CD4+ T-cells into the colonic lamina propria. Here, we aimed to analyse the molecular requirements involved in the heteromer assembly as well as to determine the underlying cellular mechanisms involved in the colonic tropism given by the stimulation of the CCR9:DRD5 complex. The results show that dual stimulation of the CCR9:DRD5 heteromer potentiates the phosphorylation of the myosin light chain 2 (MLC2) and the migration speed in confined microchannels. Accordingly, disrupting the CCR9:DRD5 assembly induced a sharp reduction in the pMLC2 in vitro, decreased the migratory speed in confined microchannels, and dampened the recruitment of CD4+ T-cells into the inflamed colonic mucosa. Furthermore, in silico analysis confirmed that the interface of interaction of CCR9:DRD5 is formed by the transmembrane segments 5 and 6 from each protomer. Our findings demonstrated that the CCR9:DRD5 heteromeric complex plays a fundamental role in the migration of CD4+ T-cells into the colonic mucosa upon inflammation. Thereby, the present study encourages the design of strategies for disassembling the formation of the CCR9:DRD5 as a therapeutic opportunity to treat IBD.


Subject(s)
CD4-Positive T-Lymphocytes , Intestinal Mucosa , Receptors, CCR , Receptors, Dopamine D5 , Signal Transduction , Receptors, CCR/metabolism , Receptors, CCR/genetics , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Receptors, Dopamine D5/metabolism , Receptors, Dopamine D5/genetics , Intestinal Mucosa/metabolism , Colon/metabolism , Cell Movement , Dopamine/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/immunology
9.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33253374

ABSTRACT

INTRODUCTION: Most of the typical chemokine receptors (CKRs) have been identified as coreceptors for a variety of human and simian immunodeficiency viruses (HIVs and SIVs). This study evaluated CCRL2 to examine if it was an HIV/SIV coreceptor. METHODS: The Human glioma cell line, NP-2, is normally resistant to infection by HIV and SIV. The cell was transduced with amplified cluster of differentiation 4 (CD4) as a receptor and CCR5, CXCR4 and CCRL2 as coreceptor candidates to produce NP-2/CD4/coreceptor cells (). The cells were infected with multiplicity of infection (MOI) 1.0. Infected cells were detected by indirect immunofluorescence assay (IFA). Multinucleated giant cells (MGC) in syncytia were quantified by Giemsa staining. Proviral DNA was detected by polymerase chain reaction (PCR), and reverse transcriptase (RT) activity was measured. RESULTS: IFA detected viral antigens of the primary isolates, HIV-1HAN2 and HIV-2MIR in infected NP-2/CD4/CCRL2 cells, indicated CCRL2 as a functional coreceptor. IFA results were confirmed by the detection of proviral DNA and measurement of RT-activity in the spent cell supernatants. Additionally, MGC was detected in HIV-2MIR-infected NP-2/CD4/CCCRL2 cells. HIV-2MIR were found more potent users of CCRL2 than HIV-1HAN2. Moreover, GWAS studies, gene ontology and cell signaling pathways of the HIV-associated genes show interaction of CCRL2 with HIV/SIV envelope protein. CONCLUSIONS: In vitro experiments showed CCRL2 to function as a newly identified coreceptor for primary HIV-2 isolates conveniently. The findings contribute additional insights into HIV/SIV transmission and pathogenesis. However, its in vivo relevance still needs to be evaluated. Confirming in vivo relevance, ligands of CCRL2 can be investigated as potential targets for HIV entry-inhibitor drugs.


Subject(s)
HIV Infections/metabolism , HIV-2/metabolism , Receptors, CCR/metabolism , HIV Infections/genetics , HIV-1/genetics , HIV-1/metabolism , HIV-2/genetics , Humans , Jurkat Cells , Receptors, CCR/genetics
10.
PLoS Biol ; 18(4): e3000704, 2020 04.
Article in English | MEDLINE | ID: mdl-32251437

ABSTRACT

Lymph nodes (LNs) are highly organized secondary lymphoid organs that mediate adaptive immune responses to antigens delivered via afferent lymphatic vessels. Lymphatic endothelial cells (LECs) line intranodal lymphatic sinuses and organize lymph and antigen distribution. LECs also directly regulate T cells, mediating peripheral tolerance to self-antigens, and play a major role in many diseases, including cancer metastasis. However, little is known about the phenotypic and functional heterogeneity of LN LECs. Using single-cell RNA sequencing, we comprehensively defined the transcriptome of LECs in murine skin-draining LNs and identified new markers and functions of distinct LEC subpopulations. We found that LECs residing in the subcapsular sinus (SCS) have an unanticipated function in scavenging of modified low-density lipoprotein (LDL) and also identified a specific cortical LEC subtype implicated in rapid lymphocyte egress from LNs. Our data provide new, to our knowledge, insights into the diversity of LECs in murine LNs and a rich resource for future studies into the regulation of immune responses by LN LECs.


Subject(s)
Lymph Nodes/cytology , Single-Cell Analysis/methods , Animals , Biomarkers/metabolism , Endothelial Cells/cytology , Endothelium, Lymphatic/cytology , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , Integrin alpha2/genetics , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Receptors, CCR/genetics , Receptors, CCR/metabolism , Sequence Analysis, RNA , Vesicular Transport Proteins/genetics
11.
Proteins ; 90(9): 1714-1720, 2022 09.
Article in English | MEDLINE | ID: mdl-35437825

ABSTRACT

Chemokine (C-C motif) receptor-like 2 (CCRL2), is a seven transmembrane receptor closely related to the chemokine receptors CCR1, CCR2, CCR3, and CCR5. Nevertheless, CCRL2 is unable to activate conventional G-protein dependent signaling and to induce cell directional migration. The only commonly accepted CCRL2 ligand is the nonchemokine chemotactic protein chemerin (RARRES2). The chemerin binding to CCLR2 does induce leukocyte chemotaxis, yet, genetic targeting of CCRL2 was shown to modulate the inflammatory response in different experimental models. This mechanism was shown to be crucial for lung dendritic cell migration, neutrophil recruitment, and Natural Killer cell-dependent immune surveillance in lung cancer. To gain more insight in the interactions involved in the CCRL2-chemerin, the binding complexes were generated by protein-protein docking, then submitted to accelerated molecular dynamics. The obtained trajectories were inspected by principal component analyses followed by kernel density estimation to identify the ligand-receptor regions most frequently involved in the binding. To conclude, the reported analyses led to the identification of the putative hot-spot residues involved in CCRL2-chemerin binding.


Subject(s)
Intercellular Signaling Peptides and Proteins , Molecular Dynamics Simulation , Chemokines/genetics , Chemokines/metabolism , Ligands , Receptors, CCR/genetics , Receptors, CCR/metabolism
12.
Eur J Immunol ; 51(4): 903-914, 2021 04.
Article in English | MEDLINE | ID: mdl-33347617

ABSTRACT

This study elucidates the mechanism of CCL25 and CCR9 in rheumatoid arthritis (RA). RA synovial fluid (SF) expresses elevated levels of CCL25 compared to OA SF and plasma from RA and normal. CCL25 was released into RA SF by fibroblasts (FLS) and macrophages (MΦs) stimulated with IL-1ß and IL-6. CCR9 is also presented on IL-1ß and IL-6 activated RA FLS and differentiated MΦs. Conversely, in RA PBMCs neither CCL25 nor CCR9 are impacted by 3-month longitudinal TNF inhibitor therapy. CCL25 amplifies RA FLS and monocyte infiltration via p38 and ERK phosphorylation. CCL25-stimulated RA FLS secrete potentiated levels of IL-8 which is disrupted by p38 and ERK inhibitors. CCL25 polarizes RA monocytes into nontraditional M1 MΦs that produce IL-8 and CCL2. Activation of p38 and ERK cascades are also responsible for the CCL25-induced M1 MΦ development. Unexpectedly, CCL25 was unable to polarize RA PBMCs into effector Th1/Th17 cells. Consistently, lymphokine like RANKL was uninvolved in CCL25-induced osteoclastogenesis; however, this manifestation was regulated by osteoclastic factors such as RANK, cathepsin K (CTSK), and TNF-α. In short, we reveal that CCL25/CCR9 manipulates RA FLS and MΦ migration and inflammatory phenotype in addition to osteoclast formation via p38 and ERK activation.


Subject(s)
Arthritis, Rheumatoid/immunology , Cell Differentiation/immunology , Chemokines, CC/immunology , Macrophages/immunology , Osteoclasts/immunology , Receptors, CCR/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cells, Cultured , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Chemokines, CC/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/cytology , Fibroblasts/immunology , Fibroblasts/metabolism , Humans , Interleukin-8/immunology , Interleukin-8/metabolism , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Phosphorylation , Receptors, CCR/metabolism , Signal Transduction/immunology , Synovial Fluid/cytology , Synovial Fluid/immunology , Synovial Fluid/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Immunity ; 38(3): 502-13, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23352234

ABSTRACT

After an infection, the immune system generates long-lived memory lymphocytes whose increased frequency and altered state of differentiation enhance host defense against reinfection. Recently, the spatial distribution of memory cells was found to contribute to their protective function. Effector memory CD8+ T cells reside in peripheral tissue sites of initial pathogen encounter, in apparent anticipation of reinfection. Here we show that within lymph nodes (LNs), memory CD8+ T cells were concentrated near peripheral entry portals of lymph-borne pathogens, promoting rapid engagement of infected sentinel macrophages. A feed-forward CXCL9-dependent circuit provided additional chemotactic cues that further increase local memory cell density. Memory CD8+ T cells also produced effector responses to local cytokine triggers, but their dynamic behavior differed from that seen after antigen recognition. These data reveal the distinct localization and dynamic behavior of naive versus memory T cells within LNs and how these differences contribute to host defense.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL9/immunology , Immunologic Memory/immunology , Lymph Nodes/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Movement/immunology , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymph Nodes/metabolism , Lymph Nodes/virology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Microscopy, Fluorescence, Multiphoton , Receptors, CCR/immunology , Receptors, CCR/metabolism , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , Vaccinia/immunology , Vaccinia/metabolism , Vaccinia/virology , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
14.
Angew Chem Int Ed Engl ; 61(12): e202116782, 2022 03 14.
Article in English | MEDLINE | ID: mdl-34936714

ABSTRACT

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.


Subject(s)
Receptors, CCR , Receptors, G-Protein-Coupled , Allosteric Site , Ligands , Receptors, CCR/metabolism , Receptors, G-Protein-Coupled/metabolism
15.
Diabetologia ; 64(3): 603-617, 2021 03.
Article in English | MEDLINE | ID: mdl-33399911

ABSTRACT

AIMS/HYPOTHESIS: Accumulation of adipose tissue macrophages is considered pivotal in the development of obesity-associated inflammation and insulin resistance. In addition, recent studies suggest an involvement of the intestine as the primary organ in inducing hyperglycaemia and insulin resistance. We have reported that the C-C motif chemokine receptor (CCR) CCR9 is associated with intestinal immunity and has a pathogenic role in various liver diseases. However, its contribution to type 2 diabetes is unknown. In the current study, we aimed to clarify the involvement of CCR9 in the pathology of type 2 diabetes and the potential underlying mechanisms. METHODS: To elucidate how CCR9 affects the development of metabolic phenotypes, we examined the impact of CCR9 deficiency on the pathogenesis of type 2 diabetes using male C57BL/6J (wild-type [WT]) and CCR9-deficient (CCR9 knockout [KO]) mice fed a 60% high-fat diet (HFD) for 12 weeks. RESULTS: WT and Ccr9KO mice fed an HFD exhibited a comparable weight gain; however, glucose tolerance and insulin resistance were significantly improved in Ccr9KO mice. Moreover, visceral adipose tissue (VAT) and the liver of Ccr9KO mice presented with less inflammation and increased expression of glucose metabolism-related genes than WT mice. Ccr9 and Ccl25 expression were specifically higher in the small intestine but was not altered by HFD feeding and type 2 diabetes development. Accumulation of IFN-γ-producing CD4+ T lymphocytes and increased intestinal permeability in the small intestine was observed in WT mice following HFD feeding, but these changes were suppressed in HFD-fed Ccr9KO mice. Adoptive transfer of gut-tropic CCR9-expressing T lymphocytes partially reversed the favourable glucose tolerance found in Ccr9KO mice via exacerbated inflammation in the small intestine and VAT. CONCLUSIONS/INTERPRETATION: CCR9 plays a central role in the pathogenesis of type 2 diabetes by inducing an inflammatory shift in the small intestine. Our findings support CCR9 as a new therapeutic target for type 2 diabetes via the gut-VAT-liver axis.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Enteritis/etiology , Inflammation Mediators/metabolism , Insulin Resistance , Intestine, Small/metabolism , Obesity/complications , Receptors, CCR/metabolism , Animals , Blood Glucose/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chemokines, CC/genetics , Chemokines, CC/metabolism , Chemotaxis, Leukocyte , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Disease Models, Animal , Enteritis/immunology , Enteritis/metabolism , Insulin/blood , Interferon-gamma/metabolism , Intestine, Small/immunology , Intra-Abdominal Fat/immunology , Intra-Abdominal Fat/metabolism , Liver/immunology , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Obesity/immunology , Obesity/metabolism , Receptors, CCR/genetics , Signal Transduction
16.
J Hepatol ; 74(3): 511-521, 2021 03.
Article in English | MEDLINE | ID: mdl-33038434

ABSTRACT

BACKGROUND & AIMS: The number of patients with non-alcoholic steatohepatitis (NASH) is increasing globally. Recently, specific chemokine receptors have garnered interest as therapeutic targets in NASH. This is the first report to examine the role of the C-C chemokine receptor 9 (CCR9)/C-C chemokine receptor ligand 25 (CCL25) axis, and to reveal its therapeutic potential in NASH. METHODS: Patients with biopsy-proven non-alcoholic liver disease (NAFLD) were recruited and their serum and hepatic chemokine expression was examined. Furthermore, wild-type (WT) and Ccr9-/- mice were fed a high-fat high-cholesterol (HFHC) diet for 24 weeks to establish NASH. RESULTS: Serum CCL25, and hepatic CCR9 and CCL25 expression levels were increased in patients with NASH compared to healthy volunteers. Furthermore, Ccr9-/- mice were protected from HFHC diet-induced NASH progression both serologically and histologically. Flow cytometry and immunohistochemistry analysis showed that CCR9+CD11b+ inflammatory macrophages accumulated in the inflamed livers of HFHC diet-fed mice, while the number was reduced in Ccr9-/- mice. Consistent with human NASH livers, CCR9 was also expressed on hepatic stellate cells (HSCs) in mice with NASH, while CCR9-deficient HSCs showed less fibrogenic potential in vitro. Administration of a CCR9 antagonist hampered further fibrosis progression in mice with NASH, supporting its potential clinical application. Finally, we showed that CCR9 blockade attenuated the development of NAFLD-related hepatocellular carcinoma in HF diet-fed mice injected with diethylnitrosamine. CONCLUSIONS: These results highlight the role of the CCR9/CCL25 axis on macrophage recruitment and fibrosis formation in a murine NASH model, providing new insights into therapeutic strategies for NASH. LAY SUMMARY: Herein, we show that a specific chemokine axis involving a receptor (CCR9) and its ligand (CCL25) contributes to the progression of non-alcoholic steatohepatitis and carcinogenesis in humans and mice. Furthermore, treatment with a CCR9 antagonist ameliorates the development of steatohepatitis and holds promise for the treatment of patients with non-alcoholic steatohepatitis.


Subject(s)
Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/metabolism , Disease Progression , Liver Neoplasms/complications , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/complications , Receptors, CCR/metabolism , Adult , Aged , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/prevention & control , Case-Control Studies , Chemokines, CC/blood , Chemokines, CC/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Hepatic Stellate Cells/metabolism , Humans , Liver/pathology , Liver Neoplasms/pathology , Liver Neoplasms/prevention & control , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Receptors, CCR/antagonists & inhibitors , Receptors, CCR/genetics , Sulfonamides/administration & dosage , Treatment Outcome
17.
Biochem Biophys Res Commun ; 547: 139-147, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33610913

ABSTRACT

Fibrotic scarring is tightly linked to the development of heart failure in patients with post-myocardial infarction (MI). Atypical chemokine receptor 4 (ACKR4) can eliminate chemokines, such as C-C chemokine ligand 21 (CCL21), which is independently associated with heart failure mortality. However, the role of ACKR4 in the heart during MI is unrevealed. This study aimed to determine whether ACKR4 modulates cardiac remodeling following MI and to illuminate the potential molecular mechanisms. The expression of ACKR4 was upregulated in the border/infarct area, and ACKR4 was predominantly expressed in cardiac fibroblasts (CFs). Knockout of ACKR4 protected against adverse ventricular remodeling in mice post-MI. These protective effects of ACKR4 deficiency were independent of dendritic cell immune response but could be attributed to downregulated CF-derived IL-6, affecting CF proliferation and endothelial cell (EC) functions, which consequently inhibited cardiac fibrosis. ACKR4 promoted IL-6 generation and proliferation of CFs. Besides, ACKR4 induced endothelial-to-mesenchymal transition (EndMT) in ECs through IL-6 paracrine effect. The p38 MAPK/NF-κB signaling pathway was involved in ACKR4 facilitated IL-6 generation. Moreover, ACKR4 overexpression in vivo via AAV9 carrying a periostin promoter aggravated heart functional impairment post-MI, which was abolished by IL-6 neutralizing antibody. Therefore, our study established a novel link between ACKR4 and IL-6 post-MI, indicating that ACKR4 may be a novel therapeutic target to ameliorate cardiac remodeling.


Subject(s)
Fibroblasts/metabolism , Interleukin-6/antagonists & inhibitors , Myocardial Infarction/metabolism , Receptors, CCR/deficiency , Ventricular Remodeling , Animals , Cells, Cultured , Disease Models, Animal , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Receptors, CCR/genetics , Receptors, CCR/metabolism , Signal Transduction
18.
Biochem Biophys Res Commun ; 534: 34-40, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33310185

ABSTRACT

Abnormal crosstalk between gut immune and the liver was involved in nonalcoholic steatohepatitis (NASH). Mice with methionine choline-deficient (MCD) diet-induced NASH presented an imbalance of pro-(IL-6 and IFN-γ) and anti-inflammatory cytokines (IL-10) in the intestine. We also clarified that the ratio of CD4+ T cells and found that the NASH mesenteric lymph node (MLN) presents decreased numbers of CD4+Th17 cells but increased numbers of CD4+CD8+FoxP3+ regulatory T cells (Tregs). Furthermore, the intestinal immune imbalance in NASH was attributed to impaired gut chemokine receptor 9 (CCR9)/chemokine ligand 25 (CCL25) signalling, which is a crucial pathway for immune cell homing in the gut. We also demonstrated that CD4+CCR9+ T cell homing was dependent on CCL25 and that the numbers and migration abilities of CD4+CCR9+ T cells were reduced in NASH. Interestingly, the analysis of dendritic cell (DC) subsets showed that the numbers and retinal dehydrogenase (RALDH) activity of CD103+CD11b+ DCs were decreased and that the ability of these cells to upregulate CD4+ T cell CCR9 expression was damaged in NASH. Taken together, impaired intestinal CCR9/CCL25 signalling induced by CD103+CD11b+ DC dysfunction contributes to the gut immune imbalance observed in NASH.


Subject(s)
Chemokines, CC/metabolism , Dendritic Cells/immunology , Intestines/immunology , Non-alcoholic Fatty Liver Disease/immunology , Receptors, CCR/metabolism , Alanine Transaminase/blood , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Aspartate Aminotransferases/blood , CD11b Antigen/immunology , CD11b Antigen/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Chemokines, CC/genetics , Choline Deficiency/complications , Dendritic Cells/metabolism , Disease Models, Animal , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Intestines/physiopathology , Male , Methionine/deficiency , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, CCR/genetics , Signal Transduction
19.
Cytokine ; 142: 155473, 2021 06.
Article in English | MEDLINE | ID: mdl-33647585

ABSTRACT

BACKGROUND: B220+CD11c+plasmacytoid DCs(pDCs) are known to participate in the negative selection and central tolerance induction by the capturing of self-antigens in peripheral tissues and further migration to the thymus using the CCL25-CCR9 chemotaxis axis. AIM: Here we investigate the possibility of DCs migration stimulation to the thymus by the transfection with plasmid DNA-constructs encoding CCR9(pmaxCCR9) to develop a system for desired antigen delivery to the thymus for central tolerance induction. METHODS: Dendritic cells(DCs) cultures were generated from UBC-GFP mice bone marrow cells expressing green fluorescent protein using the rmFlt3-L. DCs cultures were transfected with pmaxCCR9 by electroporation. The efficiency of electroporation was confirmed by RT-qPCR and flow cytometry. The migration of electroporated DCs was assessed in vitro and in vivo. RESULTS: Dendritic cells(DCs) cultures obtained from UBC-GFP mice contained both B220+pDCs and SIRPa+cDC2. According to the RT-qPCR assay, the electroporation of obtained DCs cultures with pmaxCCR9 resulted in a 94.4-fold increase of RNA encoding CCR9 compared with non-electroporated cultures. Flow cytometry data showed that DCs cultures electroporated with pmaxCCR9 contained a significantly higher frequency of DCs carrying significantly higher levels of surface CCR9. Migration dynamics of obtained DCs analyzed in vitro showed that pmaxCCR9 electroporated DCs migrated significantly more active to CCL25 and thymic cells than non-electroporated and mock-electroporated DCs. In vivo, 30 days after injection, the relative amount of the DCs electroporated with pmaxCCR9 and pmaxMHC encoding antigenic determinants in the mice thymuses was 2.02-fold higher than the relative amount of the DCs electroporated with control plasmid. CONCLUSION: Thus, the electroporation of murine DCs with pmaxCCR9 stimulated its migration to CCL25 and thymic cells in vitro as well as to the thymus in vivo. The obtained DCs loaded with a desired antigen may be suggested for further evaluation of central tolerance induction ability in in vivo models of autoimmune diseases and transplantation.


Subject(s)
Cell Movement , Chemokines, CC/metabolism , DNA/metabolism , Dendritic Cells/metabolism , Plasmids/metabolism , Receptors, CCR/metabolism , Thymus Gland/cytology , Transfection , Animals , Antigens/metabolism , Cell Movement/drug effects , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/drug effects , Electroporation , Green Fluorescent Proteins/metabolism , Male , Membrane Proteins/pharmacology , Mice, Inbred C57BL , Transgenes
20.
Immunity ; 36(3): 438-50, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22444632

ABSTRACT

Central tolerance can be mediated by peripheral dendritic cells (DCs) that transport innocuous antigens (Ags) to the thymus for presentation to developing T cells, but the responsible DC subsets remained poorly defined. Immature plasmacytoid DCs (pDCs) express CCR9, a chemokine receptor involved in migration of T cell precursors to the thymus. We show here that CCR9 mediated efficient thymic entry of endogenous or i.v. transfused pDCs. pDCs activated by Toll-like receptor (TLR) ligands downregulated CCR9 and lost their ability to home to the thymus. Moreover, endogenous pDCs took up subcutaneously injected fluorescent Ag and, in the absence of TLR signals, transported Ag to the thymus in a CCR9-dependent fashion. Injected, Ag-loaded pDCs effectively deleted Ag-specific thymocytes, and this thymic clonal deletion required CCR9-mediated homing and was prevented by infectious signals. Thus, peripheral pDCs can contribute to immune tolerance through CCR9-dependent transport of peripheral Ags and subsequent deletion of Ag-reactive thymocytes.


Subject(s)
Autoantigens/metabolism , Dendritic Cells/immunology , Self Tolerance/immunology , Thymus Gland/immunology , Animals , Biological Transport, Active , Clonal Deletion/immunology , CpG Islands/immunology , Endocytosis , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR/deficiency , Receptors, CCR/genetics , Receptors, CCR/metabolism , Signal Transduction/immunology , Solubility , T-Lymphocytes/immunology , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL