Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
Add more filters

Publication year range
1.
Gen Comp Endocrinol ; 355: 114560, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38806133

ABSTRACT

Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.


Subject(s)
Growth Hormone-Releasing Hormone , Lancelets , Receptors, Neuropeptide , Receptors, Pituitary Hormone-Regulating Hormone , Animals , Lancelets/metabolism , Lancelets/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Hypothalamo-Hypophyseal System/metabolism
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599099

ABSTRACT

Alternative splicing of G protein-coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone-releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to ß-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus ß-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward ß-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.


Subject(s)
Alternative Splicing/genetics , Genetic Variation/genetics , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , HEK293 Cells , Humans , MAP Kinase Signaling System/genetics , PC-3 Cells , Sf9 Cells , Signal Transduction/genetics , beta-Arrestins/genetics
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34244423

ABSTRACT

Optic neuropathies are leading causes of irreversible visual impairment and blindness, currently affecting more than 100 million people worldwide. Glaucoma is a group of optic neuropathies attributed to progressive degeneration of retinal ganglion cells (RGCs). We have previously demonstrated an increase in survival of RGCs by the activation of macrophages, whereas the inhibition of macrophages was involved in the alleviation on endotoxin-induced inflammation by antagonist of growth hormone-releasing hormone (GHRH). Herein, we hypothesized that GHRH receptor (GHRH-R) signaling could be involved in the survival of RGCs mediated by inflammation. We found the expression of GHRH-R in RGCs of adult rat retina. After optic nerve crush, subcutaneous application of GHRH agonist MR-409 or antagonist MIA-602 promoted the survival of RGCs. Both the GHRH agonist and antagonist increased the phosphorylation of Akt in the retina, but only agonist MR-409 promoted microglia activation in the retina. The antagonist MIA-602 reduced significantly the expression of inflammation-related genes Il1b, Il6, and Tnf Moreover, agonist MR-409 further enhanced the promotion of RGC survival by lens injury or zymosan-induced macrophage activation, whereas antagonist MIA-602 attenuated the enhancement in RGC survival. Our findings reveal the protective effect of agonistic analogs of GHRH on RGCs in rats after optic nerve injury and its additive effect to macrophage activation, indicating a therapeutic potential of GHRH agonists for the protection of RGCs against optic neuropathies especially in glaucoma.


Subject(s)
Growth Hormone-Releasing Hormone/agonists , Macrophages/pathology , Neuroprotection , Optic Nerve Injuries/pathology , Retinal Ganglion Cells/pathology , Animals , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Growth Hormone/metabolism , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neuroprotection/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Inbred F344 , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , STAT3 Transcription Factor/metabolism , Sermorelin/analogs & derivatives , Sermorelin/pharmacology , Signal Transduction/drug effects , Vitreous Body/drug effects , Vitreous Body/metabolism , Zymosan/pharmacology
4.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892024

ABSTRACT

Inflammation, demyelination, and axonal damage to the central nervous system (CNS) are the hallmarks of multiple sclerosis (MS) and its representative animal model, experimental autoimmune encephalomyelitis (EAE). There is scientific evidence for the involvement of growth hormone (GH) in autoimmune regulation. Previous data on the relationship between the GH/insulin like growth factor-1 (IGF-1) axis and MS/EAE are inconclusive; therefore, the aim of our study was to investigate the changes in the GH axis during acute monophasic EAE. The results show that the gene expression of Ghrh and Sst in the hypothalamus does not change, except for Npy and Agrp, while at the pituitary level the Gh, Ghrhr and Ghr genes are upregulated. Interestingly, the cell volume of somatotropic cells in the pituitary gland remains unchanged at the peak of the disease. We found elevated serum GH levels in association with low IGF-1 concentration and downregulated Ghr and Igf1r expression in the liver, indicating a condition resembling GH resistance. This is likely due to inadequate nutrient intake at the peak of the disease when inflammation in the CNS is greatest. Considering that GH secretion is finely regulated by numerous central and peripheral signals, the involvement of the GH/IGF-1 axis in MS/EAE should be thoroughly investigated for possible future therapeutic strategies, especially with a view to improving EAE disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Growth Hormone , Insulin-Like Growth Factor I , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Rats , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Hypothalamus/metabolism , Hypothalamus/pathology , Pituitary Gland/metabolism , Pituitary Gland/pathology , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/genetics , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/genetics , Liver/metabolism , Liver/pathology , Disease Models, Animal
5.
Proc Natl Acad Sci U S A ; 117(11): 6067-6074, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123064

ABSTRACT

Ocular inflammation is a major cause of visual impairment attributed to dysregulation of the immune system. Previously, we have shown that the receptor for growth-hormone-releasing hormone (GHRH-R) affects multiple inflammatory processes. To clarify the pathological roles of GHRH-R in acute ocular inflammation, we investigated the inflammatory cascades mediated by this receptor. In human ciliary epithelial cells, the NF-κB subunit p65 was phosphorylated in response to stimulation with lipopolysaccharide (LPS), resulting in transcriptional up-regulation of GHRH-R. Bioinformatics analysis and coimmunoprecipitation showed that GHRH-R had a direct interaction with JAK2. JAK2, but not JAK1, JAK3, and TYK2, was elevated in ciliary body and iris after treatment with LPS in a rat model of endotoxin-induced uveitis. This elevation augmented the phosphorylation of STAT3 and production of proinflammatory factors, including IL-6, IL-17A, COX2, and iNOS. In explants of iris and ciliary body, the GHRH-R antagonist, MIA-602, suppressed phosphorylation of STAT3 and attenuated expression of downstream proinflammatory factors after LPS treatment. A similar suppression of STAT3 phosphorylation was observed in human ciliary epithelial cells. In vivo studies showed that blocking of the GHRH-R/JAK2/STAT3 axis with the JAK inhibitor Ruxolitinib alleviated partially the LPS-induced acute ocular inflammation by reducing inflammatory cells and protein leakage in the aqueous humor and by repressing expression of STAT3 target genes in rat ciliary body and iris and in human ciliary epithelial cells. Our findings indicate a functional role of the GHRH-R/JAK2/STAT3-signaling axis in acute anterior uveitis and suggest a therapeutic strategy based on treatment with antagonists targeting this signaling pathway.


Subject(s)
Epithelial Cells/pathology , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Signal Transduction/immunology , Uveitis/pathology , Animals , Cell Line , Ciliary Body/cytology , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/immunology , Humans , Janus Kinase 2/metabolism , Lipopolysaccharides/immunology , Male , Nitriles , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines , Rats , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/immunology , Receptors, Pituitary Hormone-Regulating Hormone/antagonists & inhibitors , Receptors, Pituitary Hormone-Regulating Hormone/immunology , STAT3 Transcription Factor/metabolism , Sermorelin/analogs & derivatives , Sermorelin/pharmacology , Sermorelin/therapeutic use , Signal Transduction/drug effects , Uveitis/drug therapy , Uveitis/immunology
6.
Mol Psychiatry ; 26(12): 7465-7474, 2021 12.
Article in English | MEDLINE | ID: mdl-34331008

ABSTRACT

Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Animals , Brain-Derived Neurotrophic Factor , Mice , Mood Disorders/drug therapy , Receptors, Neuropeptide , Receptors, Pituitary Hormone-Regulating Hormone , Sermorelin/analogs & derivatives , Sermorelin/pharmacology , Stress Disorders, Post-Traumatic/drug therapy
7.
Proc Natl Acad Sci U S A ; 116(6): 2226-2231, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30659154

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 µg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.


Subject(s)
Antineoplastic Agents/pharmacology , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mesothelioma/metabolism , Mesothelioma/pathology , Pleural Neoplasms/metabolism , Pleural Neoplasms/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Gene Expression , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Humans , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Mesothelioma, Malignant , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Pleural Neoplasms/drug therapy , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Xenograft Model Antitumor Assays
8.
Molecules ; 27(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566020

ABSTRACT

Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various tumors, including endometrial carcinomas (EC). However, tumoral receptors that mediate the antiproliferative effects of GHRH antagonists in human ECs have not been fully characterized. In this study, we investigated the expression of mRNA for GHRH and splice variants (SVs) of GHRH receptors (GHRH-R) in 39 human ECs and in 7 normal endometrial tissue samples using RT-PCR. Primers designed for the PCR amplification of mRNA for the full length GHRH-R and SVs were utilized. The PCR products were sequenced, and their specificity was confirmed. Nine ECs cancers (23%) expressed mRNA for SV1, three (7.7%) showed SV2 and eight (20.5%) revealed mRNA for SV4. The presence of SVs for GHRH-Rs could not be detected in any of the normal endometrial tissue specimens. The presence of specific, high affinity GHRH-Rs was also demonstrated in EC specimens using radioligand binding studies. Twenty-four of the investigated thirty-nine tumor samples (61.5%) and three of the seven corresponding normal endometrial tissues (42.9%) expressed mRNA for GHRH ligand. Our findings suggest the possible existence of an autocrine loop in EC based on GHRH and its tumoral SV receptors. The antiproliferative effects of GHRH antagonists on EC are likely to be exerted in part by the local SVs and GHRH system.


Subject(s)
Alternative Splicing , Endometrial Neoplasms , Growth Hormone-Releasing Hormone/genetics , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , DNA Primers , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Female , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/pharmacology , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
J Cell Physiol ; 236(12): 8197-8207, 2021 12.
Article in English | MEDLINE | ID: mdl-34224586

ABSTRACT

Age-related diseases such as cardiovascular diseases portend disability, increase health expenditures, and cause late-life mortality. Synthetic agonists of growth hormone-releasing hormone (GHRH) exhibit several favorable effects on heart function and remodeling. Here we assessed whether GHRH agonist MR409 can modulate heart function and systemic parameters in old mice. Starting at the age of 15 months, mice were injected subcutaneously with MR409 (10 µg/day, n = 8) or vehicle (n = 7) daily for 6 months. Mice treated with MR409 showed improvements in exercise activity, cardiac function, survival rate, immune function, and hair growth in comparison with the controls. More stem cell colonies were grown out of the bone marrow recovered from the MR409-treated mice. Mitochondrial functions of cardiomyocytes (CMs) from the MR409-treated mice were also significantly improved with more mitochondrial fusion. Fewer ß-gal positive cells were observed in endothelial cells after 10 passages with MR409. In Doxorubicin-treated H9C2 cardiomyocytes, cell senescence marker p21 and reactive oxygen species were significantly reduced after cultured with MR409. MR409 also improved cellular ATP production and oxygen consumption rate in Doxorubicin-treated H9C2 cells. Mitochondrial protein OPA1 long isoform was significantly increased after treatment with MR409. The effects of MR409 were mediated by GHRH receptor and protein kinase A (PKA). In short, GHRH agonist MR409 reversed the aging-associated changes with respect of heart function, mobility, hair growth, cellular energy production, and senescence biomarkers. The improvement of heart function may be related to a better mitochondrial functions through GHRH receptor/cAMP/PKA/OPA1 signaling pathway and relieved cardiac inflammation.


Subject(s)
Endothelial Cells/drug effects , Myocytes, Cardiac/drug effects , Peptide Fragments/pharmacology , Receptors, Neuropeptide/agonists , Receptors, Pituitary Hormone-Regulating Hormone/agonists , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Endothelial Cells/metabolism , Growth Hormone-Releasing Hormone/metabolism , Mice , Myocytes, Cardiac/metabolism , Signal Transduction/drug effects
10.
Rev Endocr Metab Disord ; 22(1): 81-89, 2021 03.
Article in English | MEDLINE | ID: mdl-32935264

ABSTRACT

Since 1994, we have been studying an extended kindred with 105 subjects (over 8 generations) residing in Itabaianinha County, in the Brazilian state of Sergipe, who have severe isolated GH deficiency (IGHD) due to a homozygous inactivating mutation (c.57 + 1G > A) in the GH releasing hormone (GHRH) receptor (GHRHR) gene. Most of these individuals have never received GH replacement therapy. They have low GH, and very low and often undetectable levels of serum IGF-I. Their principal physical findings are proportionate short stature, doll facies, high-pitched-voice, central obesity, wrinkled skin, and youthful hair with delayed pigmentation, and virtual absence of graying. The newborns from this cohort are of normal size, indicating that GH is not needed for intra-uterine growth. However, these IGHD individuals exhibit a myriad of phenotypic changes throughout the body, with a greater number of beneficial than harmful consequences. This GHRH signal disruption syndrome has been a valuable model to study the GH roles in body size and function. This reviews summarized the findings we have reported on this cohort.


Subject(s)
Dwarfism, Pituitary , Receptors, Pituitary Hormone-Regulating Hormone , Adult , Brazil , Child , Humans , Infant, Newborn , Mutation , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics
11.
J Biochem Mol Toxicol ; 35(10): e22879, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34369038

ABSTRACT

Growth hormone-releasing hormone (GHRH) is a hypothalamic hormone, which regulates the secretion of growth hormone (GH) from the anterior pituitary gland. The effects of GHRH extend beyond the GH-insulin-like growth factor I axis, and that neuropeptide has been involved in the potentiation of several malignancies and other inflammatory disorders. The development of GHRH antagonists (GHRHAnt) delivers an exciting possibility to counteract the pathogenesis of the GHRH-related effects in human pathophysiology, especially when considered that GHRHAnt support endothelial barrier integrity. Those GHRHAnt-mediated effects are exerted at least in part due to the suppression of major inflammatory pathways, and the modulation of major cytoskeletal components. In the present study, we measured the production of reactive oxygen species (ROS) in bovine pulmonary artery endothelial cells, human cerebral microvascular endothelial cells, and human lung microvascular endothelial cells exposed to GHRH or a commercially available GHRHAnt. Our findings reveal the antioxidative effects of GHRHAnt in all three cell lines, which express GHRH receptors. The redox status of NIH/3T3 cells, which do not produce GHRH receptors, was not significantly affected by GHRH or GHRHAnt. Hence, the application of GHRHAnt in pathologies related to increased ROS production should be further investigated.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/metabolism , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Animals , Cattle , Cell Line, Transformed , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/pharmacology , Humans , Hydrogen Peroxide/metabolism , Mice , NIH 3T3 Cells , Pulmonary Artery/cytology , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/metabolism
12.
Proc Natl Acad Sci U S A ; 115(47): 12028-12033, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30373845

ABSTRACT

The effects of the growth hormone-releasing hormone (GHRH) agonist MR409 on various human cancer cells were investigated. In H446 small cell lung cancer (SCLC) and HCC827 and H460 (non-SCLC) cells, MR409 promoted cell viability, reduced cell apoptosis, and induced the production of cellular cAMP in vitro. Western blot analyses showed that treatment of cancer cells with MR409 up-regulated the expression of cyclins D1 and D2 and cyclin-dependent kinases 4 and 6, down-regulated p27kip1, and significantly increased the expression of the pituitary-type GHRH receptor (pGHRH-R) and its splice-variant (SV1). Hence, in vitro MR409 exerts agonistic action on lung cancer cells in contrast to GHRH antagonists. However, in vivo, MR409 inhibited growth of lung cancers xenografted into nude mice. MR409 given s.c. at 5 µg/day for 4 to 8 weeks significantly suppressed growth of HCC827, H460, and H446 tumors by 48.2%, 48.7%, and 65.6%, respectively. This inhibition of tumor growth by MR409 was accompanied by the down-regulation of the expression of pGHRH-R and SV1 in the pituitary gland and tumors. Tumor inhibitory effects of MR409 in vivo were also observed in other human cancers, including gastric, pancreatic, urothelial, prostatic, mammary, and colorectal. This inhibition of tumor growth parallel to the down-regulation of GHRH-Rs is similar and comparable to the suppression of sex hormone-dependent cancers after the down-regulation of receptors for luteinizing hormone-releasing hormone (LHRH) by LHRH agonists. Further oncological investigations with GHRH agonists are needed to elucidate the underlying mechanisms.


Subject(s)
Receptors, Neuropeptide/drug effects , Receptors, Pituitary Hormone-Regulating Hormone/drug effects , Sermorelin/analogs & derivatives , Alternative Splicing/drug effects , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation/drug effects , Female , Growth Hormone-Releasing Hormone/agonists , Growth Hormone-Releasing Hormone/pharmacology , Humans , Mice , Mice, Nude , RNA Splicing/drug effects , Sermorelin/metabolism , Sermorelin/pharmacology , Small Cell Lung Carcinoma/metabolism , Xenograft Model Antitumor Assays/methods
13.
Anim Biotechnol ; 32(3): 292-299, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31697176

ABSTRACT

Yanbian yellow cattle breeding is limited by slow growth. We previously found that the miRNA miR-93 was differentially expressed between the blood exosomes of Yanbian yellow cattle and Han Yan cattle, which differ in growth characteristics. In this experiment, we evaluated the effects of miR-93 on growth hormone (GH) secretion by pituitary cells of Yanbian yellow cattle using qPCR, Western blot, Targetscan and RNA hybrid analysis software and Dual-Luciferase reporter gene system. The results showed that miR-93 targeted 3' UTR of GHRHR(growth hormone releasing hormone receptor); GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-93-mi group than in the NC control group (p < 0.01), while GH mRNA and protein levels were higher in the miR-93-in group than in the iNC control group, but the difference was not significant (p > 0.05); GHRHR mRNA and protein levels were significantly lower in the miR-93-mi group than in the NC control group (p < 0.01), while GHRHR protein levels were significantly higher in the miR-93-in group than in the iNC control group (p < 0.05), but there was no significant difference about GHRHR mRNA level between two groups (p > 0.05). These results prove that miR-93 regulates GH secretion in pituitary cells via GHRHR.


Subject(s)
Cattle/genetics , Growth Hormone/metabolism , MicroRNAs/genetics , Pituitary Gland/cytology , Animals , Gene Expression Regulation/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism
14.
Circ Res ; 122(10): 1395-1408, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29618597

ABSTRACT

RATIONALE: Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE: The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS: Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS: GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.


Subject(s)
Peptide Fragments/therapeutic use , Vascular Calcification/prevention & control , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/genetics , Animals , Aorta/metabolism , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Culture Media/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Growth Hormone-Releasing Hormone , Heart Transplantation , Humans , Isoquinolines/pharmacology , Mice , Mice, Inbred C57BL , Osteogenesis , Osteoprotegerin/deficiency , Peptide Fragments/pharmacology , RNA, Small Interfering/genetics , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/antagonists & inhibitors , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Sulfonamides/pharmacology , Transcription Factor RelA/metabolism , Vascular Calcification/physiopathology
15.
Cell Biol Int ; 44(8): 1558-1563, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32281696

ABSTRACT

p53 universe is composed of a complex regulatory network, destined to counteract multifarious challenges threatening cell survival. Imbalance in those responses may result in human disease associated with inevitable consequences. The present work delivers our view of the corresponding phenomena, by involving the endothelium defender in meticulously orchestrated events against inflammatory stimuli. Immersing into the great depths of p53 cosmos may lead to promising therapies against devastating disorders, including acute respiratory distress syndrome.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/physiology , Tumor Suppressor Protein p53/physiology , Animals , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endoplasmic Reticulum Stress , Endothelium/metabolism , Humans , Inflammation/metabolism , Lung/metabolism , Male , Mice , Neoplasms/metabolism , Nitric Oxide Synthase Type II/metabolism , Prostatic Hyperplasia/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Tumor Suppressor Protein p53/metabolism
16.
RNA Biol ; 17(12): 1754-1766, 2020 12.
Article in English | MEDLINE | ID: mdl-32508238

ABSTRACT

Growth hormone (GH), whose synthesis and release are mainly regulated by intracellular signals mediated by growth hormone-releasing hormone receptor (GHRHR), is one of the major pituitary hormones and critical regulators of organism growth, metabolism, and immunoregulation. Pig GHRHR splice variants (SVs) may activate different signalling pathways via the variable C-terminal by alternative splicing, and SVs have the potential to change microRNA (miRNA) binding sites. In this study, we first confirmed the existence of pig GHRHR SVs (i.e., GHRHR, GHRHR SV1 and SV2) and demonstrated the inhibitory effects of critical pituitary miRNAs (i.e., let-7e and miR-328-5p) on GH synthesis and cell proliferation of primary pituitary cells. The SVs of GHRHR targeted by let-7e and miR-328-5p were predicted via bioinformatics analysis and verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. The differential responses of let-7e, and miR-328-5p to GH-releasing hormone and the changes in signalling pathways mediated by GHRHR suggested that let-7e and miR-328-5p were involved in GH synthesis mediated by GHRHR SVs, indicating that the two miRNAs played different roles by different ways. Finally, results showed that the protein coded by the GHRHR transcript regulated GH through the NO/NOS signalling pathway, whereas that coded by SV1 and SV2 regulated GH through the PKA/CREB signalling pathway, which was confirmed by the changes in signalling pathways after transfecting the expression vectors of GHRHR SVs to GH3 cells. To the best of our knowledge, this paper is the first to report pituitary miRNAs regulate GH synthesis by targeting the different SVs of GHRHR.


Subject(s)
Alternative Splicing , Growth Hormone/metabolism , MicroRNAs/metabolism , Pituitary Gland/metabolism , RNA Interference , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Signal Transduction , Animals , Cell Line , Cell Proliferation , Cell Survival/genetics , Computational Biology , Female , Gene Expression Profiling , Gene Expression Regulation , Growth Hormone/genetics , MicroRNAs/genetics , Nitric Oxide/metabolism , Swine
17.
Hum Mutat ; 40(11): 2033-2043, 2019 11.
Article in English | MEDLINE | ID: mdl-31231873

ABSTRACT

Isolated growth hormone deficiency (IGHD) is a rare condition mainly caused by mutations in GH1. The aim of this study was to assess the contribution of GHRHR mutations to IGHD in an unusually large group of patients. All GHRHR coding exons and flanking intronic regions were sequenced in 312 unrelated patients with nonsyndromic IGHD. Functional consequences of all newly identified missense variants were assessed in vitro (i.e., study of the expression of recombinant GHRHRs and their ability to activate the cyclic adenosine monophosphate (cAMP) signaling pathway). Genotype-phenotype correlation analyses were performed according to the nature of the identified mutation. We identified 20 different disease-causing GHRHR mutations (truncating and missense loss-of-function mutations), among which 15 are novel, in 24 unrelated patients. Of note, about half (13/24) of those patients represent sporadic cases. The clinical phenotype of patients with at least one missense GHRHR mutation was found to be indistinguishable from that of patients with bi-allelic truncating mutations. This study, which unveils disease-causing GHRHR mutations in 8% (24/312) of IGHD cases, identifies GHRHR as the second IGHD gene most frequently involved after GH1. The finding that 8% of IGHD cases without GH1 mutations are explained by GHRHR molecular defects (including missense mutations), together with the high proportion of sporadic cases among those patients, has important implications for genetic counseling.


Subject(s)
Dwarfism, Pituitary/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , Cyclic AMP , DNA Mutational Analysis , Dwarfism, Pituitary/diagnosis , Female , Genotype , Human Growth Hormone/genetics , Humans , Male , Pedigree , Receptors, Neuropeptide/chemistry , Receptors, Pituitary Hormone-Regulating Hormone/chemistry
18.
Exp Eye Res ; 181: 277-284, 2019 04.
Article in English | MEDLINE | ID: mdl-30831084

ABSTRACT

The receptor for growth hormone-releasing hormone (GHRH-R) has been shown to upregulate specifically in the ciliary and iris epithelial cells and infiltrating cells in the aqueous humor in a rat model of acute anterior uveitis. Treatment with GHRHR-R antagonist alleviates significantly these inflammatory responses. Herein we investigated whether the ciliary and iris epithelial cells can respond directly to lipopolysaccharide (LPS) without the influences of circulating leukocytes to produce inflammatory mediators through a GHRH-R mediated mechanism. In explant cultures of rat ciliary body and iris, LPS caused a substantial increase of GHRH-R in 24 h. Immunohistochemistry showed a localization of TLR4, the receptor for LPS, and an elevated expression of IL-6 and IL-1ß in ciliary and iris epithelial cells after LPS treatment. LPS also elevated the level of IL-1ß, IL-6, and iNOS and increased secretion of IL-1ß and IL-6 from the explants. The GHRH-R antagonist, MIA-602, suppressed the elevated expression of IL-1ß and IL-6, and reduced the release of IL-6. Such effects were not seen for the GHRHR agonist, MR-409. When co-cultured with leukocytes, expression of GHRH-R in the ocular explants was further enhanced during LPS treatment. Our results demonstrate a direct action of LPS on ciliary and iris epithelial cells to produce pro-inflammatory factors through a GHRH-R mediated mechanism, and suggest a role of these epithelial cells, in addition to the resident antigen presenting cells, in immune surveillance of the eye. Infiltrating leukocytes may enhance these inflammatory responses by regulating GHRH-R in ciliary and iris epithelial cells, in addition to their functions of synthesizing proinflammatory cytokines.


Subject(s)
Aqueous Humor/metabolism , Ciliary Body/metabolism , Cytokines/biosynthesis , Eye Infections, Bacterial/genetics , Gene Expression Regulation , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Uveitis, Anterior/genetics , Animals , Ciliary Body/pathology , Disease Models, Animal , Eye Infections, Bacterial/metabolism , Eye Infections, Bacterial/pathology , Immunohistochemistry , Iris/metabolism , Male , RNA/genetics , Rats , Rats, Sprague-Dawley , Receptors, Neuropeptide/biosynthesis , Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis , Uveitis, Anterior/metabolism , Uveitis, Anterior/pathology
19.
PLoS Genet ; 12(8): e1006237, 2016 08.
Article in English | MEDLINE | ID: mdl-27487365

ABSTRACT

Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Chemoreceptor Cells/metabolism , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/biosynthesis , Gene Expression Regulation, Developmental , Receptors, Neuropeptide/biosynthesis , Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis , Sensory Receptor Cells/metabolism , Signal Transduction/genetics , Transcription Factors/biosynthesis
20.
Proc Natl Acad Sci U S A ; 113(7): 1895-900, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26831066

ABSTRACT

Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1-dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Disease Models, Animal , Dyslipidemias/physiopathology , Growth Hormone-Releasing Hormone/physiology , Animals , Dyslipidemias/therapy , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Intestine, Small/metabolism , Male , Rats , Rats, Wistar , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL